首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Central administration of corticotropin-releasing factor (CRF), a 41-amino acid peptide, is associated with potent anorexigenic effects in rodents and chickens. However, the mechanism underlying this effect remains unclear. Hence, the objective of the current study was to elucidate the hypothalamic mechanisms that mediate CRF-induced anorexia in 4 day-old Cobb-500 chicks. After intracerebroventricular (ICV) injection of 0.02 nmol of CRF, CRF-injected chicks ate less than vehicle chicks while no effect on water intake was observed at 30 min post-injection. In subsequent experiments, the hypothalamus samples were processed at 60 min post-injection. The CRF-injected chicks had more c-Fos immunoreactive cells in the arcuate nucleus (ARC), dorsomedial nucleus (DMN), ventromedial hypothalamus (VMH), and paraventricular nucleus (PVN) of the hypothalamus than vehicle-treated chicks. CRF injection was associated with decreased whole hypothalamic mRNA abundance of neuropeptide Y receptor sub-type 1 (NPYR1). In the ARC, CRF-injected chicks expressed more CRF and CRF receptor sub-type 2 (CRFR2) mRNA but less agouti-related peptide (AgRP), NPY, and NPYR1 mRNA than vehicle-injected chicks. CRF-treated chicks expressed greater amounts of CRFR2 and mesotocin mRNA than vehicle chicks in the PVN and VMH, respectively. In the DMN, CRF injection was associated with reduced NPYR1 mRNA. In conclusion, the results provide insights into understanding CRF-induced hypothalamic actions and suggest that the anorexigenic effect of CRF involves increased CRFR2-mediated signaling in the ARC and PVN that overrides the effects of NPY and other orexigenic factors.  相似文献   

2.
《Neuropeptides》2014,48(6):327-334
Gonadotropin-inhibitory hormone (GnIH), a 12 amino acid peptide, is expressed in the avian brain and inhibits luteinizing hormone secretion. Additionally, exogenous injection of GnIH causes increased food intake of chicks although the central mechanism mediating this response is poorly understood. Hence, the purpose of our study was to elucidate the central mechanism of the GnIH orexigenic response using 12 day post hatch layer-type chicks as models. Firstly, via mass spectrometry we deduced the chicken GnIH amino acid sequence: SIRPSAYLPLRFamide. Following this we used chicken GnIH to demonstrate that intracerebroventricular (ICV) injection of 2.6 and 7.8 nmol causes increased food intake up to 150 min following injection with no effect on water intake. The number of c-Fos immunoreactive cells was quantified in appetite-associated hypothalamic nuclei following ICV GnIH and only the lateral hypothalamic area (LHA) had an increase of c-Fos positive neurons. From whole hypothalamus samples following ICV GnIH injection abundance of several appetite-associated mRNA was quantified which demonstrated that mRNA for neuropeptide Y (NPY) was increased while mRNA for proopiomelanocortin (POMC) was decreased. This was not the case for mRNA abundance in isolated LHA where NPY and POMC were not affected but melanin-concentrating hormone (MCH) mRNA was increased. A comprehensive behavior analysis was conducted after ICV GnIH injection which demonstrated a variety of behaviors unrelated to appetite were affected. In sum, these results implicate activation of the LHA in the GnIH orexigenic response and NPY, POMC and MCH are likely also involved.  相似文献   

3.
《Neuropeptides》2014,48(5):305-311
Exogenous administration of substance P (SP) exerts anorexigenic effects in both chicks and rats, but the central mechanism mediating this response is poorly understood. Therefore, this study was designed to elucidate mechanisms of SP-induced anorexia using chicks as models. Chicks that received intracerebroventricular (ICV) injections of SP dose-dependably reduced their food intake with no effect on water intake. Next, the diencephalon was isolated from SP-injected chicks and mRNA expression of neuropeptide Y (NPY), corticotropin releasing factor (CRF), urocortin 3 (UCN 3) and CRF receptors were measured but were not affected. When measured in the hypothalamus, mRNA abundance of these and NPY receptors, urotensin 2 (UTS2) and melanocortin receptor 4 (MCR4) were not affected by SP-injection. Quantification of c-Fos immunoreactivity in appetite-associated hypothalamic nuclei demonstrated that the paraventricular nucleus (PVN) was activated in SP-injected chicks. Finally, in the PVN isolated from SP-injected chicks, there was increased expression of UTS2 mRNA while CRF and UCN3 were not affected. Thus, the anorexigenic effects of SP appear to be mediated by PVN activation and may involve UTS2.  相似文献   

