首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
In this study, the influence of Er addition on the microstructure, type transformation of second phases, and corrosion resistance of an Al–Zn–Mg–Cu alloy were explored. The results revealed that the added Er element could significantly refine the alloy grains and change the second-phase composition at the grain boundary of the alloy. In the as-cast state, the Er element significantly enhanced the corrosion resistance of the alloy due to its refining effect on the grains and second phases at the grain boundary. The addition of the alloying element Er to the investigated alloy changed the type of corrosion attack on the alloy’s surface. In the presence of Er, the dominant type of corrosion attack is pitting corrosion, while the alloy without Er is prone to intergranular corrosion attack. After a solution treatment, the Al8Cu4Er phase was formed, in which the interaction with the Cu element and the competitive growth relation to the Al3Er phase were the key factors influencing the corrosion resistance of the alloy. The anodic corrosion mechanism of the Al8Cu4Er and Al3Er phases evidently lowered the alloy corrosion rate, and the depth of the corrosion pit declined from 197 μm to 155 μm; however, further improvement of corrosion resistance was restricted by the morphology and size of the Al8Cu4Er phase after its formation and growth; therefore, adjusting the matching design of the Cu and Er elements can allow Er to improve the corrosion resistance of the Al–Zn–Mg–Cu aluminum alloy to the greatest extent.  相似文献   

3.
The feasibility and efficacy of improving the mechanical response of Al–Mg–Si 6082 structural alloys during high temperature exposure through the incorporation of a high number of α-dispersoids in the aluminum matrix were investigated. The mechanical response of the alloys was characterized based on the instantaneous high-temperature and residual room-temperature strengths during and after isothermal exposure at various temperatures and durations. When exposed to 200 °C, the yield strength (YS) of the alloys was largely governed by β” precipitates. At 300 °C, β” transformed into coarse β’, thereby leading to the degradation of the instantaneous and residual YSs of the alloys. The strength improvement by the fine and dense dispersoids became evident owing to their complementary strengthening effect. At higher exposure temperatures (350–450 °C), the further improvement of the mechanical response became much more pronounced for the alloy containing fine and dense dispersoids. Its instantaneous YS was improved by 150–180% relative to the base alloy free of dispersoids, and the residual YS was raised by 140% after being exposed to 400–450 °C for 2 h. The results demonstrate that introducing thermally stable dispersoids is a cost-effective and promising approach for improving the mechanical response of aluminum structures during high temperature exposure.  相似文献   

4.
The current study investigated the microstructure modification in Al–6Mg–5Si–0.15Ti alloy (in mass %) through the minor addition of Ca using Mg + Al2Ca master alloy and heat treatment to see their impact on mechanical properties. The microstructure of unmodified alloy (without Ca) consisted of primary Al, primary Mg2Si, binary eutectic Al–Mg2Si, ternary eutectic Al–Mg2Si–Si, and iron-bearing phases. The addition of 0.05 wt% Ca resulted in significant microstructure refinement. In addition to refinement, lamellar to fibrous-type modification of binary eutectic Al–Mg2Si phases was also achieved in Ca-added (modified) alloy. This modification was related to increasing Ca-based intermetallics/compounds in the modified alloy that acted as nucleation sites for binary eutectic Al–Mg2Si phases. The dendritic refinement with Ca addition was related to the fact that it improves the efficacy of Ti-based particles (TiAl3 and TiB2) in the melt to act as nucleation sites. In contrast, the occupation of oxide bifilms by Ca-based phases is expected to force the iron-bearing phases (as iron-bearing phases nucleate at oxide films) to solidify at lower temperatures, thus reducing their size. The as-cast microstructure of these alloys was further modified by subjecting them to solution treatment at 540 °C for 6 h, which broke the eutectic structure and redistributed Mg2Si and Si phases in Al-matrix. Subsequent aging treatment caused a dramatic increase in the tensile strength of these alloys, and tensile strength of 291 MPa (with El% of 0.45%) and 327 MPa (with El% of 0.76%) was achieved for the unmodified alloy and modified alloy, respectively. Higher tensile strength and elongation of the modified alloy than unmodified alloy was attributed to refined dendritic structure and modified second phases.  相似文献   

