首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This report demonstrates the feasibility of surface-initiated atom transfer radical polymerization to prepare thin polymer layers ("brushes") that can be functionalized with short peptide ligands and which may be of use as coatings to promote endothelialization of blood-contacting biomaterials. The brushes are composed of poly(2-hydroxyethyl methacrylate) (PHEMA) or poly(poly(ethylene glycol) methacrylate) (PPEGMA), which do not only suppress non-specific adhesion of proteins and cells but also contain hydroxyl groups that can be used to introduce small peptide ligands. A protocol has been developed that allows functionalization of the brushes with RGD containing peptide ligands resulting in surface concentrations ranging from approximately 0.5-12 pmol/cm(2). At peptide surface concentrations >1-5.3 pmol/cm(2), human umbilical vascular endothelial cells (HUVECs) were found to adhere and spread rapidly. A difference in size and morphology of focal adhesions between HUVECs immobilized on PHEMA and PPEGMA brushes was observed. It is proposed that this is due to the increased ethylene glycol spacer length and hydrophilicity of the PPEGMA brushes, which may lead to increased ligand mobility and reduced ligand-integrin affinity. HUVECs immobilized on the polymer brushes were also found to be able to retain homeostasis when exposed to shear stresses that simulated arterial blood flow.  相似文献   

2.
Alginate type and RGD density control myoblast phenotype   总被引:4,自引:0,他引:4  
Alginates are being increasingly used for cell encapsulation and tissue engineering applications; however, these materials cannot specifically interact with mammalian cells. We have covalently modified alginates of varying monomeric ratio with RGD-containing cell adhesion ligands using carbodiimide chemistry to initiate cell adhesion to these polymers. We hypothesized that we could control the function of cells adherent to RGD-modified alginate hydrogels by varying alginate polymer type and cell adhesion ligand density, and we have addressed this possibility by studying the proliferation and differentiation of C2C12 skeletal myoblasts adherent to these materials. RGD density on alginates of varying monomeric ratio could be controlled over several orders of magnitude, creating a range of surface densities from 1-100 fmol/cm(2). Myoblast adhesion to these materials was specific to the RGD ligand, because adhesion could be competed away with soluble RGD in a dose-dependent manner. Myoblast proliferation and differentiation could be regulated by varying the alginate monomeric ratio and the density of RGD ligands at the substrate surface, and specific combinations of alginate type and RGD density were required to obtain efficient myoblast differentiation on these materials.  相似文献   

3.
To probe the role of human plasma fibronectin in modulating human blood-derived macrophage adhesion and fusion to form multinucleated foreign-body giant cells (FBGC), a series of biomimetic oligopeptides based on the functional structure of fibronectin was designed and synthesized. Peptides incorporated the RGD and PHSRN integrin-binding sequences from FIII-10 and FIII-9 modules, respectively, and the PRRARV sequence from the C-terminal heparin-binding domain, either alone or in combination. Peptides were immobilized onto a polyethyleneglycol-based polymer substrate. The following conclusions were reached. Fibronectin modulated macrophage adhesion and the extent (i.e., size) of FBGC formation on control surfaces in the presence of serum proteins. Macrophages adhered to all substrates with relatively subtle differences between adhesion mediated by RGD, PHSRN, PRRARV, or combinations thereof. beta1-integrin subunit was essential in macrophage adhesion to peptide-grafted networks in a receptor-peptide specific manner, whereas beta3-integrin subunit was less important. Macrophage adhesion to PRRARV was mediated primarily by the direct interaction with integrins. RGD or PHSRN alone did not provide an adequate substrate for macrophage fusion to form FBGCs. However, the PHSRN synergistic site and the RGD site in a single oligopeptide provided a substrate for FBGC formation that was statistically comparable to that on the positive control material in the presence of serum proteins. This response was highly dependent upon the relative orientation between RGD and PHSRN. PRRARV did not support FBGC formation. These results demonstrate the importance of fibronectin and, specifically, the synergy between RGD and PHSRN domains, in supporting macrophage fusion to form FBGCs.  相似文献   