4.
5.
Substance P (SP) is an 11-amino acid tachykinin-related peptide that has anorexigenic effects in birds and mammals although the central mechanism is not well understood. Hence, the objective was to identify appetite-associated hypothalamic mechanisms in Japanese quail (Coturnix japonica). Seven days post-hatch, quail were intracerebroventricularly injected with 0, 0.25, 0.5 or 1.0 nmol of SP and monitored for 180 min. On a cumulative basis, quail that received 0.5 and 1.0 nmol of SP consumed less food for 90 min post-injection. On a non-cumulative basis, food intake was reduced in 0.5 nmol-injected birds at 30 min post-injection. Water intake was not affected. A comprehensive behavior analysis was performed, revealing that SP-injected chicks displayed less feeding pecks and reduced locomotion compared to vehicle-injected birds. To identify molecular mechanisms, the hypothalamus was isolated at 1 h post-injection and real-time PCR was performed to measure mRNA. Agouti-related peptide (AgRP) mRNA was reduced in SP-injected chicks. Immunohistochemistry was used to quantify c-Fos-expressing cells in appetite-associated hypothalamic nuclei. There were more reactive cells in the lateral hypothalamus (LH) and the paraventricular nucleus (PVN) of SP- than vehicle-injected chicks. The LH and PVN were collected for gene expression analysis. Corticotropin-releasing factor (CRF) and urotensin 2 (UTS2) mRNAs were greater in SP- than vehicle-injected chicks in the PVN. In the LH, CRF receptor sub-type 2 (CRFR2) mRNA was greater and kappa opioid receptor mRNA was reduced in SP- compared to vehicle-injected quail. Thus, SP induces a potent anorexia in quail that coincides with increased LH-specific CRFR2 mRNA and increased UTS2 mRNA in the PVN. Future studies will evaluate whether SP-induced anorexigenic effects are mediated through CRF receptors.  相似文献   

6.
Exogenous administration of prolactin-releasing peptide (PrRP) exerts anorexigenic effects in rats while causing orexigenic effects in chicks. While the central mechanism mediating PrRP's effect on food intake in rodents is somewhat understood, in chicks information is lacking. Therefore, this study was designed to elucidate the hypothalamic mechanism of PrRP induction of hunger perception in chicks. Chicks that received intracerebroventricular (ICV) injections of PrRP dose-dependently increased their food intake with no effect on water intake or whole blood glucose concentration. The threshold of food intake stimulation was as low as 3 pmol, thus as compared to other neuropeptides PrRP is exceptionally potent. The mRNA abundance of several appetite-associated neuropeptide genes was quantified and hypothalamic neuropeptide Y (NPY) mRNA was increased in PrRP-injected chicks. Therefore, the orexigenic effects of PrRP may be associated with increased NPY-ergic tone. These results provide insight into the evolutionary aspects of appetite regulation during the course of divergent evolution of mammals and birds.  相似文献   

7.
Maintaining glucose levels within the appropriate physiological range is necessary for survival. The identification of specific neuronal populations, within discreet brain regions, sensitive to changes in glucose concentration has led to the hypothesis of a central glucose-sensing system capable of directly modulating feeding behaviour. Glucokinase (GK) has been identified as a glucose-sensor responsible for detecting such changes both within the brain and the periphery. We previously reported that antagonism of centrally expressed GK by administration of glucosamine (GSN) was sufficient to induce protective glucoprivic feeding in rats. Here we examine a neurochemical mechanism underlying this effect and report that GSN stimulated food intake is highly correlated with the induction of the neuronal activation marker cFOS within two nuclei with a demonstrated role in central glucose sensing and appetite, the arcuate nucleus of the hypothalamus (ARC) and lateral hypothalamic area (LHA). Furthermore, GSN stimulated cFOS within the ARC was observed in orexigenic neurons expressing the endogenous melanocortin receptor antagonist agouti-related peptide (AgRP) and neuropeptide Y (NPY), but not those expressing the anorectic endogenous melanocortin receptor agonist alpha-melanocyte stimulating hormone (α-MSH). In the LHA, GSN stimulated cFOS was found within arousal and feeding associated orexin/hypocretin (ORX), but not orexigenic melanin-concentrating hormone (MCH) expressing neurons. Our data suggest that GK within these specific feeding and arousal related populations of AgRP/NPY and ORX neurons may play a modulatory role in the sensing of and appetitive response to hypoglycaemia.  相似文献   

