首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The practical use of recycled concrete aggregate produced by crushing concrete waste reduces the consumption of natural aggregate and the amount of concrete waste that ends up in landfills. This study investigated two methods used in the production of fine recycled concrete aggregate: (1) a method that produces fine as well as coarse aggregate, and (2) a method that produces only fine aggregate. Mortar specimens were tested using a variety of mix proportions to determine how the characteristics of fine recycled concrete aggregate affect the physical and mechanical properties of the resulting mortars. Our results demonstrate the superiority of mortar produced using aggregate produced using the second of the two methods. Nonetheless, far more energy is required to render concrete into fine aggregate than is required to produce coarse as well as fine aggregate simultaneously. Thus, the performance benefits of using only fine recycled concrete aggregate must be balanced against the increased impact on the environment.  相似文献   

2.
Due to the large amount of old hardened cement mortar attached to the surface of aggregate and the internal micro-cracks formed by the crushing process, the water absorption, apparent density, and crushing index of recycled coarse aggregate are still far behind those of natural coarse aggregate. Based on the performance requirements of different qualities of recycled coarse aggregate, the performance differences of recycled coarse aggregate before and after physical strengthening were observed. The results showed that the physical strengthening technique can remove old hardened mortar and micro powder attached to the surface of recycled coarse aggregate by mechanical action, which can effectively improve the quality of recycled coarse aggregate. The optimum calcination temperature of the recycled coarse aggregate was 400 °C and the grinding time was 20 min. The contents of the attached mortar in recycled coarse aggregates of Class I, II, and III were 7.9%, 22.8%, and 39.7%, respectively. The quality of recycled coarse aggregate was closely related to the amount of mortar attached to the surface. The higher the mortar content, the higher the water absorption, lower apparent density, and higher crushing index of the recycled coarse aggregate.  相似文献   

3.
This paper aims to develop recycled fiber reinforced cement plaster mortar with a good workability of fresh mixture, and insulation, mechanical and adhesive properties of the final hardened product for indoor application. The effect of the incorporation of different portions of three types of cellulose fibers from waste paper recycling into cement mortar (cement/sand ratio of 1:3) on its properties of workability, as well as other physical and mechanical parameters, was studied. The waste paper fiber (WPF) samples were characterized by their different cellulose contents, degree of polymerization, and residues from paper-making. The cement to waste paper fiber mass ratios (C/WPF) ranged from 500:1 to 3:1, and significantly influenced the consistency, bulk density, thermal conductivity, water absorption behavior, and compressive and flexural strength of the fiber-cement mortars. The workability tests of the fiber-cement mortars containing less than 2% WPF achieved optimal properties corresponding to plastic mortars (140–200 mm). The development of dry bulk density and thermal conductivity values of 28-day hardened fiber-cement mortars was favorable with a declining C/WPF ratio, while increasing the fiber content in cement mortars led to a worsening of the water absorption behavior and a lower mechanical performance of the mortars. These key findings were related to a higher porosity and weaker adhesion of fibers and cement particles at the matrix-fiber interface. The adhesion ability of fiber-cement plastering mortar based on WPF samples with the highest cellulose content as a fine filler and two types of mixed hydraulic binder (cement with finely ground granulated blast furnace slag and natural limestone) on commonly used substrates, such as brick and aerated concrete blocks, was also investigated. The adhesive strength testing of these hardened fiber-cement plaster mortars on both substrates revealed lime-cement mortar to be more suitable for fine plaster. The different behavior of fiber-cement containing finely ground slag manifested in a greater depth of the plaster layer failure, crack formation, and in greater damage to the cohesion between the substrate and mortar for the observed time.  相似文献   