4.
We designed photo-crosslinkable polymer brushes with dimethylmaleimide moieties, in order to demonstrate dynamic stimulation of cell differentiation in mesenchymal stem cells (MSCs). The polymer brushes were synthesized by surface-initiated reversible addition fragmentation chain transfer polymerization using dimethylmaleimide ethyl methacrylate and methyl methacrylate on a chain transfer agent-immobilized glass surface. The polymer brushes were crosslinked by photodimerization of the dimethylmaleimide moieties within polymer chains with stem cells present on the surface. In order to evaluate the effects of in situ photo-induced crosslinking of the polymer brushes on gene expression of stem cells, human bone marrow MSCs were cultured under static and dynamic culture conditions for 7 days. Expression of the osteocalcin (Ocn) gene in MSCs was used as an indicator of osteoblast differentiation under dynamic culture conditions. Structural conversion from non-crosslinked polymer brushes to crosslinked polymer brushes increased the expression of Ocn by 1.4-fold in the presence of adhered cells, compared with non-crosslinked polymer brushes under static culture conditions. These results suggest that MSCs recognized surface conversion from non-crosslinked to crosslinked structures, which resulted in altered differentiation lineages. Therefore, photo-crosslinkable surfaces with dimethyl maleimide moieties are potential novel materials for dynamically stimulating MSC differentiation.  相似文献   

5.
Zwitterionic copolymers keep good resistance to platelet adhesion and nonspecific protein adsorption. In this study, A block copolymer brushes consisting of carboxybetaine methacrylate (CBMA) and glycidyl methacrylate (GMA) were grafted from silicon wafers via surface-initiated atom transfer radical polymerization, and then the Arg-Glu-Asp-Val (REDV) peptide was attached to the polymer brush via an reactive epoxy group of the P(GMA) unit to improve endothelial cells (ECs) selectivity. These modified surfaces were evaluated with scanning electron microscopy, atomic force microscopy, attenuated total reflectance-Fourier transform infrared spectra, X-ray photoelectron spectroscopy, and static water contact angle measurement. The results showed that REDV-modified zwitterionic brushes were successfully constructed on silicon wafers. The biocompatibility of the membrane was determined by plasma recalcification time assay and platelet adhesion test. The results showed that the modified substrate exhibited good blood compatibility. Moreover, the proliferation of ECs and smooth muscle cells onto the REDV-modified copolymer brushes were examined to demonstrate the synergistic effect of CBMA with antifouling property and REDV peptide with ECs selectivity. All assays showed that the silicon wafers displayed excellent EC selectivity after modification. In summary, REDV-modified zwitterionic brushes had great potential for cardiovascular stent implantation.  相似文献   

6.
In this study, we developed a novel microcarrier to enhance the production of anchorage-dependent mammalian cells in large scale by preserving them from the effects of shear forces and to enhance their removal from the surface without using proteolytic enzymes and chelating agents. This ‘thermosensitive microcarrier’ was synthesized by the grafting thermoresponsive molecule, N-isopropylacrylamide (NIPAAm), to the crosslinked poly(2-hydroxyethyl methacrylate) (PHEMA) beads by surface-initiated atom transfer radical polymerization. NIPAAm was polymerized on bromine-activated beads’ surfaces to prepare PHEMA-g-PNIPAAm microcarriers. Then, they were chemically characterized by attenuated total reflectance Fourier transform infrared and electron spectroscopy for chemical analysis. Surface morphologies were further investigated by scanning electron microscope and atomic force microscopy techniques. The results of characterization studies confirmed that PNIPAAm was successfully grafted onto PHEMA beads by the means of atom transfer radical polymerization reaction. The cellular activities of PHEMA-g-PNIPAAm microcarriers were evaluated at static and dynamic culture conditions by using two types of cell lines with different morphology, i.e. L929 mouse fibroblasts and HS2 epithelial human keratinocytes. The microcarriers exhibited better cell adhesion and proliferation characteristics for both cell lines. Although their thermally induced cell detachment efficiencies are lower than that of trypsinization, thermally harvested cells preserved their surface morphologies and proliferation characteristics.  相似文献   

