首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 531 毫秒
1.
The thermal processing parameters is very important to the hot rolling and forging process for producing grain refinement in lightweight high-manganese and aluminum steels. In this work, the high temperature deformation behaviors of a low-density steel of Fe30Mn11Al1C alloyed with 0.1Nb and 0.1V were studied by isothermal hot compression tests at temperatures of 850–1150 °C and strain rates between 0.01 s−1 and 10 s−1. It was found that the flow stress constitutive model could be effectively established by the Arrhenius based hyperbolic sine equation with an activation energy of about 389.1 kJ/mol. The thermal processing maps were developed based on the dynamic material model at different strains. It’s shown that the safe region for high temperatures in a very broad range of both deformation temperature and deformation strain and only a small unstable high deformation region, located at low temperatures lower than 950 °C. The deformation microstructures were found to be fully recrystallized microstructure in the safe deformation region and the grain size decreases along with decreasing temperature and increasing strain rate. Whereas the deformation microstructures is composed by grain refinement-recrystallized grains and a small fraction of non-recrystallized microstructure in the unstable deformation region, indicating that the deformation behaviors controlled by continuous dynamic recrystallization. The Hall Petch relationship between microhardness and the grain size of the high temperature deformed materials indicates that high strength low-density steel could be developed by a relative low temperature deformation and high strain rate.  相似文献   

2.
The crushing response of a laser-welded square tube absorber made of two commercial steel grades, Docol 1000DP and Docol 1200M, is presented in the paper. Crush experiments are performed at two different loading conditions, namely, quasi-static loading at 0.5 mm/s deformation speed and impact loading at 25–28 m/s. A new approach has been proposed to study the square tube absorber under impact loading using a direct impact Hopkinson (DIH) method. To characterize the mechanical properties of the tested steels, tensile quasi-static and high strain rate testing are also performed with the use of specimens with a 7 mm gauge length. The applied strain rates are 10−3, 100, and above 103 s−1. The laser-welded joints are also characterized by microhardness test involving the base material, heat-affected zone, and fusion zone. The crashworthiness of model square tube absorbers is estimated based on the following parameters: absorbed energy, mean force, crushing force efficiency factor, and specific energy absorbed. It has been found that the square tube absorbers made of Docol 1200M steel show a higher potential in mechanical energy absorption capacity than Docol 1000DP absorber. Moreover, crushing tests prove that laser-welded joints in 0.6 mm sheets made of Docol 1000DP and Docol 1200M steels reveal high cracking toughness. In turn, strength testing at different strain rates confirms the higher strain rate sensitivity of Docol 1000DP steel than in the case of Docol 1200M steel as well as an increase in the high ductility properties of both steel grades under the high strain rate loading conditions.  相似文献   

3.
In this study, ultra-high-strength steels, namely, cold-hardened austenitic stainless steel AISI 301 and martensitic abrasion-resistant steel AR600, as base metals (BMs) were butt-welded using a disk laser to evaluate the microstructure, mechanical properties, and effect of post-weld heat treatment (PWHT) at 250 °C of the dissimilar joints. The welding processes were conducted at different energy inputs (EIs; 50–320 J/mm). The microstructural evolution of the fusion zones (FZ) in the welded joints was examined using electron backscattering diffraction (EBSD) and laser scanning confocal microscopy. The hardness profiles across the weldments and tensile properties of the as-welded joints and the corresponding PWHT joints were measured using a microhardness tester and universal material testing equipment. The EBSD results showed that the microstructures of the welded joints were relatively similar since the microstructure of the FZ was composed of a lath martensite matrix with a small fraction of austenite. The welded structure exhibited significantly higher microhardness at the lower EIs of 50 and 100 J/mm (640 HV). However, tempered martensite was promoted at the high EI of 320 J/mm, significantly reducing the hardness of the FZ to 520 HV. The mechanical tensile properties were considerably affected by the EI of the as-welded joints. Moreover, the PWHT enhanced the tensile properties by increasing the deformation capacity due to promoting the tempered martensite in the FZ.  相似文献   

