首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We developed a system of Cetuximab-conjugated micelles of vitamin E TPGS for targeted delivery of docetaxel as a model anticancer drug for treatment of the triple negative breast cancer (TNBC), which shows no expression of either one of the hormone progesterone receptor (PR), estrogen receptor (ER) and epidermal growth factor receptor 2 (HER2) and is thus more difficult to be treated than the positive breast cancer. Such micelles are of desired particle size, drug loading, drug encapsulation efficiency and drug release profile. Their surface morphology, surface charge and surface chemistry were also characterized. The fibroblast cells (NIH3T3), HER2 overexpressed breast cancer cells (SK-BR-3), ER and PR overexpressed breast cancer cells (MCF7), and TNBC cells of high, moderate and low EGFR expression (MDA MB 468, MDA MB 231 and HCC38) were employed to access in vitro cellular uptake of the coumarin 6 loaded TPGS micelles and cytotoxicity of docetaxel formulated in the micelles. The high IC50 value, which is the drug concentration needed to kill 50% of the cells in a designated period such as 24 h, obtained from Taxotere® showed that the TNBC cells are indeed more resistant to the free drug than the positive breast cancer cells. However, the therapeutic effects of docetaxel could be greatly enhanced by the formulation of Cetuximab conjugated TPGS micelles, which demonstrated 205.6 and 223.8 fold higher efficiency than Taxotere® for the MDA MB 468 and MDA MB 231 cell lines respectively.  相似文献   

2.
Li J  Huo M  Wang J  Zhou J  Mohammad JM  Zhang Y  Zhu Q  Waddad AY  Zhang Q 《Biomaterials》2012,33(7):2310-2320
A targeted intracellular delivery system of paclitaxel (PTX) was successfully developed based on redox-sensitive hyaluronic acid-deoxycholic acid (HA-ss-DOCA) conjugates. The conjugates self-assembled into nano-size micelles in aqueous media and exhibited excellent drug-loading capacities (34.1%) and entrapment efficiency (93.2%) for PTX. HA-ss-DOCA micelles were sufficiently stable at simulated normal physiologic condition but fast disassembled in the presence of 20 mm reducing agent, glutathione. In vitro drug release studies showed that the PTX-loaded HA-ss-DOCA micelles accomplished rapid drug release under reducing condition. Intracellular release of fluorescent probe nile red indicated that HA-ss-DOCA micelles provide an effective approach for rapid transport of cargo into the cytoplasm. Enhanced cytotoxicity of PTX-loaded HA-ss-DOCA micelles further confirmed that the sensitive micelles are more potent for intracellular drug delivery as compared to the insensitive control. Based on flow cytometry and confocal microscopic analyses, observations revealed that HA-ss-DOCA micelles were taken up to human breast adenocarcinoma cells (MDA-MB-231) via HA-receptor mediated endocytosis. In vivo investigation of micelles in tumor-bearing mice confirmed that HA-ss-DOCA micelles possessed much higher tumor targeting capacity than the insensitive control. These results suggest that redox-sensitive HA-ss-DOCA micelles hold great potential as targeted intracellular delivery carriers of lipophilic anticancer drugs.  相似文献   

3.
Unimolecular micelles formed by dendritic amphiphilic block copolymers poly(amidoamine)–poly(l-lactide)-b-poly(ethylene glycol) conjugated with anti-CD105 monoclonal antibody (TRC105) and 1,4,7-triazacyclononane-N, N′, N-triacetic acid (NOTA, a macrocyclic chelator for 64Cu) (abbreviated as PAMAM–PLA-b-PEG–TRC105) were synthesized and characterized. Doxorubicin (DOX), a model anti-cancer drug, was loaded into the hydrophobic core of the unimolecular micelles formed by PAMAM and PLA via physical encapsulation. The unimolecular micelles exhibited a uniform size distribution and pH-sensitive drug release behavior. TRC105-conjugated unimolecular micelles showed a CD105-associated cellular uptake in human umbilical vein endothelial cells (HUVEC) compared with non-targeted unimolecular micelles, which was further validated by cellular uptake in CD105-negative MCF-7 cells. In 4T1 murine breast tumor-bearing mice, 64Cu-labeled targeted micelles exhibited a much higher level of tumor accumulation than 64Cu-labeled non-targeted micelles, measured by serial non-invasive positron emission tomography (PET) imaging and confirmed by biodistribution studies. These unimolecular micelles formed by dendritic amphiphilic block copolymers that synergistically integrate passive and active tumor-targeting abilities with pH-controlled drug release and PET imaging capabilities provide the basis for future cancer theranostics.  相似文献   