5.
Shape memory alloys (SMAs) are functional materials that are being applied in practically all industries, from aerospace to biomedical sectors, and at present the scientific and technologic communities are looking to gain the advantages offered by the new processing technologies of additive manufacturing (AM). However, the use of AM to produce functional materials, like SMAs, constitutes a real challenge due to the particularly well controlled microstructure required to exhibit the functional property of shape memory. In the present work, the design of the complete AM processing route, from powder atomization to laser powder bed fusion for AM and hot isostatic pressing (HIP), is approached for Cu–Al–Ni SMAs. The microstructure of the different processing states is characterized in relationship with the processing parameters. The thermal martensitic transformation, responsible for the functional properties, is analyzed in a comparative way for each one of the different processed samples. The present results demonstrate that a final post–processing thermal treatment to control the microstructure is crucial to obtain the expected functional properties. Finally, it is demonstrated that using the designed processing route of laser powder bed fusion followed by a post–processing HIP and a final specific thermal treatment, a satisfactory shape memory behavior can be obtained in Cu–Al–Ni SMAs, paving the road for further applications.  相似文献   

6.
In this study, large-sized Al–Zn–Mg–Cu alloy billets were prepared by direct chill casting imposed with annular electromagnetic stirring and intercooling; a process named uniform direct chill casting. The effects of uniform direct chill casting on grain size and the alloying element distribution of the billets were investigated and compared with those of the normal direct chill casting method. The results show that the microstructures were refined and the homogeneity of the alloying elements distribution was greatly improved by imposing the annular electromagnetic stirring and intercooling. In uniform direct chill casting, explosive nucleation can be triggered, originating from the mold wall and dendrite fragments for grain refinement. The effects of electromagnetic stirring on macrosegregation are discussed with consideration of the centrifugal force that drives the movement of melt from the central part towards the upper-periphery part, which could suppress the macrosegregation of alloying elements. The refined grain can reduce the permeability of the melt in the mushy zone that can restrain macrosegregation.  相似文献   

7.
Friction stir additive manufacturing (FSAM) can be potentially used for fabricating high-performance components owing to its advantages of solid-state processing. However, the inhomogeneous microstructures and mechanical properties of the build attributed to the complex process involving restirring and reheating deserve attention. This study is based on the previous research of the underwater FSAMed 7A04 aluminum alloy and adopts a quasi in situ experimental method, i.e., after each pass of the underwater FSAM, samples were taken from the build for microstructural observation to investigate the restirring and reheating effects on microstructural evolution during the underwater FSAM. Fine-grain microstructures were formed in the stir zone during the single-pass underwater FSAM. After restirring, the grain size at the bottom of the overlapping region decreased from 1.97 to 0.87 μm, the recrystallization degree reduced from 74.0% to 29.8%, and the initial random texture transformed into a strong shear texture composed of the C {110}<11¯0>. After reheating, static recrystallization occurred in the regions close to the new additive zones, increasing the grain size and recrystallization degree. This study not only revealed the microstructural evolution during the underwater FSAM but also provided a guideline for further optimization of the mechanical properties of the Al–Zn–Mg–Cu alloy build.  相似文献   

8.
Cu nanowires and a nanoporous Ag matrix were fabricated through directional solidification and selective dissolution of Ag–Cu eutectic alloys. Ag-39.9at.%Cu eutectic alloys were directionally solidified at growth rates of 14, 25, and 34 μm/s at a temperature gradient of 10 K/cm. The Cu phase in the Ag matrix gradually changed from lamellar to fibrous with an increase in the growth rate. The Ag matrix phase was selectively dissolved, and Cu nanowires of 300–600 nm in diameter and tens of microns in length were prepared in 0.1 M borate buffer with a pH of 9.18 at a constant potential of 0.7 V (vs. SCE). The nanoporous Ag matrix was fabricated through selective dissolution of Cu fiber phase in 0.1 M acetate buffer with a pH of 6.0 at a constant potential of 0.5 V (vs. SCE). The diameter of Ag pores decreased with increasing growth rate. The diameter and depth of Ag pores increased when corrosion time was extended. The depth of the pores was 30 μm after 12 h.  相似文献   