4.
Coral sand cement (CSC) mortar is increasingly used in reef projects, which is prepared by mixing coral sand with cement and water in certain proportions. Considering that early-age hydration behavior is closely related to the strength and durability of the mortar, the early-age hydration process and micro-morphology of CSC mortars with various water–cement ratios (W/C) and sand–cement ratios (S/C) were studied. A monitoring system based on FBG is proposed in this paper, which uses the high sensitivity and conformability of optical fiber to measure the hydration temperature and internal shrinkage strain simultaneously and continuously. The standard sand cement (SSC) mortar with the same sand gradation and mix proportion is also prepared for comparison. The micro-morphology is observed by a scanning electron microscope (SEM) for measurement results’ explanation. The results show that the variation of the hydration temperature and shrinkage strain with hydration time of both CSC mortars and SSC mortars follow a unimodal function. Differently, the peak hydration temperature for CSC is obviously lower than that of SSC. The peak temperature of CSC mortar decreases linearly with the increase in S/C, and the decrease rate of the peak temperature is higher for CSC with small W/C than that with higher W/C. For mortars with lower W/C, the peak shrinkage strain of CSC is larger than that of SSC. Meanwhile, for mortars with higher W/C, the peak shrinkage strain of CSC changes to be lower than that of SSC, which is attributed to the significant water absorption characteristic of CSC. Therefore, as an eco-friendly lightweight aggregate, CS is more suitable than SS for the design of high W/C and alleviating the hydration heat of mass concrete under the meeting of strength.  相似文献   

5.
Blast furnace ferronickel slag (BFFS) is generated in the production of ferronickel alloys and is used as cement replacement in concrete or mortar. The effectivity in reducing cement consumption and improving performance are limited. By referring to the paste replacement method, this work used BFFS to replace an equal volume of the white Portland cement paste to obtain greater performance enhancement. BFFS was used with five levels of replacement (0%, 5%, 10%, 15%, 20%) and four water-to-cement ratios (0.40, 0.45, 0.50, 0.55) were designed. Fluidity, mechanical strength, hydration products, and pore structure of every mixture were measured. The results showed that the workability of the mortars decreased due to the reduced volume of water, but the 28-day compressive strength of the mortars increased, and the cement content of the mortars was also reduced by 33 wt %. The X-ray diffraction (XRD) patterns revealed that there existed a carboaluminate phase, and the presence of the ettringite was stabilized, indicating that the accumulating amount of the hydration products of the mortar increased. Furthermore, the BFFS could consume the portlandite and free water to form a higher amount of chemically bound water due to its pozzolanic activity. A high degree of hydration and a large volume of the hydration products refined the porosity of the hardened mortars, which explained the enhancement of the strength of the mortars. Compared to the cement replacement method, the paste replacement method was more effective in preparing eco-friendly mortar or concrete by recycling BFFS for reducing the cement content of the mortar while improving its strength.  相似文献   

6.
Globally, as human population and industries grow, so does the creation of agricultural, industrial, and demolition waste. When these wastes are not properly recycled, reused, or disposed of, they pose a threat to the environment. The importance of this study lies in the beneficial use of coconut fibre and mineral wool in the form of fibres in cement mortar production. This study examines the use of coconut and mineral wool fibres in the production of fibre-reinforced mortar. Five different mortar mixtures were prepared, having one control mortar along with four fibre-reinforced mortars. The control mortar is denoted as CM while 1% and 1.5% of mineral wool are incorporated into this mortar mix and denoted as RMM-1.0 and RMM-1.5, respectively. Additionally, the mortar sample configurations contain 1% and 1.5% coconut fibers, designated as RCM-1.0 and RCM-1.5. These samples were subjected to different strength and durability tests to determine their suitability for use in mortar production. The testing findings show that mortar containing 1.5% mineral wool has better compared flexural strength and durability properties. The investigation results will form part of the database for the efficient utilization of natural and waste fibres in the construction and building sectors.  相似文献   