7.
Biomimetic strategies focusing on presenting short bioadhesive oligopeptides, including the arginine-glycine-aspartic acid (RGD) motif present in numerous adhesive proteins, on a non-fouling support have emerged as promising approaches to improve cellular activities and healing responses. Nevertheless, these bio-inspired strategies are limited by low activity of the oligopeptides compared to the native ligand due to the absence of complementary or modulatory domains. In the present analysis, we generated well-defined biointerfaces presenting RGD-based ligands of increasing complexity to directly compare their biological activities in terms of cell adhesion strength, integrin binding and signaling. Mixed self-assembled monolayers of alkanethiols on gold were optimized to engineer robust supports that present anchoring groups for ligand tethering within a non-fouling, protein adsorption-resistant background. Controlled bioadhesive interfaces were generated by tethering adhesive ligands via standard peptide chemistry. On a molar basis, biointerfaces functionalized with the FNIII7-10 recombinant fragment presenting the RGD and PHSRN adhesive motifs in the correct structural context exhibited significantly higher adhesion strength, FAK activation, and cell proliferation rate than supports presenting RGD ligand or RGD-PHSRN, an oligopeptide presenting these two sites separated by a polyglycine linker. Moreover, FNIII7-10-functionalized surfaces displayed specificity for alpha5beta1 integrin, while cell adhesion to supports presenting RGD or RGD-PHSRN was primarily mediated by alphavbeta3 integrin. These results are significant to the rational engineering of bioactive materials that convey integrin binding specificity for directed cellular and tissue responses in biomedical and biotechnological applications.  相似文献   

8.
The relationship between the form of cell adhesion, ligand presentation, and cell receptor function was characterized using model Langmuir-Blodgett supported films, containing lipid-conjugated peptide ligands, in which isolated variables of the ligand presentation were systematically altered. First, the conformation of an adhesive Arginine-Glycine-Aspartic acid (RGD) peptide was varied by synthesizing linear and looped RGD peptide-containing amphiphiles and subsequently measuring the impact on the function of human umbilical vein endothelial cells. Secondly, the contribution of non-contiguous ligands to cellular engagement was assessed using multi-component biomimetic films. The peptide amphiphiles were composed of fibronectin-derived headgroups--GRGDSP, and its synergy site Pro-His-Ser-Arg-Asn (PHSRN)--attached to hydrocarbon tails. The peptide amphiphiles were diluted using polyethylene glycol (PEG) amphiphiles, where PEG inhibited non-specific cell adhesion. Cells adhered and spread on GRGDSP/PEG systems in a dose-dependent manner. The presentation of GRGDSP influenced integrin cell surface receptor specificity. Results demonstrated that beta1-containing integrins mediated adhesion to the linear GRGDSP presentation to a greater extent than did the alphavbeta3 integrin, and looped GRGDSP preferentially engaged alphavbeta3. GRGDSP/PHSRN/PEG mixtures that closely mimicked the RGD-PHSRN distance in fibronectin, enhanced cell spreading over their two-component analogues. This study demonstrated that controlling the microenvironment of the cell was essential for biomimetics to modulate specific binding and subsequent signaling events.  相似文献   

9.
Poly(dimethylsiloxane) (PDMS) is the choice of material for a wide range of biological and non-biological applications because of its chemical inertness, non-toxicity, ease of handling and commercial availability. However, PDMS exhibits uncontrolled protein adsorption and cell adhesion and it has proved difficult to functionalize to present bioactive ligands. We present a facile strategy for functional surface modification of PDMS using commercial reagents to engineer polymer brushes of oligo(ethylene glycol) methacrylate that prevent cell adhesion and can be functionalized to display bioadhesive ligands. The polymer brushes resist biofouling and prevent cell adhesion and bioadhesive peptides can be tethered either uniformly or constrained to micropatterned domains using standard peptide chemistry approaches. This approach is relevant to various biomedical and biotechnological applications.  相似文献   

10.
Converting the surface of poly(2-hydroxyethyl methacrylate) (PHEMA) hydrogel into a cell-adhesive surface has been successfully achieved through a method based on atom transfer radical polymerization (ATRP) grafting. Following activation of the surface hydroxyl groups of PHEMA by bromination, surface-initiated ATRP of mono(2-methacryloyloxyethyl) phosphate (MMEP) was conducted in a methanol-water system with Cu(I)Br as catalyst at room temperature. The conversion of PHEMA hydroxyl groups to brominated isobutyryl groups and the occurrence of grafting of PMMEP were confirmed by infrared and X-ray photoelectron spectroscopies. Cell attachment experiments were conducted by culturing human corneal limbal epithelial cells on the PMMEP-grafted PHEMA, and on unmodified PHEMA and tissue culture plastic for comparison. The results showed that the grafted PMMEP was homogeneously distributed, and the phosphate groups appeared to significantly promote the attachment, spreading and growth of cells, at a level comparable to the tissue culture plastic.  相似文献   