9.
The precipitation of intermetallic phases and the associated hardening by artificial aging treatments at elevated temperatures above 400 °C were systematically investigated in the commercially available AC2B alloy with a nominal composition of Al–6Si–3Cu (mass%). The natural age hardening of the artificially aged samples at various temperatures was also examined. A slight increase in hardness (approximately 5 HV) of the AC2B alloy was observed at an elevated temperature of 480 °C. The hardness change is attributed to the precipitation of metastable phases associated with the α-Al15(Fe, Mn)3Si2 phase containing a large amount of impurity elements (Fe and Mn). At a lower temperature of 400 °C, a slight artificial-age hardening appeared. Subsequently, the hardness decreased moderately. This phenomenon was attributed to the precipitation of stable θ-Al2Cu and Q-Al4Cu2Mg8Si6 phases and their coarsening after a long duration. The precipitation sequence was rationalized by thermodynamic calculations for the Al–Si–Cu–Fe–Mn–Mg system. The natural age-hardening behavior significantly varied depending on the prior artificial aging temperatures ranging from 400 °C to 500 °C. The natural age-hardening was found to strongly depend on the solute contents of Cu and Si in the Al matrix. This study provides fundamental insights into controlling the strength level of commercial Al–Si–Cu cast alloys with impurity elements using the cooling process after solution treatment at elevated temperatures above 400 °C.  相似文献   

10.
The effects of Al–Ti–C and La on the fluidity of a ZL205A alloy after separate and combined addition were studied by conducting a fluidity test. The fluidity of the ZL205A alloy first increased and then decreased with the increasing addition of Al–Ti–C and La; it peaked at 0.3% and 0.1% for Al–Ti–C and La, respectively. The combined addition of Al–Ti–C and La led to better fluidity, which increased by 74% compared with the base alloy. The affecting mechanism was clarified through microstructure characterization and a DSC test. The heterogeneous nucleation aided by Al–Ti–C and La, the number of particles in the melt, and the evolution of the solidification range all played a role. Based on the evolution of the fluidity and grain size, the optimal levels of Al–Ti–C and La leading to both high fluidity and small grain size were identified.  相似文献   

11.
The fabricated Al–Zn–Mg–Cu alloy build has low mechanical properties due to the dissolution of strengthening precipitates back into the matrix during friction stir additive manufacturing (FSAM). Post-fabricated aging was considered an effective approach to improve the mechanical performance of the build. In this study, various post-fabricated aging treatments were applied in the underwater FSAM of Al–7.5 Zn–1.85 Mg–1.3 Cu–0.135 Zr alloy. The effect of the post-fabricated aging on the microstructure, microhardness, and local tensile properties of the build was investigated. The results indicated that over-aging occurred in the low hardness zone (LHZ) of the build after artificial aging at 120 °C for 24 h as the high density of grain boundaries, subgrain boundaries, dislocations, and Al3Zr particles facilitated the precipitation. Low-temperature aging treatment can effectively avoid the over-aging problem. After aging at 100 °C for 48 h, the average microhardness value of the build reached 178 HV; the yield strength of the LHZ and high hardness zone (HHZ) was 453 MPa and 463 MPa, respectively; and the ultimate tensile strength of the LHZ and HHZ increased to 504 MPa and 523 MPa, respectively.  相似文献   

12.
An austenite-ferrite duplex low-density steel (Fe–12Mn–7Al–0.2C–0.6Si, wt%) was designed and fabricated by cold rolling and annealing at different temperatures. The tensile properties, microstructure evolution, deformation mechanism and stacking fault energy (SFE) of the steel were systemically investigated at ambient temperature. Results show two phases of fine equiaxed austenite and coarse band-like δ-ferrite in the microstructure of the steel. With increasing annealing temperature, the yield and tensile strengths decrease while the total elongation increases. At initial strains, the deformation is mainly concentrated in the fine austenite and grain boundaries of the coarse δ-ferrite, and the interior of the coarse δ-ferrite gradually deforms with further increase in the strain to 0.3. No twinning-induced plasticity (TWIP) or transformation-induced plasticity (TRIP) occurred during the tensile deformation. Considering element segregation and two-phase proportion, the chemical composition of austenite was measured more precisely. The SFE of the austenite is 39.7 mJ/m2, and the critical stress required to produce deformation twins is significantly higher than the maximum flow stress of the steel.  相似文献   