4.
A bioinspired silification approach was successfully used to encapsulate fluorescent conjugated polymers inside silica-shell cross-linked polymeric micelles (CP-SSCL) in the highly benign synthesis environment of room temperature and near-neutral aqueous environment. Four different conjugated polymers were employed to demonstrate the versatility of the bioinspired silification, resulting in the formation of CP-SSCL with different emission wavelengths across the visible spectrum. The CP-SSCL are characterized by a large absorption coefficient and high quantum yield, indicating that they exhibit the required high fluorescence brightness for cellular imaging application. In addition, the CP-SSCL also exhibit a high colloidal stability and low cytotoxicity. The in vitro studies of using MDA-MB-231 breast cancer cells show that the CP-SSCL are successfully uptaken by the cancer cells and located at the cytoplasm of the cells. Furthermore, by conjugating folic acid on their surfaces, the uptake of CP-SSCL by MDA-MB-231 cells was enhanced significantly, suggesting their great potential for targeted imaging and early detection of cancer cells.  相似文献   

5.
We report a type of photosensitizer (PS)-loaded micelles integrating cyanine dye as potential theranostic micelles for precise anatomical tumor localization via dual photoacoustic (PA)/near-infrared fluorescent (NIRF) imaging modalities, and simultaneously superior cancer therapy via sequential synergistic photothermal therapy (PTT)/photodynamic therapy (PDT). The micelles exhibit enhanced photostability, cell internalization and tumor accumulation. The dual NIRF/PA imaging modalities of the micelles cause the high imaging contrast and spatial resolution of tumors, which provide precise anatomical localization of the tumor and its inner vasculature for guiding PTT/PDT treatments. Moreover, the micelles can generate severe photothermal damage on cancer cells and destabilization of the lysosomes upon PTT photoirradiation, which subsequently facilitate synergistic photodynamic injury via PS under PDT treatment. The sequential treatments of PTT/PDT trigger the enhanced cytoplasmic delivery of PS, which contributes to the synergistic anticancer efficacy of PS. Our strategy provides a dual-modal cancer imaging with high imaging contrast and spatial resolution, and subsequent therapeutic synergy of PTT/PDT for potential multimodal theranostic application.  相似文献   

6.
Poor site-specific delivery and incapable deep-penetration into tumor are the intrinsic limitations to successful chemotherapy. Here, the tumor-homing penetrating peptide tLyP-1-functionalized nanoparticles (tLPTS/HATS NPs), composed of two modularized amphiphilic conjugates of tLyP-1-PEG-TOS (tLPTS) and TOS-grafted hyaluronic acid (HATS), had been fabricated for tumor-targeted delivery of docetaxel (DTX). The prepared tLPTS/HATS NPs had about 110 nm in mean diameter, high drug encapsulation efficiency (93%), and sustained drug release behavior. In vitro studies demonstrated that the tLPTS/HATS NPs exhibited enhanced intracellular delivery and much better anti-invasion ability, cytotoxicity, and apoptosis against both invasive PC-3 and MDA-MB-231 cells as compared to the non-tLyP-1-functionalized HATS NPs. The remarkable penetrability and inhibitory effect on both PC-3 and MDA-MB-231 multicellular tumor spheroids were also identified for the tLPTS/HATS NPs. In vivo biodistribution imaging demonstrated the tLPTS/HATS NPs possessed much more lasting accumulation and extensive distribution throughout tumor regions than the HATS NPs. The higher in vivo therapeutic efficacy with lower systemic toxicity of the tLPTS/HATS NPs was also verified by the PC-3 xenograft model in athymic nude mice. These results suggested that the designed novel tLPTS/HATS NPs were endowed with tumor recognition, internalization, penetration, and anti-invasion, and thus might be a promising anticancer drug delivery vehicle for targeted cancer therapy.  相似文献   