7.
Nowadays, effective and eco-friendly ways of using waste materials that could replace natural resources (for example, sand) in the production of concrete composites are highly sought. The article presents the results of research on geopolymer composites produced from two types of waste materials—hemp and fine fractions recovered from recycled cement concrete, which were both used as a replacement for standard sand. A total of two research experiments were conducted. In the first experiment, geopolymer mortars were made using the standard sand, which was substituted with recycled fines, from 0% to 30% by weight. In the second study, geopolymers containing organic filler were designed, where the variables were (i) the amount of hemp and the percent of sand by volume (0%, 2.5%, and 5%) and(ii) the amount of hydrated lime and the percent of fly ash (by weight) (0%, 2%, and 4%) that were prepared. In both cases, the basic properties of the prepared composites were determined, including their flexural strength, compressive strength, volume density in a dry and saturated state, and water absorption by weight. Observations of the microstructure of the geopolymers using an electron and optical microscope were also conducted. The test results show that both materials (hemp and recycled fines) and the appropriate selection of the proportions of mortar components and can produce composites with better physical and mechanical properties compared to mortars made of only natural sand. The detailed results show that recycled fines (RF) can be a valuable substitute for natural sand. The presence of 30% recycled fines (by weight) as a replacement for natural sand in the alkali-activated mortar increased its compressive strength by 26% and its flexural strength by 9% compared to control composites (compared to composites made entirely of sand without its alternatives). The good dispersion of both materials in the geopolymer matrix probably contributed to filling of the pores and reducing the water absorption of the composites. The use of hemp as a sand substitute generally caused a decrease in the strength properties of geopolymer mortar, but satisfactory results were achieved with the substitution of 2.5% hemp (by volume) as a replacement for standard sand (40 MPa for compressive strength, and 6.3MPa for flexural strength). Both of these waste materials could be used as a substitute for natural sand and are examples of an eco-friendly and sustainable substitution to save natural, non-renewable resources.  相似文献   

8.
The properties of cement concrete using waste materials—namely, recycled cement mortar, fly ash–slag, and recycled concrete aggregate—are presented. A treatment process for waste materials is proposed. Two research experiments were conducted. In the first, concretes were made with fly ash–slag mix (FAS) and recycled cement mortar (RCM) as additions. The most favorable content of the concrete additive in the form of RCM and FAS was determined experimentally, and their influence on the physical and mechanical properties of concrete was established. For this purpose, 10 test series were carried out according to the experimental plan. In the second study, concretes containing FAS–RCM and recycled concrete aggregate (RCA) as a 30% replacement of natural aggregate (NA) were prepared. The compressive strength, frost resistance, water absorption, volume density, thermal conductivity, and microstructure were researched. The test results show that the addition of FAS–RCM and RCA can produce composites with better physical and mechanical properties compared with concrete made only of natural raw materials and cement. The detailed results show that FAS–RCM can be a valuable substitute for cement and RCA as a replacement for natural aggregates. Compared with traditional cement concretes, concretes made of FAS, RCM, and RCA are characterized by a higher compressive strength: 7% higher in the case of 30% replacement of NA by RCA with the additional use of the innovative FAS–RCM additive as 30% of the cement mass.  相似文献   

9.
One way to contribute to sustainability in the construction sector is through the incorporation of construction by-products from their own activities. This work intends to extend the possibilities for enhancement of these by-products through the incorporation of four different ones, as fillers, in mortar production. The influence of these incorporations in mortar production was compared with a reference mortar with siliceous filler in its fresh state; workability, entrained air content and fresh density, and in its hardened state; capillary water absorption, water vapour permeability and shrinkage (up to 91 days); and adhesive, compressive, and flexural strength; the last two were studied over time (up to 180 days). Despite the reduction in compressive strength, both in the short and long term, there was a gain in adhesive strength when the construction by-products were incorporated. Regarding the physical properties and durability studied, no relevant differences were found with respect to the reference mortar. According to the European Specifications, these mortars could be used as regular or coloured rendering and plastering mortars, and masonry mortars, and these findings promote the circular economy in the construction sector.  相似文献   

10.
The article presents the results of research that was carried out in order to analyze the capillary suction of cement mortar. Capillary suction is a common process that occurs when porous material is in free contact with moisture. The result of high capillary suction may be excessive moisture in buildings, and it is therefore important to limit the causes of such moisture. The main aim of the presented research is to show the influence of sodium silicate (in various proportions), as well as the quantity of aggregate, on capillary suction. Three different types of cement mortar and one type of fine aggregates were analyzed in the research. At the beginning, the capillary suction of the aggregates was analyzed. Afterwards, nine cement mortar bars were made, which were then used to examine the capillary suction. As a result of this study, it was proved that M15 cement mortar with basalt fine aggregate and a higher proportion of sodium silicate was the mortar with the lowest capillary suction. It was found that M15 cement mortar with basalt fine aggregate and a higher proportion of sodium silicate had 39 mm of capillary suction after 120 h of being immersed in water. M5 cement mortar without sodium silicate had the highest index of capillary suction, which shows that adding sodium silicate to cement mortar can significantly reduce capillary suction.  相似文献   