13.
Research on T-configuration aluminum constructions effectively decreases fuel consumption, increases strength, and develops aerial structures. In this research, the effects of friction stir welding (FSW) tool offset (TO) on Al–Mg–Si alloy mixing and bonding in T-configurations is studied. The process is simulated by the computational fluid dynamic (CFD) technique to better understand the material mixing flow and the bonding between the skin and flange during FSW. According to the results, the best material flow can be only achieved at an appropriate TO. The appropriate TO generates enough material to fill the joint line and results in formation of the highest participation of the flange in the stir zone (SZ) area. The results show that, in the T-configuration, FSW joints provide raw materials from the retreating side (RS) of the flange that play a primary role in producing a sound mixing flow. The selected parameters were related to the geometric limitations of the raw sheets considered in this study. The failure point of all tensile samples was located on the flange. Surface tunneling is the primary defect in these joints, which is produced at high TOs. Among the analyzed cases, the most robust joint was made at +0.2 mm TO on the advancing side (AS), resulting in more than 60% strength of the base aluminum alloy being retained.  相似文献   

14.
An ultrafine-grained (UFG) Al–Cu–Mg alloy (AA2024) was produced by surface mechanical grinding treatment (SMGT) with a high strain rate, and the precipitation behavior inside the grain and at the grain boundary was investigated. During SMGT, element segregation at the boundary was rarely observed, since the solute atoms were impeded by dislocations produced during SMGT. During early aging, the atomic fraction of Cu at the grain boundary with SMGT alloys was approximately 2.4-fold larger than that without SMGT alloys, the diffusion rate of Cu atoms from the grain toward the grain boundaries was accelerated with SMGT alloys, because a higher local elastic stress and diffusion path were provided by high-density dislocations. The combined action, in terms of the composition of the alloy, the atomic radius, the diffusion path, and the diffusion driving force provided by high-density dislocations with SMGT alloys, led to a Cu/Mg atomic ratio of approximately 6.8 at the grain boundary. The average size of the precipitates inside the grain was approximately 2- and 10-fold larger than that formed after later aging with and without SMGT alloys, due to more nucleation sites at dislocation located inside the grain with SMGT alloys having attracted and captured numerous solute atoms during the aging process.  相似文献   

15.
The plastic deformation processes and fracture behavior of a Ti–5Al–5Mo–5V–1Cr–1Fe alloy with bimodal and lamellar microstructures were studied by room-temperature tensile tests with in situ scanning electron microscopy (SEM) observations. The results indicate that a bimodal microstructure has a lower strength but higher ductility than a lamellar microstructure. For the bimodal microstructure, parallel, deep slip bands (SBs) are first noticed in the primary α (αp) phase lying at an angle of about 45° to the direction of the applied tension, while they are first observed in the coarse lath α (αL) phase or its interface at grain boundaries (GBs) for the lamellar microstructure. The β matrix undergoes larger plastic deformation than the αL phase in the bimodal microstructure before fracture. Microcracks are prone to nucleate at the αp/β interface and interconnect, finally causing the fracture of the bimodal microstructure. The plastic deformation is mainly restricted to within the coarse αL phase at GBs, which promotes the formation of microcracks and the intergranular fracture of the lamellar microstructure.  相似文献   