4.
The presence of Al-Si coating on 22MnB5 leads to the formation of large ferritic bands in the dominantly martensitic microstructure of butt laser welds. Rapid cooling of laser weld metal is responsible for insufficient diffusion of coating elements into the steel and incomplete homogenization of weld fusion zone. The Al-rich regions promote the formation of ferritic solid solution. Soft ferritic bands cause weld joint weakening. Laser welds reached only 64% of base metal’s ultimate tensile strength, and they always fractured in the fusion zone during the tensile tests. We implemented hybrid laser-TIG welding technology to reduce weld cooling rate by the addition of heat of the arc. The effect of arc current on weld microstructure and mechanical properties was investigated. Thanks to the slower cooling, the large ferritic bands were eliminated. The hybrid welds reached greater ultimate tensile strength compared to laser welds. The location of the fracture moved from the fusion zone to a tempered heat-affected zone characterized by a drop in microhardness. The minimum of microhardness was independent of heat input in this region.  相似文献   

5.
Butt joints of A5052 aluminum alloy and SS400 steel, with a new type of chamfered edge, are welded by means of metal inert gas welding and ER4043 Al-Si filler metal. The microhardness and microstructure of the joint are investigated. An intermetallic layer is found on the surface of the welding seam and SS400 steel sheet. The hardness of the intermetallic layer is examined using the Vickers hardness test. The average hardness values at the Intermetallic (IMC) layer zone and without the IMC layer zone were higher than that of the welding wire ER4043. The tensile strength test showed a fracture at the intermetallic layer when the tensile strength is 225.9 MPa. The tensile value test indicated the average of welds was equivalent to the 85% tensile strength of the A5052 aluminum alloy. The thickness of the intermetallic layers is non-uniform at different positions with the ranges from 1.95 to 5 μm. The quality of the butt joint is better if the intermetallic layer is minimized. The Si crystals which appeared at the welding seam, indicating that this element participated actively during the welding process, also contributed to the IMC layer’s formation.  相似文献   

6.
The process of laser welding of sheets of HSLA (high-strength low-alloy steel), DP600 (dual-phase steel) and TRIP steels was investigated. A weld was successfully made in a double-sided hot-dip galvanized sheet with a thickness of 0.78–0.81 mm using a laser power of 2 kW per pass without any pretreatment of the weld zone. Microstructure studies revealed the presence of martensitic and ferritic phases in the weld zone, which could be associated with a high rate of its cooling. This made it possible to obtain good strength of the weld, while maintaining sufficient ductility. A relationship between the microstructural features and mechanical properties of welds made in the investigated steels has been established. The highest hardness was found in the alloying region of steels due to the formation of martensite. The hardness test results showed a very narrow soft zone in the heat affected zone (HAZ) adjacent to the weld interface, which does not affect the tensile strength of the weld. The ultimate tensile strength of welds for HSLA steel was 340–450 MPa, for DP600 steel: 580–670 MPa, for TRIP steel: ~700 MPa, respectively, exceeding the strength of base steels.  相似文献   

7.
To improve the loose structure and serious porosity of (Al–Zn–Mg–Cu) 7075 aluminum alloy laser-welded joints, aging treatment, double-sided ultrasonic impact treatment (DSUIT), and a combination of aging and DSUIT (A–DSUIT) were used to treat joints. In this experiment, the mechanism of A–DSUIT on the microstructure and properties of welded joints was analyzed. The microstructure of the welded joints was observed using optical microscopy, scanning electron microscopy, and electron backscatter diffraction (EBSD). The hardness and tensile properties of the welded components under the different processes were examined via Vickers hardness test and a universal tensile testing machine. The results showed that, after the aging treatment, the dendritic structure of the welded joints transformed into an equiaxed crystal structure. Moreover, the residual tensile stress generated in the welding process was weakened, and the hardness and tensile strength were significantly improved. After DSUIT, a plastic deformation layer of a certain thickness was generated from the surface downward, and the residual compressive stress was introduced to a certain depth of the joint. However, the weld zone unaffected by DSUIT still exhibited residual tensile stress. The inner microhardness of the joint surface improved; the impact surface hardness was the largest and gradually decreased inward to the weld zone base metal hardness, with a small improvement in the tensile strength. Compared with the single treatment process, the microstructural and mechanical properties of the welded joint after A–DSUIT were comprehensively improved. The microhardness and tensile strength of the welded joint reached 200 HV and 615 MPa, respectively, for an increase of 45.8% and 61.8%, respectively. Observation of the fractures of the tensile specimens under the different treatment processes showed that the fractures before the aging treatment were mainly ductile fractures while those after were mainly brittle fractures. After DSUIT of the welded joints, a clear and dense plastic deformation layer was observed in the fracture of the tensile specimens and effectively improved the tensile properties of the welded joints. Under the EBSD characterization, the larger the residual compressive stress near the ultrasonic impact surface, the smaller the grain diameter and misorientation angle, and the lower the texture strength. Finally, after A–DSUIT, the hardness and tensile properties improved the most.  相似文献   