11.
Rational controlled synthesis of poly(quaternary ammonium) compounds has been used to prepare antimicrobial polymer brushes on inorganic surfaces. The systematic variation of several structural parameters of the polymeric brushes allowed us to elicit the minimum surface requirements and a probable mechanism of action for Escherichia coli cell kill. Polymeric brushes were prepared by surface-initiated atom transfer radical polymerization of 2-(dimethylamino)ethyl methacrylate (DMAEMA), a method that allows the molecular weight of the polymer chains to be precisely controlled as they grow from the target surface. The tertiary amino groups of the polyDMAEMA were then quaternized with alkyl bromides to provide a surface with antimicrobial activity. Dry layer thickness of the polymer brushes was controlled by polymerization time and/or initiator density on the surface. This tunability of surface structure allows the antimicrobial polymer brushes to be tailored rationally. A combinatorial screening tool was developed to elucidate the role of chain length and chain density on cell kill in a single experiment. The results indicate that surface charge density, is a critical element in designing a surface for maximum kill efficiency. The most biocidal surfaces had charge densities of greater than 1-5 x 10(15) accessible quaternary amine units/cm(2). The relevance of this finding to the mechanism of action is discussed.  相似文献   

12.
Poly(N-isopropylacrylamide) (PIPAAm) brush surfaces with different layer thickness on polystyrene substrates were prepared by surface-initiated atom transfer radical polymerization (ATRP). Surface characteristics of PIPAAm brushes and their influence on adhesion and detachment of bovine carotid artery endothelial cells (ECs) were controlled by PIPAAm layer thickness. Surface hydrophilicity increased with PIPAAm layer thickness at 37 degrees C because PIPAAm brush surfaces with higher thickness provide more extended chain conformations with relatively high chain mobility, and accompanying polymer chain hydration. These surface property alterations lead to negligible cell adhesion through minimal matrix protein adsorption and also modified surface modulus. By adjusting polymerization reaction conditions and time, polymer layers supporting confluent cultures of ECs were possible. Confluent EC monolayers spontaneously detached as contiguous cell sheets from PIPAAm brush surfaces at reduced temperatures. Thermoresponsive cell adhesion and detachment behavior were analyzed from the standpoint of surface physicochemical characteristics. Thermoresponsive surfaces prepared by surface-initiated ATRP techniques allow surface selection in preparing cell sheets from attachment-dependent cells having relatively strong adhesive property for tissue engineering applications.  相似文献   

13.
Abstract

Thermoresponsive poly(benzyl methacrylate)-b-poly(N-isopropylacrylamide) (PBzMA-b-PIPAAm) block co-polymer brush surfaces were prepared by surface-initiated two-step reversible addition-fragmentation chain transfer radical (RAFT) polymerization. PBzMA brushes were fabricated on azoinitiator-immobilized glass substrates in the presence of dithiobenzoate (DTB) compound as a RAFT agent. The amount of grafted polymer was regulated by initial monomer concentrations. The second thermoresponsive blocks were added to the RAFT-related DTB groups located at PBzMA termini through the propagation of PIPAAm chains, resulting in formation of PBzMA-b-PIPAAm brushes. Surface characteristics of the block co-polymer brushes and its influence on thermally regulated cellular behavior were investigated using bovine carotid artery endothelial cells (BAECs), compared with PIPAAm brush surfaces. Cell adhesion/detachment behavior on thermoresponsive polymer brush surfaces significantly depended on their individual polymer architectures and chemical compositions of grafted polymers. Low-temperature treatment at 20°C, below the phase-transition temperature of PIPAAm, induced the spontaneous detachment of adhering cells from the PBzMA-b-PIPAAm brush surfaces with a higher rate than that from PIPAAm brush surfaces. In addition, the cell-repellent effect of the hydrophobic basal layer successfully accelerated for harvesting BAEC sheets from the block co-polymer brush surfaces. Unique features of thermoresponsive block co-polymer brush architectures can be applied to control cell-adhesion strength for enhancing cell adhesion or accelerating cell detachment.  相似文献   

