首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 562 毫秒
1.
2.
The regeneration capacity of the osteoporotic bones is generally lower than that of the normal bones. Current methods of bone defect treatment for osteoporosis are not always satisfactory. Recent studies have shown that the silicate based biomaterials can stimulate osteogenesis and angiogenesis due to the silicon (Si) ions released from the materials, and enhance bone regeneration in vivo. Other studies showed that strontium (Sr) plays a distinct role on inhibiting bone resorption. Based on the hypothesis that the combination of Si and Sr may have synergetic effects on osteoporotic bone regeneration, the porous Sr-substituted calcium silicate (SrCS) ceramic scaffolds combining the functions of Sr and Si elements were developed with the goals to promote osteoporotic bone defect repair. The effects of the ionic extract from SrCS on osteogenic differentiation of bone marrow mesenchymal stem cells derived from ovariectomized rats (rBMSCs-OVX), angiogenic differentiation of human umbilical vein endothelial cells (HUVECs) were investigated. The in vitro results showed that Sr and Si ions released from SrCS enhanced cell viability, alkaline phosphatase (ALP) activity, and mRNA expression levels of osteoblast-related genes of rBMSCs-OVX and expression of vascular endothelial growth factor (VEGF) without addition of extra osteogenic and angiogenic reagents. The activation in extracellular signal-related kinases (ERK) and p38 signaling pathways were observed in rBMSCs-OVX cultured in the extract of SrCS, and these effects could be blocked by ERK inhibitor PD98059, and P38 inhibitor SB203580, respectively. Furthermore, the ionic extract of SrCS stimulated HUVECs proliferation, differentiation and angiogenesis process. The in vivo experiments revealed that SrCS dramatically stimulated bone regeneration and angiogenesis in a critical sized OVX calvarial defect model, and the enhanced bone regeneration might be attributed to the modulation of osteogenic differentiation of endogenous mesenchymal stem cells (MSCs) and the inhibition of osteoclastogenesis, accompanying with the promotion of the angiogenic activity of endothelial cells (ECs).  相似文献   

3.
4.
The facts that biomaterials affect the behavior of single type of cells have been widely accepted. However, the effects of biomaterials on cell–cell interactions have rarely been reported. Bone tissue engineering involves osteoblastic cells (OCs), endothelial cells (ECs) and the interactions between OCs and ECs. It has been reported that silicate biomaterials can stimulate osteogenic differentiation of OCs and vascularization of ECs. However, the effects of silicate biomaterials on the interactions between ECs and OCs during vascularization and osteogenesis have not been reported, which are critical for bone tissue regeneration in vivo. Therefore, this study aimed to investigate the effects of calcium silicate (CS) bioceramics on interactions between human umbilical vein endothelial cells (HUVECs) and human bone marrow stromal cells (HBMSCs) and on stimulation of vascularization and osteogenesis in vivo through combining co-cultures with CS containing scaffolds. Specifically, the effects of CS on the angiogenic growth factor VEGF, osteogenic growth factor BMP-2 and the cross-talks between VEGF and BMP-2 in the co-culture system were elucidated. Results showed that CS stimulated co-cultured HBMSCs (co-HBMSCs) to express VEGF and the VEGF activated its receptor KDR on co-cultured HUVECs (co-HUVECs), which was also up-regulated by CS. Then, BMP-2 and nitric oxide expression from the co-HUVECs were stimulated by CS and the former stimulated osteogenic differentiation of co-HBMSCs while the latter stimulated vascularization of co-HVUECs. Finally, the poly(lactic-co-glycolic acid)/CS composite scaffolds with the co-cultured HBMSCs and HUVECs significantly enhanced vascularization and osteogenic differentiation in vitro and in vivo, which indicates that it is a promising way to enhance bone regeneration by combining scaffolds containing silicate bioceramics and co-cultures of ECs and OCs.  相似文献   