11.
Despite technological advances in the production processes of the materials for ceramic façade coatings, the problems of detachments are still frequent. Therefore, this work aims to investigate, through a literature review, the existing gaps related to the adhesion ability of adhesive mortars, identifying new research needs that can better explain the behavior of the material. In addition, an experimental procedure was developed to evaluate the mechanical capacity of adhesive mortars when subjected to cyclic stresses. Dynamic stress measurements are presented for several blocks of mortar and on similar blocks but with a slot drilled prior to measurements (intended to represent failure). From these data we calculated values of stress energy, elastic energy, and dissipated energy. The experimental results showed that the energy involved in the test process accompanied the load values and current stress values. The mortar samples with the previous failure absorbed and dissipated less energy than mortars without failure, showing that materials that have less energy to dissipate, are materials that have developed less capacity to adhere, that is, to keep their parts together.  相似文献   

12.
Alkali-activated mortars and concretes have been gaining increased attention due to their potential for providing a more sustainable alternative to traditional ordinary Portland cement mixtures. In addition, the inclusion of high volumes of recycled materials in these traditional mortars and concretes has been shown to be particularly challenging. The compositions of the mixtures present in this paper were designed to make use of a hybrid alkali-activation model, as they were mostly composed of class F fly ash and calcium-rich precursors, namely, ordinary Portland cement and calcium hydroxide. Moreover, the viability of the addition of fine milled glass wastes and fine limestone powder, as a source of soluble silicates and as a filler, respectively, was also investigated. The optimization criterium for the design of fly ash-based alkali-activated mortar compositions was the maximization of both the compressive strength and environmental performance of the mortars. With this objective, two stages of optimization were conceived: one in which the inclusion of secondary precursors in ambient-cured mortar samples was implemented and, simultaneously, in which the compositions were tested for the determination of short-term compressive strength and another phase containing a deeper study on the effects of the addition of glass wastes on the compressive strength of mortar samples cured for 24 h at 80 °C and tested up to 28 days of curing. Furthermore, in both stages, the effects (on the compressive strength) of the inclusion of construction and demolition recycled aggregates were also investigated. The results show that a heat-cured fly ash-based mortar containing a 1% glass powder content (in relation to the binder weight) and a 10% replacement of natural aggregate for CDRA may display as much as a 28-day compressive strength of 31.4 MPa.  相似文献   

13.
The porosity of mortars with recycled ceramic aggregates (10, 20, 30, 50, and 100% as a replacement of natural aggregate) was evaluated and analyzed using three different techniques. The results of gas adsorption (N2), Scanning Electron Microscopy (SEM) image analysis and open porosity allowed establishing the relationship between the recycled aggregate content and the porosity of these mortars, as well as the relationship between porosity and the physical and mechanical properties of the mortars: absorption, density, compressive strength, modulus of elasticity, and drying shrinkage. Using the R2 coefficient and the equation typology as criteria, additional data such as Brunauer, Emmett, and Teller (BET) surface area (N2 adsorption) established significant correlations with the mentioned properties; with SEM image analysis, no explanatory relationships could be established; and with open porosity, revealing relationships were established (R2 > 0.9). With the three techniques, it was confirmed that the increase in porosity is related to the increase in the amount of ceramic aggregate; in particular with gas adsorption (N2) and open porosity. It was concluded that the open porosity technique can explain the behavior of these recycled mortars with more reliable data, in a simple and direct way, linked to its establishment with a more representative sample of the mortar matrix.  相似文献   