8.
The results disclosed that both the microstructure and mechanical properties of AA7075-T6 laser welds are considerably influenced by the heat input. In comparison with high heat input (arc welding), a smaller weld fusion zone with a finer dendrite arm spacing, limited loss of alloying elements, less intergranular segregation, and reduced residual tensile stress was obtained using low heat input. This resulted in a lower tendency of porosity and hot cracking, which improved the welded metal’s soundness. Subsequently, higher hardness as well as higher tensile strength for the welded joint was obtained with lower heat input. A welded joint with better mechanical properties and less mechanical discrepancy is important for better productivity. The implemented high-power fiber laser has enabled the production of a low heat input welded joint using a high welding speed, which is of considerable importance for minimizing not only the fusion zone size but also the deterioration of its properties. In other words, high-power fiber laser welding is a viable solution for recovering the mechanical properties of the high-strength AA 7075-T6 welds. These results are encouraging to build upon for further improvement of the mechanical properties to be comparable with the base metal.  相似文献   

9.
Friction Stir Processing (FSP) was used to fabricate metal matrix composite, based on steel and reinforced with nano-sized yttrium oxide powder. The powder was packed in a narrow longitudinal groove of 2 mm depth and 1 mm width cut in the steel plate’s rear surface. Different rotation speeds of 500–1500 rpm were used, at a fixed traveling speed of 50 mm·min−1. Single-pass and two passes, with the same conditions, were applied. The direction of the second pass was opposite to that of the first pass. After the first pass, complete nugget zones were obtained when the rotation speeds were more than 700 rpm with some particles agglomeration. The added particles showed as narrow elliptical bands, with a band pitch equal to the rotation speed over traveling speed. Performing the second FSP pass in the opposite direction resulted in better particles distributions. Almost defect-free composite materials, with homogenously distributed yttria nano-sized particles, were obtained after two passes when rotation speeds more than 700 rpm were used. The resulting steel matrix grains were refined from ~60 μm of the base metal to less than 3 μm of the processed nugget zone matrix. The hardness and the tensile strength of the fabricated materials improved almost two-fold over the base metal. Uniform microhardness values within the nugget areas were observed at higher rotational speeds. The ductility and toughness of the fabricated composites were reduced compared to the base metal.  相似文献   

10.
Cleavage fracture of the V and Ti-V microalloyed forging steels was investigated by the four-point bending testing of the notched specimens of Griffith-Owen’s type at −196 °C, in conjunction with the finite element analysis and the fractographic examination by scanning electron microscopy. To assess the mixed microstructure consisting mostly of the acicular ferrite, alongside proeutectoid ferrite grains and pearlite, the samples were held at 1250 °C for 30 min and subsequently cooled instill air. Cleavage fracture was initiated in the matrix under the high plastic strains near the notch root of the four-point bending specimens without the participation of the second phase particles in the process. Estimated values of the effective surface energy for the V and the Ti-V microalloyed steel of 37 Jm−2 and 74 Jm−2, respectively, and the related increase of local critical fracture stress were attributed to the increased content of the acicular ferrite. It was concluded that the observed increase of the local stress for cleavage crack propagation through the matrix was due to the increased number of the high angle boundaries, but also that the acicular ferrite affects the cleavage fracture mechanism by its characteristic stress–strain response with relatively low yield strength and considerable ductility at −196 °C.  相似文献   

11.
Based on the changes of microhardness, tensile strength, and impact resistance caused by the difference of macroscopic morphology and microstructure of welded joints, this paper studied the effect of different ultrasonic power on the properties of welded joints during the welding of homogeneous armor steel. It is experimentally found that the macroscopic morphology of those joints is very different. Compared with conventional welding, ultrasonic welding can increase the weld depth and the width of the heat-affected zone (HAZ) on either side of the weld. However, only the ultrasonic wave at an appropriate power level can increase the weld width. In addition, appropriate ultrasonic power can significantly improve the grain state of the weld. With the increase of ultrasonic power, the grain size in HAZ will decrease. The microhardness of the weld will first increase and then decrease, while the microhardness of the HAZ will increase. This is basically consistent with the changing trend of impact resistance. An ultrasonic wave can also increase the tensile strength of a welded joint up to 802 MPa, 12.4% higher than that in conventional welding. However, a high-power ultrasonic wave will bring down the tensile strength. This study provides guidance for the selection of ultrasonic-assisted regulation power to achieve the different properties of homogeneous armor steel joints.  相似文献   