5.
Paracrine signals produced from stem cells influence tissue regeneration by inducing the differentiation of endogenous stem or progenitor cells. However, many recent studies that have investigated paracrine signaling of stem cells have relied on either two-dimensional transwell systems or conditioned medium culture, neither of which provide optimal culture microenvironments for elucidating the effects of paracrine signals in vivo. In this study, we recapitulated in vivo-like paracrine signaling of human mesenchymal stem cells (hMSCs) to enhance functional neuronal differentiation of human neural stem cells (hNSCs) in three-dimensional (3D) extracellular matrices (ECMs) within a microfluidic array platform. In order to amplify paracrine signaling, hMSCs were genetically engineered using cationic polymer nanoparticles to overexpress glial cell-derived neurotrophic factor (GDNF). hNSCs were cultured in 3D ECM hydrogel used to fill central channels of the microfluidic device, while GDNF-overexpressing hMSCs (GDNF-hMSCs) were cultured in channels located on both sides of the central channel. This setup allowed for mimicking of paracrine signaling between genetically engineered hMSCs and endogenous hNSCs in the brain. Co-culture of hNSCs with GDNF-hMSCs in the 3D microfluidic system yielded reduced glial differentiation of hNSCs while significantly enhancing differentiation into neuronal cells including dopaminergic neurons. Neuronal cells produced from hNSCs differentiating in the presence of GDNF-hMSCs exhibited functional neuron-like electrophysiological features. The enhanced paracrine ability of GDNF-hMSCs was finally confirmed using an animal model of hypoxic-ischemic brain injury. This study demonstrates the presented 3D microfluidic array device can provide an efficient co-culture platform and provide an environment for paracrine signals from transplanted stem cells to control endogenous neuronal behaviors in vivo.  相似文献   

6.
Repair of large calvarial bony defect remains a challenge for orthopedic surgeons. Since microRNAs (miRNAs) modulate the osteogenesis of osteoprogenitor cells, we aimed to engineer human adipose-derived stem cells (hASCs), a promising cell source for bone engineering, with miRNA-expressing baculovirus vectors. We constructed 4 baculoviruses each expressing 1 human miRNA (miR-26a, miR-29b, miR-148b, miR-196a) and verified that the miRNA-expressing baculovirus vectors augmented hASCs osteogenesis. Among these 4 miRNAs, miR-148b and miR-196a exerted more potent osteoinductive effects than miR-26a and miR-29b. Furthermore, we unveiled that co-transduction of hASCs with miR-148b-expressing and bone morphogenetic protein 2 (BMP-2)-expressing baculovirus vectors enhanced and prolonged BMP-2 expression, and synergistically promoted the in vitro osteogenic differentiation of hASCs. Implantation of the hASCs co-expressing BMP-2/miR-148b into critical-size (4 mm in diameter) calvarial bone defects in nude mice accelerated and potentiated the bone healing and remodeling, filling ≈94% of defect area and ≈89% of defect volume with native calvaria-like flat bone in 12 weeks, as judged from micro computed tomography, histology and immunohistochemical staining. Altogether, this study confirmed the feasibility of combining miRNA and growth factor expression for synergistic stimulation of in vitro osteogenesis and in vivo calvarial bone healing.  相似文献   

7.
Mechanical properties of the extracellular matrix (ECM) play an essential role in cell fate determination. To study the role of mechanical properties of ECM in stem cell-mediated bone regeneration, we used a 3D in vivo ossicle model that recapitulates endochondral bone formation. Three-dimensional gelatin scaffolds with distinct stiffness were developed using 1-Ethyl-3-[3-dimethylaminopropyl] carbodiimide hydrochloride (EDC) mediated zero-length crosslinking. The mechanical strength of the scaffolds was significantly increased by EDC treatment, while the microstructure of the scaffold was preserved. Cell behavior on the scaffolds with different mechanical properties was evaluated in vitro and in vivo. EDC-treated scaffolds promoted early chondrogenic differentiation, while it promoted both chondrogenic and osteogenic differentiation at later time points. Both micro-computed tomography and histologic data demonstrated that EDC-treatment significantly increased trabecular bone formation by transplanted cells transduced with AdBMP. Moreover, significantly increased chondrogenesis was observed in the EDC-treated scaffolds. Based on both in vitro and in vivo data, we conclude that the high mechanical strength of 3D scaffolds promoted stem cell mediated bone regeneration by promoting endochondral ossification. These data suggest a new method for harnessing stem cells for bone regeneration in vivo by tailoring the mechanical properties of 3D scaffolds.  相似文献   