8.
9.
Calcitonin gene-related peptide (CGRP) is released from the gastrointestinal tract following ingestion and causes satiety in mammals. Its effects on appetite in non-mammalian vertebrates are unreported. In Experiment 1, fasted chicks reduced food and water intake after central injection of CGRP. These effects were not associated with increased plasma corticosterone concentration. In Experiment 2, we showed that the effect on water intake was independent of food intake. In Experiment 3, central CGRP caused increased c-Fos immunoreactivity in the arcuate (ARC) nucleus, paraventricular nucleus (PVN), periventricular (PHN) and ventromedial (VMH) hypothalamic nuclei. The results of Experiment 4 demonstrate that intraperitoneal injection of CGRP also causes reduced food and water intake. c-Fos immunoreactivity was increased in the ARC, PHN, PVN and VMH in Experiment 5 after intraperitoneal injection of CGRP. Lastly in Experiment 6, we showed that central CGRP changes the type of pecks from feeding to exploratory, and reduces the number of escape attempts. The effect of CGRP appears to be primary on appetite in chicks. In conclusion, the mechanisms of CGRP induced satiety have some similarities and differences between avian and rodent models. The results presented here provide new insight into the evolution of vertebrate satiety regulatory mechanisms.  相似文献   

10.
Information on the physiological functions of neuropeptide FF; NPFF, a morphine modulating octapeptide in avians is lacking. Thus, we designed a study to investigate the effects of central NPFF with particular emphasis on appetite-related processes. Cobb-500 chicks were intracerebroventricularly (ICV) injected with 0, 4.16, 8.32 or 16.6nmol NPFF, and feed and water intake were quantified. Feed intake was linearly decreased as NPFF dose increased, and this effect decayed over time and was not significant by 120min post-injection. Water intake was not affected by ICV NPFF. In a second exp, we observed that naloxone completely reversed the NPFF-induced decrease in feed intake. The amount of time a visible marker took to travel through the total length of the alimentary canal linearly increased as NPFF dose increased. We measured neuronal activation in the lateral hypothalamus (LH), paraventricular nucleus (PVN) dorsomedial nucleus (DMN) and ventromedial hypothalamus (VMN) of the hypothalamus, and nucleus dorsomedialis posterior thalami (DMP) of the thalamus. The DMN, DMP, PVN and VMH were all activated by ICV NPFF while the LH was not affected. Finally, we determined that the anorexigenic effect of ICV NPFF is primarily behavior specific, since behaviors unrelated to ingestion were not increased the same duration of time as was consumatory pecking. We conclude that NPFF causes anorexigenic effects in chicks that are primarily behavior specific.  相似文献   

11.
Chicken lines that have been divergently selected for either low (LWS) or high (HWS) body weight at 56 days of age for more than 57 generations have different feeding behaviours in response to a range of i.c.v. injected neurotransmitters. The LWS have different severities of anorexia, whereas the HWS become obese. Previously, we demonstrated that LWS chicks did not respond, whereas HWS chicks increased food intake, after central injection of neuropeptide Y (NPY). The present study aimed to determine the molecular mechanisms underlying the loss of orexigenic function of NPY in LWS. Chicks were divided into four groups: stressed LWS and HWS on day of hatch, and control LWS and HWS. The stressor was a combination of food deprivation and cold exposure. On day 5 post‐hatch, each chick received an i.c.v. injection of vehicle or 0.2 nmol of NPY. Only the LWS stressed group did not increase food intake in response to i.c.v. NPY. Hypothalamic mRNA abundance of appetite‐associated factors was measured at 1 h post‐injection. Interactions of genetic line, stress and NPY treatment were observed for the mRNA abundance of agouti‐related peptide (AgRP) and synaptotagmin 1 (SYT1). Intracerebroventricular injection of NPY decreased and increased AgRP and SYT1 mRNA, respectively, in the stressed LWS and increased AgRP mRNA in stressed HWS chicks. Stress was associated with increased NPY, orexin receptor 2, corticotrophin‐releasing factor receptor 1, melanocortin receptor 3 (MC3R) and growth hormone secretagogue receptor expression. In conclusion, the loss of responsiveness to exogenous NPY in stressed LWS chicks may be a result of the decreased and increased hypothalamic expression of AgRP and MC3R, respectively. This may induce an intensification of anorexigenic melanocortin signalling pathways in LWS chicks that block the orexigenic effect of exogenous NPY. These results provide insights onto the anorexic condition across species, and especially for forms of inducible anorexia such as human anorexia nervosa.  相似文献   