14.
Cracks in typical mortar constructions enhance water permeability and degrade ions into the structure, resulting in decreased mortar durability and strength. In this study, mortar samples are created that self-healed their cracks by precipitating calcium carbonate into them. Bacillus subtilus bacterium (10−7, 10−9 cells/mL), calcium lactate, fine aggregate, OPC-cement, water, and bagasse ash were used to make self-healing mortar samples. Calcium lactates were prepared from discarded eggshells and lactic acid to reduce the cost of self-healing mortars, and 5% control burnt bagasse ash was also employed as an OPC-cement alternative. In the presence of moisture, the bacterial spores in mortars become active and begin to feed the nutrient (calcium lactate). The calcium carbonate precipitates and plugs the fracture. Our experimental results demonstrated that cracks in self-healing mortars containing bagasse ash were largely healed after 3 days of curing, but this did not occur in conventional mortar samples. Cracks up to 0.6 mm in self-healing mortars were filled with calcite using 10−7 and 10−9 cell/mL bacteria concentrations. Images from an optical microscope, X-ray Diffraction (XRD), and a scanning electron microscope (SEM) were used to confirm the production of calcite in fractures. Furthermore, throughout the pre- and post-crack-development stages, self-healing mortars have higher compressive strength than conventional mortars. The precipitated calcium carbonates were primed to compact the samples by filling the void spaces in hardened mortar samples. When fissures developed in hardened mortars, bacteria became active in the presence of moisture, causing calcite to precipitate and fill the cracks. The compressive strength and flexural strength of self-healing mortar samples are higher than conventional mortars before cracks develop in the samples. After the healing process of the broken mortar parts (due to cracking), self-healing mortars containing 5% bagasse ash withstand a certain load and have greater flexural strength (100 kPa) than conventional mortars (zero kPa) at 28 days of cure. Self-healing mortars absorb less water than typical mortar samples. Mortar samples containing 10−7 bacteria cells/mL exhibit greater compressive strength, flexural strength, and self-healing ability. XRD and SEM were used to analyze mortar samples with healed fractures. XRD, FTIR, and SEM images were also used to validate the produced calcium lactate. Furthermore, the durability of mortars was evaluated using DTA-TGA analysis and water absorption tests.  相似文献   

15.
This paper presents an experimental study on use of hot-melt polyamide (HMP) to prepare mortar specimens with improved crack healing and engineering properties. The role of HMP in the crack repairing of cement mortar subjected to several rounds of heat treatment was investigated. Compatibility between HMP and hydraulic cement was investigated through X-ray diffraction (XRD) and Fourier transform infrared spectra (FTIR) technology. Mortar specimens were prepared using standard cement mortar mixes with HMP at 1%, 3% and 5% (by volume) for fine aggregate substitute. After curing for 28 days, HMP specimens were subjected to heating at temperature of 160 °C for one, two, and three days and then natural cooling down to ambient temperature. Mechanical and durability properties of the heated HMP mortars were evaluated and compared with those of the corresponding mortars without heating. The microscopic observation of the interfacial transition zone (ITZ) of HMP mortar was conducted through environmental scanning electron microscopy (ESEM). Results reveal that incorporation of HMP improves the workability of the HMP/cement binder while leading to decrease in compressive strength and durability. The heated HMP mortars after exposure to heating for one, two, and three days exhibit no obvious change in compressive strength while presenting notable increase in flexural strength and durability compared with the corresponding mortars without heating. The XRD, FTIR and ESEM analyses indicate that no obvious chemical reaction occurs between HMP and hydraulic cement, and thus the self-repairing for interfacial micro-crack in HMP/cement composite system is ascribed to the physical adhesion of HMP to cement matrix rather than the chemical bonding between them.  相似文献   

16.
In this study, rice husk ash (RHA) was explored as a strength enhancer for mortars containing waste rubber. The effects of RHA on the flow, mechanical strength, chloride resistance, and capillary absorption of rubber mortar were investigated by substituting up to 20% cement with RHA. The experimental results showed that the incorporation of rubber into mortar could be safely achieved by adding RHA as a cement substitute by up to 20% without compromising the compressive strength of mortar. Moreover, the RHA also exerted positive effects on the enhancement of the chloride resistance as well as the capillary absorption of rubber mortars, for which 15% RHA was found to be the optimal dosage.  相似文献   