8.
Human cytomegalovirus (HCMV) infection has been shown to contribute to vascular disease through the induction of angiogenesis. However, the role of microRNA in angiogenesis induced by HCMV infection remains unclear. The present study was thus designed to explore the potential effect of miR-199a-5p on angiogenesis and to investigate the underlying mechanism in endothelial cells. We found that HCMV infection of endothelial cells (ECs) enhanced expression of miR-199a-5p and reduced the SIRT1 protein level at 24 h postinfection (hpi). Transfection with miR-199a-5p mimics significantly suppressed SIRT1 protein expression and promoted cellular migration and tube formation induced by HCMV infection, which could be reversed by transfection with an miR-199a-5p inhibitor. Furthermore, pretreatment with resveratrol depressed motility and tube formation of HCMV-infected ECs, which could be reversed by SIRT1 siRNA. Finally, overexpression of miR-199a-5p decreased the level of eNOS modulated by SIRT1, an effect repressed by transfection with an miR-199a-5p inhibitor. In summary, HCMV infection of endothelial cells upregulates miR-199a-5p expression and enhances cell migration and tube formation through downregulation of SIRT1/eNOS by miR-199a-5p.  相似文献   

9.
Osteoblast lineage cells are direct effectors of osteogenesis and are, therefore, commonly used to evaluate the in vitro osteogenic capacity of bone substitute materials. This method has served its purposes when testing novel bone biomaterials; however, inconsistent results between in vitro and in vivo studies suggest the mechanisms that govern a material's capacity to mediate osteogenesis are not well understood. The emerging field of osteoimmunology and immunomodulation has informed a paradigm shift in our view of bone biomaterials–from one of an inert to an osteoimmunomodulatory material–highlighting the importance of immune cells in materials-mediated osteogenesis. Neglecting the importance of the immune response during this process is a major shortcoming of the current evaluation protocol. In this study we evaluated a potential angiogenic bone substitute material cobalt incorporated with β-tricalcium phosphate (CCP), comparing the traditional “one cell type” approach with a “multiple cell types” approach to assess osteogenesis, the latter including the use of immune cells. We found that CCP extract by itself was sufficient to enhance osteogenic differentiation of bone marrow stem cells (BMSCs), whereas this effect was cancelled out when macrophages were involved. In response to CCP, the macrophage phenotype switched to the M1 extreme, releasing pro-inflammatory cytokines and bone catabolic factors. When the CCP materials were implanted into a rat femur condyle defect model, there was a significant increase of inflammatory markers and bone destruction, coupled with fibrous encapsulation rather than new bone formation. These findings demonstrated that the inclusion of immune cells (macrophages) in the in vitro assessment matched the in vivo tissue response, and that this method provides a more accurate indication of the essential role of immune cells when assessing materials-stimulated osteogenesis in vitro.  相似文献   

10.
BACKGROUND: Liver regeneration is the key factor influencing the prognosis of living donor liver transplantation. There has not been the research on special miRNA of liver regeneration after living donor liver transplantation. OBJECTIVE: To analyze the variation of miRNAs expression profile after rat reduced-size liver transplantation at certain time point, select and verify target miRNA which can provide targeting intervention strategies in liver regeneration after rat reduced-size liver transplantation and provide theoretical evidence for liver regeneration after living donor liver transplantation. METHODS: The reduced-size liver transplantation models were established. miRNAs microarray was used to detect miRNA expression. In differentially expressed microRNAs, real-time quantitative PCR was utilized to detect target miRNAs. The credibility of miRNAs microarray results was verified. RESULTS AND CONCLUSION: Compared with rat liver tissue in the sham operation group, 11 miRNAs up-regulated in reduced-size liver transplantation, including let-7b-5p, let-7c-5p, miR-101a-3p, miR-103-3p, miR-130a-3p, miR-142-5p, miR-186-5p, miR-199a-3p, miR-21-5p, 221-3p and miR-34a-5p. Four miRNAs were down-regulated, including miR-26b-5p, miR-150-5p, miR-19a-3p and rno-miR-146-5p. PCR test further verified that miR-221-3p and miR-199a-3p expression changes approximated the chip results at 24, 48 hours and 1 week, indicating that results of miRNA microarray were believable. These results verified that it exists variation of miRNAs expression profile after rat reduced-size liver transplantation, which picked out and verified the target miRNAs.     相似文献   