7.
In this study, a novel redox-sensitive micellar system constructed from a hyaluronic acid-based amphiphilic conjugate (HA-ss-(OA-g-bPEI), HSOP) was successfully developed for tumor-targeted co-delivery of paclitaxel (PTX) and AURKA specific siRNA (si-AURKA). HSOP exhibited excellent loading capacities for both PTX and siRNA with adjustable dosing ratios and desirable redox-sensitivity independently verified by morphological changes of micelles alongside in vitro release of both drugs in different reducing environments. Moreover, flow cytometry and confocal microscopy analysis confirmed that HSOP micelles were capable of simultaneously delivering PTX and siRNA into MDA-MB-231 breast cancer cells via HA-receptor mediated endocytosis followed by rapid transport of cargoes into the cytosol. Successful delivery and transport amplified the synergistic effects between the drugs while leading to substantially greater antitumor efficacy when compared with single drug-loaded micelles and non-sensitive co-loaded micelles. In vivo investigation demonstrated that HSOP micelles could effectively accumulate in tumor sites and possessed the greatest antitumor efficacy over non-sensitive co-delivery control and redox-sensitive single-drug controls. These findings indicated that redox-sensitive HSOP co-delivery system holds great promise for combined drug/gene treatment for targeted cancer therapy.  相似文献   

8.
A novel therapeutic strategy combining mTOR inhibitor rapamycin (RAPA) and doxorubicin (DOX)-loaded cyclic octapeptide liposomes for targeting integrin α3 was expected to combat the triple-negative breast cancer (TNBC). RAPA was loaded into PEG–PCL polymer micelles (M-RAPA) to realize solubilization. Flow cytometry analysis and laser confocal microscopy were used to evaluate the in vitro cellular uptake. The in vivo tumor targeting and bio-distribution were investigated by living fluorescence imaging. As the results, LXY modification significantly enhanced the cellular uptake of liposomal DOX in integrin α3 overexpressed TNBC cells (MDA-MB-231) in vitro and accordingly improved the tumor accumulation of liposomes in vivo. When used alone or in combination with LXY-LS-DOX, M-RAPA could greatly inhibit the expression of HIF-1α protein, which is always highly expressed in malignant cancers and involved in tumor angiogenesis, proliferation, therapeutic resistance and poor prognosis. Meanwhile, the improved efficacy of combined targeted therapy with LXY-LS-DOX and M-RAPA was demonstrated by the in vitro cytotoxicity against model TNBC cells and in vivo anti-tumor activity against mouse bearing TNBC model. These results suggested that the targeted combinational therapy based on LXY-LS-DOX and M-RAPA systems may provide a rational strategy to improve therapeutic outcomes of TNBC.  相似文献   

9.
It is an emerging focus to explore a theranostic nanocarrier for simultaneous cancer imaging and therapy. Herein, we demonstrate a theranostic micelle system for cancer near infrared fluorescent (NIRF) imaging with enhanced signal to noise ratio and superior photothermal therapy. The copolymers consisting of monomethoxy poly(ethylene glycol) and alkylamine-grafted poly(l-aspartic acid) are assembled with carbocyanine dyes into theranostic micelles, which exhibit small size, high loading capacity, good stability, sustained release behavior, and enhanced cellular uptake. The micelles achieve the preferable biodistribution and long-term retention of carbocyanine dyes at tumor, which result in enhanced NIRF imaging by generating stable retention of NIRF signals at both hypervascular and hypovascular tumors during a long-term imaging period of up to 8 day, accompanying with negligible noise at normal tissues. The photostability of carbocyanine dye (Cypate) plays an important role for long-term cancer imaging with enhanced SNR. Moreover, the micelles exhibit severe photothermal damage on cancer cells via the destabilization of subcellular organelles upon photoirradiation, causing superior photothermal tumor regress. The micelles act as a powerful theranostic nanocarrier for simultaneous cancer imaging with high contrast and superior photothermal therapy.  相似文献   