16.
A selective liquation process to extract Al from a coarse Al–Si alloy, produced by carbothermal reduction, was investigated on the laboratory scale. The products obtained by selective liquation–vacuum distillation were analyzed by X-ray diffraction, inductively coupled plasma optical emission spectrometry and scanning electron microscopy. During the selective liquation process with the use of zinc as the solvent, the pure aluminum in the coarse Al–Si alloy dissolved in the zinc melt to form an α-solid solution with zinc, and most of the silicon and iron-rich phases and Al–Si–Fe intermetallics precipitated and grew into massive grains that entered into the slag and separated with the Zn–Al alloy melt. However, some fine silicon particles remained in the Zn–Al alloy. Thus, Al–Si alloys conforming to industrial application standards were obtained when the Zn–Al alloys were separated by a distillation process.  相似文献   

17.
As a kind of potential biomedical material, Mg–Ca alloy has attracted much attention. However, the role of Ca-containing intermetallics in microgalvanic corrosion is still controversial. In 0.6 mol/L NaCl and Na2SO4 solutions, the microgalvanic corrosion behavior of the second phase and Mg matrix of Mg–Ca and Mg–Al–Ca alloys was examined. It was confirmed that the Mg2Ca phase acts as a microanode in microgalvanic corrosion in both NaCl and Na2SO4 solutions, with the Mg matrix acting as the cathode and the Al2Ca phase acting as the microcathode to accelerate corrosion of the adjacent Mg matrix. It was also found that Cl and SO42− have different sensibilities to microgalvanic corrosion.  相似文献   

18.
The microstructural and wear properties of laser-cladding WC/Ni-based layer on Al–Si alloy were investigated by scanning electron microscope (SEM), X-ray diffraction (XRD), energy dispersive spectrometer (EDS) and wear-testing. The results show that, compared with the original specimen, the microhardness and wear resistance of the cladding layer on an Al–Si alloy were remarkably improved, wherein the microhardness of the layer achieved 1100 HV and the average friction coefficient of the layer was barely 0.14. The mainly contributor to such significant improvement was the generation of a WC/Ni-composite layer of Al–Si alloy during laser cladding. Two types of carbides, identified as M7C3 and M23C6, were found in the layer. The wear rate of the layer first increased and then decreased with the increase in load; when the load was 20 N, 60 N and 80 N, the wear rate of layer was1.89 × 10−3 mm3·m−1, 3.73 × 10−3 mm3·m−1 and 2.63 × 10−3 mm3·m−1, respectively, and the average friction coefficient (0.14) was the smallest when the load was 60 N.  相似文献   

19.
The coatings of boron steels play an important role in affecting the quality of hot stamping parts, so it is important to evaluate the hot stamping performance of coatings before designing processes. Taking the U-type hot stamping part of boron steel as research objects, the surface quality, microstructure and temperature variation of samples with GA (galvannealed), GI (galvanized) and Al–Si coatings were observed and analyzed to evaluate the anti-oxidation, forming and quenching performances of different coatings. The results show that all the GA, GI and Al–Si coatings could provide good oxidation protection and also act as the lubricants for avoiding the friction damage of sample substrates and die-surface. But the different compositions of GA, GI and Al–Si coatings will contribute the different colors. Under the same deformation degree, the Al–Si coating can provide the best substrate protection and the GI coating will induce cracks in the substrate because of the liquid metal-induced embrittlement phenomenon. There is no significant difference between the quenching performances of GA, GI and Al–Si coatings, and the thermal conductivity of the GI coating is slightly better than Al–Si and GA coatings.  相似文献   

20.
Mg alloys have mechanical properties similar to those of human bones, and have been studied extensively because of their potential use in biodegradable medical implants. In this study, the influence of different heat treatment regimens on the microstructure and mechanical and corrosion properties of biodegradable Mg–Zn–Ga alloys was investigated, because Ga is effective in the treatment of disorders associated with accelerated bone loss. Solid–solution heat treatment (SSHT) enhanced the mechanical properties of these alloys, and a low corrosion rate in Hanks’ solution was achieved because of the decrease in the cathodic-phase content after SSHT. Thus, the Mg–4 wt.% Zn–4 wt.% Ga–0.5 wt.% Y alloy after 18 h of SSHT at 350 °C (ultimate tensile strength: 207 MPa; yield strength: 97 MPa; elongation at fracture: 7.5%; corrosion rate: 0.27 mm/year) was recommended for low-loaded orthopedic implants.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号