11.
Regenerative procedures using barrier membrane technology are presently well established in periodontal/endodontic surgery. The objective of this study was to compare the subsequent effects of the released platelet-derived growth factor (PDGF) and growth/differentiation factor 5 (GDF-5) from collagen membranes (CMs) on bone regeneration in vitro and in vivo. In vitro studies were conducted using MC3T3-E1 mouse preosteoblasts cultured with or without factors. Cell viability, cell proliferation, alkaline phosphatase (ALP) activity and bone marker gene expression were then measured. In vivo studies were conducted by placing CMs with low or high dose PDGF or GDF-5 in rat mandibular defects. At 4 weeks after surgery new bone formation was measured using μCT and histological analysis. The results of in vitro studies showed that CM/GDF-5 significantly increased ALP and cell proliferation activities without cytotoxicity in MC3T3-E1 cells when compared to CM/PDGF or CM alone. Gene expression analysis revealed that Runx2 and Osteocalcin were significantly increased in CM/GDF-5 compared to CM/PDGF or control. Quantitative and qualitative μCT and histological analysis for new bone formation revealed that although CM/PDGF significantly enhanced bone regeneration compared to CM alone or control, CM/GDF-5 significantly accelerated bone regeneration to an even greater extent than CM/PDGF. The results also showed that GDF-5 induced new bone formation in a dose-dependent manner. These results suggest that this strategy, using a CM carrying GDF-5, might lead to an improvement in the current clinical treatment of bone defects for periodontal and implant therapy.  相似文献   

12.
PurposeTo investigate the prognostic significance of miR-199a-3p and its role in invasion and metastasis in gastric cancer.MethodsmiR-199a-3p expression in 436 formalin-fixed and 39 frozen gastric cancer tissues was investigated by in situ hybridization and RT-PCR, respectively. The role of miR-199a-3p in the migration and invasion of gastric cancer cells was determined in overexpression and inhibitor studies using transwell assays and the SGC-7901, BGC-823 and MGC-803 gastric cancer cells lines. The effect of miR-199a-3p expression on ethanolamine kinase 1 (ETNK1) levels was determined by western botting.ResultsmiR-199a-3p was significantly up-regulated in AGS, SGC-7901, BGC-823 and MGC-803 gastric cancer cells, when compared with GES-1 non-malignant gastric epithelial cells. In situ hybridization studies revealed that human non-tumor gastric mucosa samples were negative for miR-199a-3p expression, while 162 of 436 (37.16%) cases of gastric cancer demonstrated positive expression. miR-199a-3p overexpression was associated with tumor size, Lauren classification, depth of invasion, lymph node and distant metastasis, TNM stage and prognosis. In patients with I, II and III stage tumors, high miR-199a-3p expression was associated with a significantly lower 5-year survival rate. miR-199a-3p overexpression was associated with increased cell migration and invasion. ETNK1 expression was inhibited following miR-199a-3p overexpression in BGC-823 and SGC-7901 cells, and elevated following miR-199a-3p suppression in MGC-803 cells.ConclusionmiR-199a-3p is highly expressed in gastric cancer, and correlates with invasion, metastasis and prognosis. miR-199a-3p regulates the invasion and migration of gastric cancer cells by targeting ETNK1. Consequently, miR-199a-3p may serve as a prognostic indicator in gastric cancer.  相似文献   