12.
This study was conducted to determine the effects of xenin on appetite related processes in chicks. Chicks were centrally and peripherally administered xenin, and feed and water intake were quantified. Chicks responded with a linear dose-dependent decrease in feed intake to central xenin and had a quadratic type response to peripheral administration. Water intake was not affected by treatment. To determine if the lateral hypothalamus (LH) or ventromedial hypothalamus (VMH) was involved in this effect, chicks were both centrally and peripherally injected with xenin and an immunocytochemistry assay for c-Fos was conducted. Central and peripheral xenin caused increased activation of the VMH but had no effect on the LH. Finally, to determine if gastrointestinal transit rate was affected, chicks received central xenin and were gavaged with chicken feed slurry containing a visible marker. Chicks exhibited a quadratic dose-dependent response to transit rate after central xenin. These results suggest that xenin affects feeding and gastrointestinal motility through hypothalamic interactions in chicks.  相似文献   

13.
The melanocortin system together with other appetite-related systems plays a significant role in appetite regulation. The appetite-related effects of one such melanocortin, β-melanocyte-stimulating hormone (MSH), are well documented in rodents; however, its effects in the avian class are not thoroughly understood. Thus, we designed a study to determine the effects of i.c.v. β-MSH injection on food and water intake, plasma corticosterone concentration, ingestive and non-ingestive behaviours, and hypothalamic neuronal activation using Cobb-500 chicks. Chicks responded to β-MSH-treatment with a reduction in food and water intake; however when water intake was measured independently of food intake, it was not affected. β-MSH-treated chicks also had increased plasma corticosterone concentrations and increased c-Fos reactivity in the periventricular, paraventricular and infundibular nuclei, and the ventromedial hypothalamus; however, the lateral hypothalamus was not affected. The effect on food intake is primary because behaviours that may be competitive with food intake were not increased in β-MSH-treated chicks. Based on these results, we conclude that β-MSH causes anorexigenic effects that are likely primarily mediated via stimulation of satiety-related hypothalamic nuclei in broiler-type chicks.  相似文献   

14.
Lin L  York DA 《Brain research》2004,1020(1-2):147-153
Enterostatin selectively inhibits the intake of the dietary fat after both central and peripheral administration. Our previous studies have shown that a central site of action is the central nucleus of amygdala. Serotonergic agonists administered into the paraventricular nucleus (PVN) inhibit fat intake and serotonergic antagonists block the feeding suppression induced by amygdala enterostatin, suggesting that there are functional connections between the PVN and amygdala that affect the feeding response to enterostatin. Our purpose was to identify the anatomic and functional projections from the amygdala to the PVN and hypothalamic area that are responsive to enterostatin, by using a retrograde tracer fluorogold (FG) and c-Fos expression. Rats were injected with fluorogold unilaterally into the PVN and a chronic amygdala cannula was implanted ipsilaterally. After 10 days recovery, rats were injected with either enterostatin (0.1 nmol) or saline vehicle (0.1 microl) into the amygdala and sacrificed 2 h later by cardiac perfusion under anesthesia. The brains were subjected to dual immunohistochemistry to visualize both FG and c-Fos-positive cells. FG/c-Fos double-labeled cells were found in forebrain regions including the PVN, amygdala, lateral hypothalamus (LH), ventral medial hypothalamus (VMH) and arcuate nucleus (ARC). The data provides the first anatomical evidence that enterostatin activates amygdala neurons that have functional and anatomic projections directly to the PVN and also activates neurons in the arcuate, LH and VMH, which innervate the PVN.  相似文献   