14.
The conformational changes of fibronectin (FN) deposited on various block copolymers where one block is composed of poly(methyl methacrylate) (PMMA) and the other block is either poly(acrylic acid) (PAA) or poly(2-hydroxyethyl methacrylate) (PHEMA) were investigated using a functionalized atomic force microscope (AFM) tip. The tip was modified with an antibody sensitive to the exposure of the arginine-glycine-aspartic acid (RGD) groups in FN. By studying the adhesive interactions between the antibody and the proteins adsorbed on the block copolymer surface and phase imaging, it was found that the triblock copolymers PAA-b-PMMA-b-PAA and PMMA-b-PHEMA-b-PMMA, which both have large domain sizes, are conducive to the exposure of the FN RGD groups on the surface. On the basis of these results, it is concluded that the surface chemistry as well as the nanomorphology dictated by the block copolymer arrangement could both tune protein conformation and orientation and optimize cell adhesion to the biomaterial surface.  相似文献   

15.
Using quantitative fluorescence microscopy in conjunction with a method of gradient substrate assembly established in their group, the authors were able to introduce and measure reproducible changes in cellular morphology and cell density by manipulating polymer grafting density. The mechanism behind this change in cellular behavior was explained by a semiempirical, geometric model that describes the effect of the spatial distribution of the polymer on protein attachment. A 10-fold increase in graft density of poly(2-hydroxyethyl methacrylate) [PHEMA] along the surface of a gradient sample, preexposed to bovine fibronectin, caused a change in the size of fibroblasts on the surface (i.e., cell spreading) from (1238 +/- 704) to (377 +/- 216) microm(2). The results were in quantitative agreement with those obtained on three separate gradient samples. Both cellular response and fibronectin adsorption (as measured via ellipsometry) were found to vary sigmoidally with graft density of PHEMA, demonstrating the high degree of correlation between the two phenomena. A simple, rigid-disk model accounting for the surface coverage of PHEMA was able to predict the amount of adsorbed fibronectin with a correlation coefficient of 0.97. Maximal cell adhesion and cell spreading were found to occur at fibronectin surface densities of 50 and 100 ng/cm(2), respectively. The results demonstrate the role of gradient substrate assembly as a method for quantifying the relationship between protein and cellular response to technologically relevant polymeric materials.  相似文献   

16.
《Acta biomaterialia》2014,10(6):2415-2422
Micropatterning techniques, such as photolithography and microcontact printing, provide robust tools for controlling the adhesive interactions between cells and their extracellular environment. However, the ability to modify these interactions in real time and examine dynamic cellular responses remains a significant challenge. Here we describe a novel strategy to create dynamically adhesive, micropatterned substrates, which afford precise control of cell adhesion and migration over both space and time. Specific functionalization of micropatterned poly(ethylene glycol methacrylate) (POEGMA) brushes with synthetic peptides, containing the integrin-binding arginine–glycine–aspartic acid (RGD) motif, was achieved using thiol–yne coupling reactions. RGD activation of POEGMA brushes promoted fibroblast adhesion, spreading and migration into previously non-adhesive areas, and migration speed could be tuned by adjusting the surface ligand density. We propose that this technique is a robust strategy for creating dynamically adhesive biomaterial surfaces and a useful assay for studying cell migration.  相似文献   

17.
Modifications of poly(2-hydroxyethyl methacrylate) (PHEMA) with cholesterol and the introduction of large pores have been developed to create highly superporous hydrogels that promote cell-surface interactions and that can serve as a permissive scaffold for spinal cord injury (SCI) treatment. Highly superporous cholesterol-modified PHEMA scaffolds have been prepared by the bulk radical copolymerization of 2-hydroxyethyl methacrylate (HEMA), cholesterol methacrylate (CHLMA), and ethylene dimethacrylate (EDMA) cross-linking agent in the presence of ammonium oxalate crystals to establish interconnected pores in the scaffold. Moreover, 2-[(methoxycarbonyl)methoxy]ethyl methacrylate (MCMEMA) was incorporated in the polymerization recipe and hydrolyzed, thus introducing carboxyl groups in the hydrogel to control its swelling and softness. The hydrogels supported the in vitro adhesion and proliferation of rat mesenchymal stem cells. In an in vivo study of acute rat SCI, hydrogels were implanted to bridge a hemisection cavity. Histological evaluation was done 4 weeks after implantation and revealed the good incorporation of the implanted hydrogels into the surrounding tissue, the progressive infiltration of connective tissue and the ingrowth of neurofilaments, Schwann cells, and blood vessels into the hydrogel pores. The results show that highly superporous cholesterol-modified PHEMA hydrogels have bioadhesive properties and are able to bridge a spinal cord lesion.  相似文献   