12.
In this work, the mechanical properties and microstructural features of an AISI 304L stainless steel in two presentations, bulk and fibers, were systematically studied in order to establish the relationship among microstructure, mechanical properties, manufacturing process and effect on sample size. The microstructure was analyzed by XRD, SEM and TEM techniques. The strength, Young’s modulus and elongation of the samples were determined by tensile tests, while the hardness was measured by Vickers microhardness and nanoindentation tests. The materials have been observed to possess different mechanical and microstructural properties, which are compared and discussed.  相似文献   

13.
This article presents a study on the effect of strain rate, specimen orientation, and plastic strain on the value and distribution of the temperature of dog-bone 1 mm-thick specimens during their deformation in uniaxial tensile tests. Full-field image correlation and infrared thermography techniques were used. A titanium-stabilised austenitic 321 stainless steel was used as test materials. The dog-bone specimens used for uniaxial tensile tests were cut along the sheet metal rolling direction and three strain rates were considered: 4 × 10−3 s−1, 8 × 10−3 s−1 and 16 × 10−3 s−1. It was found that increasing the strain rate resulted in the intensification of heat generation. High-quality regression models (Ra > 0.9) developed for the austenitic 321 steel revealed that sample orientation does not play a significant role in the heat generation when the sample is plastically deformed. It was found that at the moment of formation of a necking at the highest strain rate, the maximum sample temperature increased more than four times compared to the initial temperature. A synergistic effect of the strain hardening exponent and yield stress revealed that heat is generated more rapidly towards small values of strain hardening exponent and yield stress.  相似文献   

14.
The mechanical properties and deformation microstructure of cast 304 Cu-containing austenitic stainless steel at 10−3/s strain rate in the range of 700~1200 °C were studied by Gleeble thermal simulator, metallographic microscope and scanning electron microscope. The results showed that the thermoplasticity of 304 Cu-containing austenitic stainless steel was higher than 60% when the temperature was higher than 1000 °C, and the tensile strength as a whole decreased with the increase in temperature. During the tensile process, the morphology and content of ferrite in the test steel were the main factors affecting the high-temperature thermoplastic of the billet. The inclusions near the fracture and the existence of ferrite at the grain boundary greatly affected the formation of microcracks and holes and the fracture.  相似文献   

15.
To investigate the effect of hot working parameters on the flow behavior of 300M steel under tension, hot uniaxial tensile tests were implemented under different temperatures (950 °C, 1000 °C, 1050 °C, 1100 °C, 1150 °C) and strain rates (0.01 s−1, 0.1 s−1, 1 s−1, 10 s−1). Compared with uniaxial compression, the tensile flow stress was 29.1% higher because dynamic recrystallization softening was less sufficient in the tensile stress state. The ultimate elongation of 300M steel increased with the decrease of temperature and the increase of strain rate. To eliminate the influence of sample necking on stress-strain relationship, both the stress and the strain were calibrated using the cross-sectional area of the neck zone. A constitutive model for tensile deformation was established based on the modified Arrhenius model, in which the model parameters (n, α, Q, ln(A)) were described as a function of strain. The average deviation was 6.81 MPa (6.23%), showing good accuracy of the constitutive model.  相似文献   

16.
This paper attempted to establish a relationship between the morphology, microstructure and mechanical properties of a laser lap welded joint (WJ) of 780 duplex-phase (DP) steel under different welding parameters. The experimental results showed that the microstructure of the heat-affected zone (HAZ) of all the WJs were tempered martensite and equiaxed ferrite. The microstructure at the fusion zone (FZ) in all the WJs was dominated by lath martensite and ferrite, and the grain size of the FZ was larger than that in the base materials (BMs). The mechanical properties of the welded joints were tested by a universal testing machine, and the changing law of lap tensile resistance with the laser-welding parameters was analyzed. The results show that there was a linear relationship between the width of the weld and the tensile-shear forces of the weld, and the penetration of the weld had no obvious effect on the tensile-shear forces of the weld. A binary linear-regression equation was established to reveal the degree of influence of welding speed and laser power on the mechanical properties of WJs. It was found that the laser power had a greater influence on the mechanical properties of WJs than the welding speed.  相似文献   