10.
Metastatic disease accounts for most deaths due to breast cancer and thus identification of novel ways to prevent this complication remains a key goal. A frequently employed preclinical model of breast cancer metastasis relies on xenografted human MDA-MB-231 cells, since these reliably produce both soft tissue and osseous metastases when introduced into the arterial circulation of athymic mice. Herein, we explored the ability of suramin (SA), an agent shown to antagonize the effects of various stromal cell-derived growth factors relevant to bone marrow colonization of tumor cells, administered both with and without paclitaxel (PTX), to inhibit the development of MDA-MB-231 metastases. Treatment with SA, PTX, or PTX plus SA (PTX/SA) was begun either at day-1, or 7 days after intra-arterial inoculation of luciferase-expressing MDA-MB-231-luc2 cells. Using in vivo and ex vivo bioluminescence imaging to detect macro-metastases, we found that PTX/SA treatment initiated on day-1 was able to dramatically reduce the frequency of bone metastases. PTX/SA and PTX administration commenced at day 7, in contrast, had no significant effect on the frequency of bone metastases, but exerted a relatively modest inhibitory effect on growth of metastases. Interestingly, reminiscent of what is seen clinically in anti-HER2 treated individuals, several of the PTX/SA-treated long term survivors went on to develop late onset CNS metastasis. Our results suggest that combining SA with PTX either in an adjuvant setting or during medical interventions that can increase the numbers of circulating tumour cells might be an effective way to prevent the development of metastases.  相似文献   

11.
目的应用稳定表达红色荧光蛋白的人乳腺癌MDA-MB-231SArfp细胞系,建立乳腺癌骨移植瘤动物模型,并应用活体成像技术检测肿瘤的生长情况。方法注射MDA-MB-231SArfp细胞于BALB/c雌性裸小鼠胫骨髓腔,应用活体光学成像系统,连续观察肿瘤细胞在体内的生长情况,同时测量肿瘤体积的变化;4周和7周时拍摄X线片并做组织学检查,评估肿瘤对骨组织的影响。结果利用活体光学成像系统监测发现,至第3~4周期间,肿瘤进入对数生长期;肿瘤大小与荧光信号强度呈线性正相关。X线片和组织切片显示MDA-MB-231SArfp细胞形成溶骨性的骨破坏。结论成功建立了可非侵入性监测的乳腺癌骨移植瘤模型,利用活体光学成像系统结合X线片及组织学检查能够直观、连续、准确地检测肿瘤细胞在骨环境内的生长情况,为后续抗肿瘤药物的筛选和评价提供了新的手段和工具。  相似文献   

12.
Metastatic recurrence in breast cancer is a major cause of mortality and often occurs many years after removal of the primary tumour. This process is driven by the reactivation of disseminated tumour cells that are characterised by mitotic quiescence and chemotherapeutic resistance. The ability to reliably isolate and characterise this cancer cell population is critical to enable development of novel therapeutic strategies for prevention of breast cancer recurrence. Here we describe the identification and characterisation of a sub-population of slow-cycling tumour cells in the MCF-7 and MDA-MB-231 human breast cancer cell lines based on their ability to retain the lipophilic fluorescent dye Vybrant® DiD for up to six passages in culture. Vybrant® DiD-retaining (DiD+) cells displayed significantly increased aldehyde dehydrogenase activity and exhibited significantly reduced sensitivity to chemotherapeutic agents compared to their rapidly dividing, Vybrant® DiD-negative (DiD?) counterparts. In addition, DiD+?cells were exclusively capable of initiating population re-growth following withdrawal of chemotherapy. The DiD+?population displayed only partial overlap with the CD44+CD24?/low cell surface protein marker signature widely used to identify breast cancer stem cells, but was enriched for CD44+CD24+ cells. Real-time qPCR profiling revealed differential expression of epithelial-to-mesenchymal transition and stemness genes between DiD+?and DiD??populations. This is the first demonstration that both MCF-7 and MDA-MB-231 human breast cancer lines contain a latent therapy-resistant population of slow-cycling cells capable of initiating population regrowth post-chemotherapy. Our data support that label-retaining cells can serve as a model for identification of molecular mechanisms driving tumour cell quiescence and de novo chemoresistance and that further characterisation of this prospective tumour-reinitiating population could yield novel therapeutic targets for elimination of the cells responsible for breast cancer recurrence.  相似文献   