15.
Nicotine, acting through nicotinic acetylcholine receptors (nAChRs), increases the firing rate of both orexigenic agouti‐related peptide (AgRP) and anorexigenic pro‐opiomelanocortin (POMC) neurons in the arcuate nucleus of the hypothalamus (ARC), yet nicotine and other nAChR agonists decrease food intake in mice. Viral‐mediated knockdown of the β4 nAChR subunit in all neuronal cell types in the ARC prevents the nicotinic agonist cytisine from decreasing food intake, but it is not known whether the β4 subunit is selectively expressed in anorexigenic neurons or how other nAChR subtypes are distributed in this nucleus. Using translating ribosome affinity purification (TRAP) on ARC tissue from mice with ribosomes tagged in either AgRP or POMC cells, we examined nAChR subunit mRNA levels using real‐time PCR. Both AgRP and POMC cells express a comparable panel of nAChR subunits with differences in α7 mRNA levels and a trend for difference in α4 levels, but no differences in β4 expression. Immunoprecipitation of assembled nAChRs revealed that the β4 subunit forms assembled channels with α3, β2 and α4, but not other subunits found in the ARC. Finally, using cell type‐selective, virally delivered small hairpin RNAs targeting either the β4 or α7 subunit, we examined the contribution of each subunit in either AgRP or POMC cells to the behavioural response to nicotine, refining the understanding of nicotinic regulation of this feeding circuit. These experiments identify a more complex set of nAChRs expressed in ARC than in other hypothalamic regions. Thus, the ARC appears to be a particular target of nicotinic modulation.  相似文献   

16.
Central administration of neuropeptide Y (NPY) potently induces feeding and its abundance in the hypothalamus increases when energy stores fall. Consequently, NPY is considered to be a physiological effector of feeding behavior. Surprisingly, NPY-deficient (NPY-/-) mice feed and grow normally with ad libitum access to food and manifest a normal hyperphagic response after fasting, suggesting that other feeding effectors may compensate for the lack of NPY. Agouti-related protein (AgRP), a melanocortin receptor antagonist, can also stimulate feeding behavior when administered centrally and is coexpressed in a majority of hypothalmamic NPY-ergic neurons, making AgRP a candidate compensatory factor. To test this possibility, we evaluated AgRP mRNA and protein expression, as well as responsiveness to centrally administered AgRP in NPY-/- mice. These studies demonstrate that hypothalamic AgRP mRNA and immunoreactivity are upregulated with fasting and that these increases are not affected by NPY deficiency. Interestingly, NPY-/- mice are hypersensitive to central administration of AgRP(83-132), yet exhibit a normal response to centrally administered MTII, a melanocortin receptor agonist. These data suggest that if AgRP compensates for the lack of NPY in NPY-/- mice, it is not at the level of AgRP synthesis and may instead involve alterations in the postsynaptic signaling efficacy of AgRP. Moreover, the effects of AgRP are not limited to its actions at the melanocortin-4 receptor (MC4R), because MC4R-deficient (MC4R-/-) mice manifest a significant response to centrally administered AgRP. These data imply that AgRP has additional targets in the hypothalamus.  相似文献   

17.
Recent studies have identified several neuropeptide systems in the hypothalamus that are critical in the regulation of body weight. The lateral hypothalamic area (LHA) has long been considered essential in regulating food intake and body weight. Two neuropeptides, melanin-concentrating hormone (MCH) and the orexins (ORX), are localized in the LHA and provide diffuse innervation of the neuraxis, including monosynaptic projections to the cerebral cortex and autonomic preganglionic neurons. Therefore, MCH and ORX neurons may regulate both cognitive and autonomic aspects of food intake and body weight regulation. The arcuate nucleus also is critical in the regulation of body weight, because it contains neurons that express leptin receptors, neuropeptide Y (NPY), α-melanin-stimulating hormone (α-MSH), and agouti-related peptide (AgRP). In this study, we examined the relationships of these peptidergic systems by using dual-label immunohistochemistry or in situ hybridization in rat, mouse, and human brains. In the normal rat, mouse, and human brain, ORX and MCH neurons make up segregated populations. In addition, we found that AgRP- and NPY-immunoreactive neurons are present in the medial division of the human arcuate nucleus, whereas α-MSH-immunoreactive neurons are found in the lateral arcuate nucleus. In humans, AgRP projections were widespread in the hypothalamus, but they were especially dense in the paraventricular nucleus and the perifornical area. Moreover, in both rat and human, MCH and ORX neurons receive innervation from NPY-, AgRP-, and α-MSH-immunoreactive fibers. Projections from populations of leptin-responsive neurons in the mediobasal hypothalamus to MCH and ORX cells in the LHA may link peripheral metabolic cues with the cortical mantle and may play a critical role in the regulation of feeding behavior and body weight. J. Comp. Neurol. 402:442–459, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