17.
Pneumatic chipping hammer and ultrasonic impact peening were used to relieve the welding residual stress of 2205 duplex stainless steel by manual argon arc welding, and the influences of these mechanical shock treatment technologies on the residual stress, microstructure, and corro-sion resistance of the welding seam were studied. Results showed that after pneumatic chipping hammer or ultrasonic impact peening, a small amount of plastic deformation occurred in the welded joint of 2205 duplex stainless steel, which led to an increase in the dislocation density in the microstructure. Meanwhile, the stress state of the welded joint changed from the residual tensile stress to the residual compressive stress. The maximum residual compressive stress could reach −579 MPa. The combined action of the two effectively improved the corrosion resistance of the welded joint. Among them, the best overall effect was the ultrasonic impact peening tech-nology.  相似文献   

18.
In this paper, 8.0 mm thickness 2205 duplex stainless steel (DSS) workpieces were welded with a keyhole tungsten inert gas (K-TIG) welding system under different welding speeds. After welding, the morphologies of the welds under different welding speed conditions were compared and analyzed. The microstructure, two-phase ratio of austenite/ferrite, and grain boundary characteristics of the welded joints were studied, and the microhardness and tensile properties of the welded joints were tested. The results show that the welding speed has a significant effect on the weld morphology, the two-phase ratio, grain boundary misorientation angle (GBMA), and mechanical properties of the welded joint. When the welding speed increased from 280 mm/min to 340 mm/min, the austenite content and the two-phase ratio in the weld metal zone (WMZ) decreased. However, the ferrite content in the WMZ increased. The proportion of the Σ3 coincident site lattice grain boundary (CSLGB) decreased as the welding speed increased, which has no significant effect on the tensile strength of welded joints. The microhardness of the WMZ and the tensile strength of the welded joint gradually increased when the welding speed was 280–340 mm/min. The 2205 DSS K-TIG welded joints have good plasticity.  相似文献   

19.
The purpose of this study is to investigate the effects of laser spot size on the mechanical properties of AISI 420 stainless steel, fabricated by selective laser melting (SLM), process. Tensile specimens were built directly via the SLM process, using various laser spot diameters, namely 0.1, 0.2, 0.3, and 0.4 mm. The corresponding volumetric energy density (EV) is 80, 40, 26.7, and 20 J/mm3, respectively. Experimental results indicate that laser spot size is an important process parameter and has significant effects on the surface roughness, hardness, density, tensile strength, and microstructure of the SLM AISI 420 builds. A large laser spot with low volumetric energy density results in balling, un-overlapped defects, a large re-heated zone, and a large sub-grain size. As a result, SLM specimens fabricated by the largest laser spot diameter of 0.4 mm exhibit the roughest surface, lowest densification, and lowest ultimate tensile strength. To ensure complete melting of the powder and melt pool stability, EV of 80 J/mm3 proves to be a suitable laser energy density value for the given SLM processing and material system.  相似文献   

20.
The 9% Cr steels were developed for ultra-supercritical (USC) power plants to meet the requirements of high operating temperature and pressure. These steels are produced to operate at high temperatures where impact toughness is not a concern; however, it becomes important for the welded joints to have good impact toughness at room temperature for manufacturing. The present work investigates the effect of the post-weld heat treatment (PWHT) parameters, i.e., temperature and time, on the impact toughness of multi-pass gas tungsten arc welded (GTAW) joints of ferritic/martensitic grade P92 steel. The microstructural evolution in welded joints given varying post-weld temperatures and times was studied. The lath martensitic structure of the weld metal for the as-welded joints resulted in high hardness and low impact toughness. The weld fusion zone toughness was 12 J, which was lower than the minimum specified values of 41 J (ASME standards) and 47 J (EN ISO 3580:2017). The PWHT temperature and time were found to have a significant effect on the impact toughness of the weld metal. A drastic increase in the impact toughness of the weld metal was noticed, which was attributed to lath break-up, reduction in dislocation density and reduction in solid solution hardening. The maximum impact toughness of 124 J was measured for PWHT temperature and time of 760 °C and 120 min, respectively. The effect of PWHT parameters on tensile strength was also investigated, and test results showed that the joint was safe for USC boiler application as it failed from the region of the P92 base metal. The variation in microstructural evolution along the weldments resulted in hardness variation. PWHT led to homogeneity in microstructure and, ultimately, reduction in hardness value. According to the study, the optimum temperature and time for PWHT of a GTAW joint of P92 steel were found to be 760 °C and 120 min, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号