13.
《IBS, Immuno》2001,16(2):71-77
Transferrin receptor: contribution in assessment of iron status. Transferrin receptor is a transmembrane glycoprotein expressed by any cell type except erythrocytes. A soluble form of the transferrin receptor is detectable in human sera. Its concentration is proportional to tissue transferrin receptor cells. The primary function of transferrin receptor is to bind diferric transferrin and to internalize it by the process of receptor-mediated endocytosis. The first available tests were immunoenzymatic techniques; nowadays, nephelemetric or turbidimetric methods are developed and are automated on biochemistry or immunochemistry automates. However, due to lack of standardization, results obtained from different tests cannot be compared with respect to both reference and pathological ranges. Soluble transferrin receptor is a promising tool to detect coexisting iron deficiency in patients with anaemia of chronic diseases.  相似文献   

14.
We previously described a lipid-accumulating phenotype of estrogen receptor negative (ER) breast cancer cells exemplified by the MDA-MB-231 and MDA-MB-436 cell lines. These cells had more lipid droplets, a higher uptake of oleic acid and LDL, a higher ratio of cholesteryl ester (CE) to triacylglycerol (TAG), and higher expression of acyl-CoA:cholesterol acyltransferase 1 (ACAT1) as compared to ER+ MCF-7 breast cancer cells. LDL stimulated proliferation of ER-cells only, and proliferation was reduced by inhibition of ACAT. We hypothesized that storage of exogenous lipids would confer an energetic advantage. We tested this by depriving cells of exogenous lipids and measuring chemotactic migration, an energy-intensive behavior. MDA-MB-231 cells were grown for 48 h in medium with either 5% FBS or 5% lipoprotein-depleted (LD) FBS. Growth in LD medium resulted in visibly reduced lipid droplets and an 85% decrease in cell migration. Addition of LDL to the LD medium dose-dependently restored the ability to migrate in an ACAT-sensitive manner. LDL receptor (LDLR) mRNA was 12-fold higher in MDA-MB-231 cells compared to nontumorigenic ER-MCF-10A breast epithelial cells grown in LD medium. Addition of LDL to the LD medium reduced LDLR mRNA levels in MCF-10A cells only. We asked if ACAT1 activity was associated with the expression of the LDLR in MDA-MB-231 cells. LDLR mRNA in MDA-MB-231 cells was substantially reduced by inhibition of ACAT, demonstrating that high ACAT1 activity permitted higher LDLR expression. This data substantiates the association of lipid accumulation with aggressive behavior in an ER-breast cancer cell line.  相似文献   

15.
Z Wang  Y Yu  W Dai  J Lu  J Cui  H Wu  L Yuan  H Zhang  X Wang  J Wang  X Zhang  Q Zhang 《Biomaterials》2012,33(33):8451-8460
Tumor metastasis is responsible for 90% of cancer-associated deaths and highly metastatic cancers are more prone to form metastasis foci and acquire the drug resistance. Here, a nanocarrier system (TMT-LS) has been constructed by modification of stealth liposomes with a metastatic cancer specific peptide, using the unmodified stealth liposomes (LS) as the control. The active targeted nanocarriers presented satisfactory particle size (about 100?nm) and drug release characteristics in?vitro. Highly metastatic cancer cells (MDA-MB-435S and MDA-MB-231) and non-metastatic cancer cells (MCF-7) were applied as?tumor cell models. The highly metastatic cancer cells were found to endocytose more TMT-LS in a faster?way than TS, through a receptor-mediated pathway proved by specific receptor inhibition. Co-localization technique indicated the integrity of nanocarriers in cytoplasm. The significant targeting of TMT-LS to highly metastatic tumors was demonstrated in?vivo and ex?vivo in an orthotopic model as well as in a double tumor-bearing animal model with both metastatic and non-metastatic tumors in the same mouse. Importantly, the active targeted drug delivery system was found to penetrate deeper into tumor mass and have a longer retention within the malignant tissue. Further, TMT-LS greatly facilitated the efficacy of doxorubicin loaded in terms of inhibiting xenograft tumor growth and inducing cancer cell apoptosis, with only minor side effects. Together, the specific nanocarriers hold great potential in the development of nanomedicine for diagnosis and therapy of metastatic tumor.  相似文献   