18.
Matrix metalloproteinases (MMPs) are zinc-dependent enzymes involved in the remodelling of connective tissues during the development and wound healing. Moreover, two MMPs, Gelatinase A (MMP-2) and Gelatinase B (MMP-9), are also present in body fluids such as blood and urine and, therefore, they can be in contact with implanted biomaterials and can be adsorbed onto their surface. In order to test this hypothesis disks of different polymers (polystyrene (PS), polyvinyl chloride (PVC), poly(D,L-lactide) (PLA), polymethyl methacrylate (PMMA) and poly(2-hydroxyethyl methacrylate) (PHEMA)) have been exposed to human plasma and adsorbed proteins have been eluted and analyzed. Using Western blot and substrate zymography analysis, we observed that both MMP-2 and MMP-9 adsorbed onto the surfaces of all the polymers, especially hydrophilic ones (PMMA and PHEMA) and PLA, in both the active and inactive forms. Furthermore, we observed that adhesion of human granulocyte neutophils to PMMA, the polymer that adsorbed the higher quantity of MMP-2 and MMP-9 compared to the others, was reduced by more that 50% by the presence of a gelatinase inhibitor. This data suggest a surprising role of these absorbed enzymes in the adhesion of neutrophil onto some polymeric biomaterials surface and, therefore, in the setting of inflammation.  相似文献   

19.
Modifications of poly(2-hydroxyethyl methacrylate) (PHEMA) with cholesterol and laminin have been developed to design scaffolds that promote cell–surface interaction. Cholesterol-modified superporous PHEMA scaffolds have been prepared by the bulk radical copolymerization of 2-hydroxyethyl methacrylate (HEMA), cholesterol methacrylate (CHLMA) and the cross-linking agent ethylene dimethacrylate (EDMA) in the presence of ammonium oxalate crystals to introduce interconnected superpores in the matrix. With the aim of immobilizing laminin (LN), carboxyl groups were also introduced to the scaffold by the copolymerization of the above monomers with 2-[(methoxycarbonyl)methoxy]ethyl methacrylate (MCMEMA). Subsequently, the MCMEMA moiety in the resulting hydrogel was hydrolyzed to [2-(methacryloyloxy)ethoxy]acetic acid (MOEAA), and laminin was immobilized via carbodiimide and N-hydroxysulfosuccinimide chemistry. The attachment, viability and morphology of mesenchymal stem cells (MSCs) were evaluated on both nonporous and superporous laminin-modified as well as laminin-unmodified PHEMA and poly(2-hydroxyethyl methacrylate-co-cholesterol methacrylate) P(HEMA–CHLMA) hydrogels. Neat PHEMA and laminin-modified PHEMA (LN–PHEMA) scaffolds facilitated MSC attachment, but did not support cell spreading and proliferation; the viability of the attached cells decreased with time of cultivation. In contrast, MSCs spread and proliferated on P(HEMA–CHLMA) and LN-P(HEMA–CHLMA) hydrogels.  相似文献   

20.
The adhesion ligand RGD has been coupled to various materials to be used as tissue culture matrices or cell transplantation vehicles, and recent studies indicate that nanopatterning RGD into high-density islands alters cell adhesion, proliferation, and differentiation. However, elucidating the impact of nanopattern parameters on cellular responses has been stymied by a lack of understanding of the actual ligand presentation within these systems. We have developed a multi-scale predictive modeling approach to characterize the adhesion ligand nanopatterns within an alginate hydrogel matrix. The models predict the distribution of ligand islands, the spacing between ligands within an island and the fraction of ligands accessible for cell binding. These model predictions can be used to select pattern parameter ranges for experiments on the effects of individual parameters on cellular responses. Additionally, our technique could also be applied to other polymer systems presenting peptides or other signaling molecules.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号