13.
Immune reactions play important roles in determining the in vivo fate of bone substitute materials, either in new bone formation or inflammatory fibrous tissue encapsulation. The paradigm for the development of bone substitute materials has been shifted from inert to immunomodulatory materials, emphasizing the importance of immune cells in the material evaluation. Macrophages, the major effector cells in the immune reaction to implants, are indispensable for osteogenesis and their heterogeneity and plasticity render macrophages a primer target for immune system modulation. However, there are very few reports about the effects of macrophages on biomaterial-regulated osteogenesis. In this study, we used β-tricalcium phosphate (β-TCP) as a model biomaterial to investigate the role of macrophages on the material stimulated osteogenesis. The macrophage phenotype switched to M2 extreme in response to β-TCP extracts, which was related to the activation of calcium-sensing receptor (CaSR) pathway. Bone morphogenetic protein 2 (BMP2) was also significantly upregulated by the β-TCP stimulation, indicating that macrophage may participate in the β-TCP stimulated osteogenesis. Interestingly, when macrophage-conditioned β-TCP extracts were applied to bone marrow mesenchymal stem cells (BMSCs), the osteogenic differentiation of BMSCs was significantly enhanced, indicating the important role of macrophages in biomaterial-induced osteogenesis. These findings provided valuable insights into the mechanism of material-stimulated osteogenesis, and a strategy to optimize the evaluation system for the in vitro osteogenesis capacity of bone substitute materials.  相似文献   

14.
BackgroundLong non-coding RNA (lncRNA) TMPO antisense RNA 1 (TMPO-AS1) is reported to be oncogenic in prostate cancer and lung cancer. This study aims to investigate the expression and biological function of it in retinoblastoma (RB), and explore its regulatory role for miR-199a-5p and hypoxia-inducible factor-1α (HIF-1α).MethodsPaired RB samples were collected, and the expression levels of TMPO-AS1, miR-199a-5p and HIF-1α were examined by quantitative real-time polymerase chain reaction (qRT-PCR); TMPO-AS1 overexpressing plasmids and TMPO-AS1 shRNA were transfected into HXO-RB44 and SO-Rb50 cell lines respectively, and then proliferation, migration and invasion of RB cells were detected by CCK-8 assay and Transwell method. qRT-PCR and western blot were used to analyze the regulatory function of TMPO-AS1 on miR-199a-5p and HIF-1α; luciferase reporter gene assay was used to determine the regulatory relationship between miR-199a-5p and TMPO-AS1.ResultsTMPO-AS1 was significantly up-regulated in cancerous tissues of RB samples (relatively expression: 2.97 vs 3.93, p < 0.001), negatively correlated with miR-199a-5p (r=-0.4813, p < 0.01). There was one binding site on TMPO-AS1 for miR-199a-5p. After transfection of TMPO-AS1 shRNAs into RB cells, the proliferation, migration and invasion of cancer cells was significantly inhibited, while TMPO-AS1 had opposite effects; TMPO-AS1 was also demonstrated to regulate the expression of HIF-1α on both mRNA and protein levels via negatively regulating miR-199a-5p.ConclusionTMPO-AS1 is abnormally up-regulated in RB tissues, and it can modulate the proliferation and migration of RB cells. It has the potential to be the “ceRNA” to regulate HIF-1α expression by sponging miR-199a-5p.  相似文献   

15.
The chemical composition, structure and surface characteristics of biomaterials/scaffold can affect the adsorption of proteins, and this in turn influences the subsequent cellular response and tissue regeneration. With magnesium/calcium phosphate cements (MCPC) as model, the effects of magnesium (Mg) on the initial adhesion and osteogenic differentiation of bone marrow stromal cells (BMSCs) as well as the underlying mechanism were investigated. A series of MCPCs with different magnesium phosphate cement (MPC) content (0∼20%) in calcium phosphate cement (CPC) were synthesized. MCPCs with moderate proportion of MPC (5% and 10%, referred to as 5MCPC and 10MCPC) were found to effectively modulate the orientation of the adsorbed fibronectin (Fn) to exhibit enhanced receptor binding affinity, and to up-regulate integrin α5β1 expression of BMSCs, especially for 5MCPC. As a result, the attachment, morphology, focal adhesion formation, actin filaments assembly and osteogenic differentiation of BMSCs on 5MCPC were strongly enhanced. Further in vivo experiments confirmed that 5MCPC induced promoted osteogenesis in comparison to ot her CPC/MCPCs. Our results also suggested that the Mg on the underlying substrates but not the dissolved Mg ions was the main contributor to the above positive effects. Based on these results, it can be inferred that the specific interaction of Fn and integrin α5β1 had predominant effect on the MCPC-induced enhanced cellular response of BMSCs. These results provide a new strategy to regulate BMSCs adhesion and osteogenic differentiation by adjusting the Mg/Ca content and distribution in CPC, guiding the development of osteoinductive scaffolds for bone tissue regeneration.  相似文献   