17.
In the industries of petroleum extraction, a large volume of oily sludge is being generated. This waste is usually considered difficult to dispose of, causing environmental and economic issues. This study presented the novel experimental method of manufacturing mortar used in civil construction by cement and oily sludge ash (OSA). The defined method was described with a logical experimental study conducted to examine a feasible manufacturing method for casting cement-based mortars by partially replacing cement with OSA. Replacement concentrations for OSA ranged from 0 to 20 percent by cement weight, while the water-to-cement (w/c) ratio was varied from 0.4 to 0.8, and the amount of sand was kept constant. The strengths and absorption rate of the mortar were monitored for 28 days. The OSA contains a crystalline structure with packs of angular grains. Because of OSA in the cement-based mortar mixtures and water-to-cement ratios, the mechanical strength was improved significantly. However, the water absorption trend increased linearly. Using variance analysis, the influence of OSA and w/c ratio on the behavior of mortar was acquired. The developed models were significant for all p-value reactions of <5%. Numerical optimization results showed that the best mixture can be obtained by replacing 8.19 percent cement with OSA and 0.52 as a ratio of w/c.  相似文献   

18.
High titanium heavy slag is one kind of solid waste that exists in large amounts in the southwest of China. In this paper, this high titanium heavy slag is used as natural pre-wetted material in concrete because of its porous structure. Three kinds of aggregates are used in this concrete. The first one is natural limestone and river sand. The second one is dry slag fine aggregate and coarse aggregate. The third one is pre-wetted coarse slag aggregate and dry slag fine aggregate. The strength, dry shrinkage, autogenous shrinkage, relative humidity, pore size distribution, stress–strain relationship, micro-hardness and chloride penetration of concrete composed of the above three aggregates are tested in this study. The results show that pre-wetted slag aggregate is a suitable internal curing material. The concrete with pre-wetted slag aggregate shows higher strength, lower shrinkage and smaller porosity. The water absorbed in the slag aggregate can be released effectively to increase the relative humidity, accelerate hydration, improve porosity and increase the interface strength.  相似文献   

19.
With the trend toward taller and larger structures, the demand for high-strength and lightweight cement concrete has increased in the construction industry. Equipment for transporting ready-mixed concrete is frequently used to bring concrete to construction sites, and washing this equipment generates a large amount of recycled water, which is an industrial by-product. In this study, we recycled this water as the pre-wetting water for lightweight aggregate and as mixing water, and we substituted blast furnace slag powder (BS) and fly ash (FA) as cementitious materials (Cm). In addition, we evaluated the fluidity, compressive strength, tensile strength, drying shrinkage, and accelerated carbonation depth of lightweight ternary cementitious mortars (TCMs) containing artificial lightweight aggregate and recycled water. The 28-day compressive strengths of the lightweight TCM specimens with BS and FA were ~47.2–51.7 MPa, except for the specimen with 20% each of BS and FA (40.2 MPa), which was higher than that of the control specimen with 100% OPC (45.9 MPa). Meanwhile, the 28-day tensile strengths of the lightweight TCM specimens containing BS and FA were ~2.81–3.20 MPa, which are ~13.7–29.5% higher than those of the control specimen. In this study, the TCM specimen with 5% each of BS and FA performed the best in terms of the combination of compressive strength, tensile strength, and carbonation resistance.  相似文献   

20.
Raw clay is used nowadays in construction as a component of mortars and plasters and as a binder in composites based on straw or shives. It is a material with good sorption properties and vapor permeability, but it is susceptible to shrinkage, is not resistant to water, and also is characterized by low mechanical strength, which makes it impossible to be used, for example, in external plasters. Various additives and admixtures are used to improve selected properties of clay mortars. The article presents the research results and assessment of the effect of glauconite clay mortar modification with an admixture of linseed oil varnish on selected properties. Admixtures in the amounts of 1%, 2%, and 3% in relation to clay weight were used. Flexural and compressive strength, water resistance, shrinkage, drying capacity, density, and porosity of mortar, were tested. The admixture of linseed oil varnish in the amounts used in the investigation had a positive effect on some of the tested properties; regardless of the quantity of the admixture, the modified mortars had better parameters concerning flexural strength, shrinkage reduction, and water resistance than the reference mortar, without admixture.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号