16.
The following study investigated the effects of Annexin A3 (ANXA3) on breast cancer biological behavior in vivo, using nude mouse model bearing a subcutaneous tumor. A total of 18 female nude mice were randomly divided into three groups (n?=?6): negative control group which was inoculated with MDA-MB-231 cells, blank control group which was inoculated with MDA-MB-231-NC cells, and the transfection group which was inoculated with MDA-MB-231-Sh cells. The experiment lasted for 4 weeks, during which mice conditions, diet and defecation were monitored on a daily basis. Body weight, as well as tumor diameters, which were assessed using standard caliper method, were measured once a week. In vivo imaging was performed to detect the activity of transplanted tumors. H&E staining was used to analyze the histological structure of tumor tissues in three groups, while flow cytometry and fluorescent RT-PCR were performed to measure cell proliferation and the expression of ANXA3 mRNA. Briefly, significantly slower tumor growth and tumor activity were observed in the transfection group compared to negative and blank controls, while the tumor weight and volume in this group were also significantly lower compared to the other two groups (P < 0.01). Sparse tumor cells accompanied with massive fibrous connective tissue proliferation, and lower new blood vessels formation were observed in transfection group compared to other groups. Moreover, mRNA and protein levels of ANXA3 were significantly lower in transfection group compared to the other two groups (P < 0.01). In addition, lower proliferation index and higher G0/1 cell count were observed in transfection group compared to negative and blank controls (P < 0.01). To sum up, these results suggested that ANXA3 silencing regulates the proliferation and inhibits the growth of MDA-MB-231 breast cancer cells. Consequently, ANXA3 might be used as a potential target for gene therapy in breast cancer.  相似文献   

17.
Development of multifunctional theranostic nanoplatforms for targeted cancer imaging and therapy still remains a great challenge. Herein, we report the use of multifunctional dendrimer-entrapped gold nanoparticles (Au DENPs) covalently linked with α-tocopheryl succinate (α-TOS) as a platform for targeted cancer computed tomography (CT) imaging and therapy. In this study, amine-terminated poly(amidoamine) dendrimers of generation 5 (G5.NH2) conjugated with fluorescein isothiocyanate (FI), polyethylene glycol (PEG)-modified α-TOS, and PEGylated folic acid (FA) were used as templates to synthesize Au DENPs, followed by acetylation of the remaining dendrimer terminal amines. The formed multifunctional Au DENPs were characterized via different techniques. We show that the Au DENPs conjugated with approximately 9.8 α-TOS molecules per dendrimer and with an Au core size of 3.3 nm are water-dispersible, and stable under different pH and temperature conditions and in different aqueous media. The FA modification onto the Au DENPs enables efficient targeting of the particles to cancer cells overexpressing FA receptors (FAR), and effective targeted CT imaging of the cancer cells in vitro and the xenografted tumor model in vivo. Likewise, the covalent conjugation of α-TOS does not compromise its therapeutic activity, instead significantly improves its water solubility. Importantly, thanks to the role of FA-directed targeting, the formed multifunctional Au DENPs are able to exert the specific therapeutic efficacy of α-TOS to the FAR-overexpressing cancer cells in vitro and the xenografted tumor model in vivo. The developed multifunctional Au DENPs may hold a great promise to be used as a unique theranostic nanoplatform for targeted CT imaging and therapy of different types of cancer.  相似文献   