16.
目的:研究微小RNA-199a-5p(miR-199a-5p)对心肌成纤维细胞中纤维化相关基因表达的调控作用及其可能作用的靶基因。方法:原代分离并体外培养成体C57BL/6小鼠心肌成纤维细胞;双萤光素酶报告基因实验检测miR-199a-5p与潜在靶基因沉默信息调节因子1(SIRT1)3’端非翻译区(3’-UTR)的结合作用;实时荧光定量PCR(RT-q PCR)和Western blot法分别检测SIRT1以及纤维化标志物胶原蛋白(Col)1a1、Col3a1和α-平滑肌肌动蛋白(α-SMA)的mRNA和蛋白表达。结果:在血管紧张素Ⅱ(AngⅡ)诱导的小鼠心肌成纤维细胞中,Col1a1、Col3a1和α-SMA的表达增强,miR-199a-5p表达上调。在心肌成纤维细胞中过表达miR-199a-5p可以增强Col1a1、Col3a1和α-SMA的表达。双萤光素酶报告基因实验显示miR-199a-5p与SIRT1 3’-UTR有结合作用。RT-q PCR和Western blot结果证实miR-199a-5p可在转录水平抑制SIRT1表达。过表达miR-199a-5p和沉默SIRT1均能一致性促进心肌成纤维细胞中Col1a1、Col3a1和α-SMA的表达。抑制AngⅡ诱导的小鼠心肌成纤维细胞中NF-κB激活,可显著降低miR-199a-5p表达。结论:SIRT1是miR-199a-5p的作用靶基因,并介导miR-199a-5p促进纤维化标志物Col1a1、Col3a1和α-SMA的表达。  相似文献   

17.
Biomaterial surface design with biomimetic proteins holds great promise for successful regeneration of tissues including bone. Here we report a novel proteinaceous hybrid matrix mimicking bone extracellular matrix that has multifunctional capacity to promote stem cell adhesion and osteogenesis with excellent stability. Osteocalcin-fibronectin fusion protein holding collagen binding domain was networked with fibrillar collagen, featuring bone extracellular matrix mimic, to provide multifunctional and structurally-stable biomatrices. The hybrid protein, integrated homogeneously with collagen fibrillar networks, preserved structural stability over a month. Biological efficacy of the hybrid matrix was proven onto tethered surface of biopolymer porous scaffolds. Mesenchymal stem cells quickly anchored to the hybrid matrix, forming focal adhesions, and substantially conformed to cytoskeletal extensions, benefited from the fibronectin adhesive domains. Cells achieved high proliferative capacity to reach confluence rapidly and switched to a mature and osteogenic phenotype more effectively, resulting in greater osteogenic matrix syntheses and mineralization, driven by the engineered osteocalcin. The hybrid biomimetic matrix significantly improved in vivo bone formation in calvarial defects over 6 weeks. Based on the series of stimulated biological responses in vitro and in vivo the novel hybrid proteinaceous composition will be potentially useful as stem cell interfacing matrices for osteogenesis and bone regeneration.  相似文献   