18.
Cline MA  Fouse DN  Prall BC 《Neuropeptides》2008,42(3):283-291
We studied the effects of alytesin, a natural analogue of bombesin, on appetite-related responses and behaviors in neonatal chicks. Chicks responded to both intracerebroventricular (ICV) and peripheral injections of alytesin with short-term reduced feed intake. ICV alytesin caused reduced short-term water intake when feed was present, but we determined this effect was secondary to feed intake since an effect on water intake was not detected in feed-restricted alytesin-treated chicks. The anorexigenic effect of both ICV and peripheral alytesin may be mediated at the hypothalamus, since all hypothalamic nuclei studied; regio lateralis hypothalami, nucleus dorsomedialis hypothalami, nucleus paraventricularis magnocellularis, nucleus perventricularis hypothalami, nucleus infundibuli hypothalami and the nucleus ventromedialis hypothalami, were activated as evident by increased c-Fos immunoreactivity. Central alytesin did not cause increased behaviors that were unrelated to ingestion and did not cause anxiety-related behavior patterns. Additionally, central alytesin did not affect pecking efficacy. We conclude that both ICV and peripheral alytesin injections induce anorexigenic effects in chicks, and the hypothalamus is involved. While the anorexigenic effects of alytesin and bombesin appear to be conserved across species, the two peptides may differ in other behavioral responses and central mechanisms of action.  相似文献   

19.
Agouti-related protein prevents self-starvation   总被引:1,自引:0,他引:1  
Food restriction leads to a paradoxical increase in physical activity and further suppression of food intake, such as observed in anorexia nervosa.(1,2) To understand this pathophysiological process, we induced physical hyperactivity and self-starvation in rats by restricting food in the presence of running wheels. Normally, decreased melanocortin receptor activity will prevent starvation.(3,4) However, we found that self-starvation increased melanocortin receptors in the ventral medial hypothalamus, a brain region involved in eating behavior.(5) Suppression of melanocortin receptor activity, via central infusion of Agouti-related protein (AgRP), increased survival rate in these rats by counteracting physical hyperactivity, food intake suppression as well as deregulated body temperature. We conclude that self-starvation may result from insufficient suppression of central melanocortin receptor activity.  相似文献   

20.
Glucocorticoid deficiency is associated with a decrease of food intake. Orexigenic peptides, neuropeptide Y (NPY) and agouti related protein (AgRP), and the anorexigenic peptide proopiomelanocortin (POMC), expressed in the arcuate nucleus of the hypothalamus (ARC), are regulated by meal-induced signals. Orexigenic neuropeptides, melanin-concentrating hormone (MCH) and orexin, expressed in the lateral hypothalamic area (LHA), also control food intake. Thus, the present study was designed to test the hypothesis that glucocorticoids are required for changes in the expression of hypothalamic neuropeptides induced by feeding. Male Wistar rats (230-280 g) were subjected to ADX or sham surgery. ADX animals received 0.9% NaCl in the drinking water, and half of them received corticosterone in the drinking water (B: 25 mg/L, ADX+B). Six days after surgery, animals were fasted for 16 h and they were decapitated before or 2 h after refeeding for brain tissue and blood collections. Adrenalectomy decreased NPY/AgRP and POMC expression in the ARC in fasted and refed animals, respectively. Refeeding decreased NPY/AgRP and increased POMC mRNA expression in the ARC of sham and ADX+B groups, with no effects in ADX animals. The expression of MCH and orexin mRNA expression in the LHA was increased in ADX and ADX+B groups in fasted condition, however there was no effect of refeeding on the expression of MCH and orexin in the LHA in the three experimental groups. Refeeding increased plasma leptin and insulin levels in sham and ADX+B animals, with no changes in leptin concentrations in ADX group, and insulin response to feeding was lower in this group. Taken together, these data demonstrated that circulating glucocorticoids are required for meal-induced changes in NPY, AgRP and POMC mRNA expression in the ARC. The lower leptin and insulin responses to feeding may contribute to the altered hypothalamic neuropeptide expression after adrenalectomy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号