18.
For folate receptor (FR) targeted anticancer therapy, novel folic acid (FA) conjugated cholesterol-modified glycol chitosan (FCHGC) micelles were synthesized and characterized by 1H NMR, dynamic light scattering, transmission electron microscopy, and fluorescence spectroscopy. The degree of substitution was 1.4 FA groups and 7.7 cholesterol groups per 100 sugar residues of glycol chitosan. The critical aggregation concentration of FCHGC micelles in aqueous solution was 0.0169?mg/ml. The doxorubicin (DOX)-loaded FCHGC (DFCHGC) micelles were prepared by an emulsion/solvent evaporation method. The DFCHGC micelles were almost spherical in shape and their size increased from 282 to 320?nm with the DOX-loading content increasing from 4.53 to 11.4%. DOX released from DOX-loaded micelles displayed sustained release behavior. The targeted micelles encapsulated DOX showed significantly greater cytotoxicity against FR-positive HeLa cells than the nontargeted DOX-loaded micelles and free DOX. These results suggested that FCHGC micelles could be a potential carrier for targeted drug delivery.  相似文献   

19.
BackgroundTriple-negative breast cancer (TNBC) was known as a fast-growing and an aggressive tumor. Cisplatin is the effective cytotoxic drug used for the treatment of TNBC. In addition, apatinib, a VEGFR2 inhibitor, exhibits antitumor activity in patients with TNBC. However, the effects of combination of apatinib with cisplatin on TNBC remain unclear. Thus, this study aimed to investigate the effects of apatinib in combination with cisplatin on MDA-MB-231 cells.MethodsImmunohistochemistry was used to detect the expression of VEGFR2. In addition, CCK-8, flow cytometric, transwell assays were used to measure the cell proliferation, apoptosis, migration and invasion, respectively. Moreover, western blotting was used to detect the expressions of Bax, active caspase 3, p-VEGFR2, p-Akt and p-mTOR.ResultsVEGFR2 was significantly upreguated in patients with TNBC. In addition, the inhibitory effects of cisplatin on the proliferation, migration and invasion of MDA-MB-231 cells were enhanced by apatinib. Moreover, apatinib increased cisplatin-induced apoptosis on MDA-MB-231 cells via increasing the level of Bax and active caspase 3 and decreasing the expression of Bcl-2. Importantly, apatinib enhanced anti-tumor effect of cisplatin on MDA-MB-231 cells via inhibiting the levels of p-VEGFR2, p-Akt and p-mTOR.ConclusionOur findings indicated that apatinib enhanced the anti-tumor effects of cisplatin on MDA-MB-231 cells via inhibition of VEGFR2. Thus, the combination of apatinib with cisplatin may serve as a potential approach in the treatment of patients with TNBC.  相似文献   

20.
Benzo-[a]-pyrene (B[a]P), a carcinogenic component of cigarette smoke, has been shown to increase both COX-II expression and prostaglandin output in vascular smooth muscle and oral epithelial cells. In addition, invasive breast cancer cells have been reported to over express COX-II and PGE2. Therefore, the objective of this study was to quantify the effect of increasing B[a]P concentrations on COX-II expression, PGE2 output, and invasion using MDA-MB-231 cells, an invasive estrogen unresponsive breast cancer cell line. B[a]P significantly increased invasion in MDA-MB-231 cells at concentrations greater than 4 × 10−8 M. Treatment of MDA-MB-231 cells with Vomitoxin (a selective COX-II inducer) enhanced invasion whereas co-treatment with NS398 (a selective COX-II inhibitor) attenuated B[a]P-induced invasion in MDA-MB-231 cells. Immunohistochemical staining and Western blots demonstrated a significant B[a]P treatment-induced increase in both the number of COX-II immunopositive MDA-MB-231 cells and COX-II protein levels. Moreover, B[a]P-treatment induced a profound (46 fold) increase in PGE2 production by MDA-MB-231 cells. The aryl hydrocarbon receptor (AhR) antagonists resveratrol (RES) and α-naphthaflavone (α-NF) had no effect on their own, whereas B[a]P-induced invasion was significantly inhibited by co-treatment with RES and α-NF. Our data demonstrate that B[a]P-induced changes in invasion are mediated through augmented COX-II expression and PGE2 production involving an AhR regulated pathway. Moreover, these results suggest a potential role for the AhR signalling pathway in breast cancer invasion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号