18.
The search for alternative therapies to improve bone regeneration continues to be a major challenge for the medical community. Here we report on the enhanced mineralization, osteogenesis, and in vivo bone regeneration properties of a bioactive elastin-like recombinamer (ELR) membrane. Three bioactive ELRs exhibiting epitopes designed to promote mesenchymal stem cell adhesion (RGDS), mineralization (DDDEEKFLRRIGRFG), and both cell adhesion and mineralization were synthesized using standard recombinant protein techniques. The ELR materials were then used to fabricate membranes comprising either a smooth surface (Smooth) or channel microtopographies (Channels). Mineralization and osteoblastic differentiation of primary rat mesenchymal stem cells (rMSCs) were analyzed in both static and dynamic (uniaxial strain of 8% at 1 Hz frequency) conditions. Smooth mineralization membranes in static condition exhibited the highest quantity of calcium phosphate (Ca/P of 1.78) deposition with and without the presence of cells, the highest Young's modulus, and the highest production of alkaline phosphatase on day 10 in the presence of cells growing in non-osteogenic differentiation medium. These membranes were tested in a 5 mm-diameter critical-size rat calvarial defect model and analyzed for bone formation on day 36 after implantation. Animals treated with the mineralization membranes exhibited the highest bone volume within the defect as measured by micro-computed tomography and histology with no significant increase in inflammation. This study demonstrates the possibility of using bioactive ELR membranes for bone regeneration applications.  相似文献   

19.
Hepatocellular carcinoma (HCC) represents the second cause of cancer-related mortality worldwide and is associated with poor prognosis, due to a high recurrence rate after curative treatments and a drug resistance phenotype. In this scenario, the identification of innovative and effective therapeutic strategies is an unmet clinical need. The safety and efficacy of microRNA (miRNA) mediated approaches in preclinical models and clinical trials have been widely described in cancer. MicroRNA-199a downregulation is a common feature of HCC where its reduced expression contributes to mTOR and c-Met pathways activation. Notch1 activation is also a common event in HCC, influencing epithelial-to-mesenchymal transition, tumor invasion and recurrence at least in part through E-cadherin regulation. Here we identified a negative correlation between miR-199a-3p and Notch1 or E-cadherin protein levels in HCC patients and demonstrated that miR-199a-3p regulates E-cadherin expression through Notch1 direct targeting in in vitro models. Moreover, we showed that a strong correlation exists between miR-199a-5p and miR-199a-3p in HCC specimens and that miR-199a-5p contributes to E-cadherin regulation as well, underlying the complex network of interaction carried out by miR-199a and its influence on tumor aggressiveness. In conclusion, our findings suggest the restoration of miR-199a-3p physiologic levels as a possible therapeutic strategy for the treatment of HCC.  相似文献   

20.
Augmentation of regenerative osteogenesis represents a premier clinical need, as hundreds of thousands of patients are left with insufficient healing of bony defects related to a host of insults ranging from congenital abnormalities to traumatic injury to surgically-induced deficits. A synthetic material that closely mimics the composition and structure of the human osteogenic niche represents great potential to successfully address this high demand. In this study, a magnesium-doped hydroxyapatite/type I collagen scaffold was fabricated through a biologically-inspired mineralization process and designed to mimic human trabecular bone. The composition of the scaffold was fully characterized by XRD, FTIR, ICP and TGA, and compared to human bone. Also, the scaffold microstructure was evaluated by SEM, while its nano-structure and nano-mechanical properties were evaluated by AFM. Human bone marrow-derived mesenchymal stem cells were used to test the in vitro capability of the scaffold to promote osteogenic differentiation. The cell/scaffold constructs were cultured up to 7 days and the adhesion, organization and proliferation of the cells were evaluated. The ability of the scaffold to induce osteogenic differentiation of the cells was assessed over 3 weeks and the correlate gene expression for classic genes of osteogenesis was assessed. Finally, when tested in an ectopic model in rabbit, the scaffold produced a large volume of trabecular bone in only two weeks, that subsequently underwent maturation over time as expected, with increased mature cortical bone formation, supporting its ability to promote bone regeneration in clinically-relevant scenarios. Altogether, these results confirm a high level of structural mimicry by the scaffold to the composition and structure of human osteogenic niche that translated to faster and more efficient osteoinduction in vivo – features that suggest such a biomaterial may have great utility in future clinical applications where bone regeneration is required.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号