首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 0 毫秒
1.
Several pieces of research have been done on transition metal nanoparticles and their nanocomplexes as research on their physical and chemical properties and their relationship to biological features are of great importance. Among all their biological properties, the antibacterial and antimicrobial are especially important due to their high use for human needs. In this article, we will discuss the different synthesis and modification methods of silver (Ag) and gold (Au) nanoparticles and their physicochemical properties. We will also review some state-of-art studies and find the best relationship between the nanoparticles’ physicochemical properties and potential antimicrobial activity. The possible antimicrobial mechanism of these types of nanoparticles will be discussed in-depth as well.  相似文献   

2.
In this study, a novel antimicrobial formula that incorporates Listeria bacteriophage P100 and silver nanoparticles into an alginate matrix was successfully developed. Paper coated with the antimicrobial formula inhibited the growth of Listeria monocytogenes. The effects of alginate concentration on the formation of silver nanoparticles, silver concentration on the infectivity of phages, and of low alginate concentrations on the sustained release of silver and phages were explored. The highest antimicrobial activity of the alginate–silver coating was achieved with an alginate concentration of 1%. Adding phage P100 (109 PFU/mL) into the alginate–silver coating led to a synergic effect that resulted in a 5-log reduction in L. monocytogenes. A bioactive paper was then developed by coating a base paper with the antimicrobial formula at different coating weights, followed by infrared drying. The higher coating weight was a crucial factor for the maintenance of phage infectivity throughout the coating and drying processes. Phages incorporated into the alginate matrix remained functional even after high-temperature infrared drying. Taken together, an optimized coating matrix is critical in improving the antimicrobial performance of bioactive paper as well as maintaining phage infectivity during the paper manufacturing process.  相似文献   

3.
Apple tree canker induced by Valsa mali is a vital disease in apple production around the world, and it highlyimpacts the development of apple industry. It is of great significance to study the inhibition effect of common fungicides and develop new fungistats for comprehensive control of apple tree canker. In this experiment, the inhibition activity of five fungicides, including mancozeb, metalaxyl, iprodione, prochloraz, and difenoconazole along with biosynthesized nanosilver against V. mali, were measured with the mycelium growth rate and agar well diffusion methods. The results showed that iprodione exhibited the best inhibitory effect, the median inhibition concentration (IC50) of iprodione and nanosilver was 0.62 μg.mL−1 and 45.50 μg.mL−1, the suppression rate achieved 67.93% at 200 μg.mL−1 of nanosilver. Moreover, a remarkable additive and synergistic antimicrobial effect was verified when silver nanoparticles were conjugated with iprodione at 9:1, 8:2, 7:3, and 6:4 (v/v), and the toxicity ratio was 1.04, 1.13, 1.01, and 0.98, respectively. It is proven that biosynthesized silver nanoparticles could effectively inhibit Valsa mali, and it is possible to develop and screen silver nanoparticle-based nano pesticides to manage plant diseases synthetically.  相似文献   

4.
Green route is an economic, facile and eco-friendly method, employed for the synthesis of various types of nanoparticles, having it as a starting point biological entity, especially as a plant extract. The present study aims to obtain silver nanoparticles (AgNPs) starting from an ethanolic extract of Populi gemmae (Pg), by adjusting the reaction parameters. The morphological and structural characterization exhibited that both the reaction temperature and the concentration of metal salt, contributes to the obtaining of Pg-AgNPs with adjustable size and shape. The newly synthesized nanoparticles exhibited a good antibacterial activity on Gram-positive bacteria as well as antifungal activity. The in vitro antiproliferative activity of Pg-AgNPs was assessed on two different cancer cell lines (breast cancer cells—MCF7 and lung carcinoma epithelial cells—A549). Results have shown that the green-synthetized Pg-AgNPs_S2 (obtained at 60 °C, using AgNO3 of 5 M) induced a substantial decrease in tumor cell viability in a dose-dependent manner with an IC50 ranging from 5.03 to 5.07 µg/mL on A549 cell line and 3.24 to 4.93 µg/mL on MCF7 cell line.  相似文献   

5.
The green synthesis of silver nanoparticles (AgNPs) from biological waste, as well as their excellent antibacterial properties, is currently attracting significant research attention. This study synthesized AgNPs from different mango peel extract concentrations while investigating their characteristics and antibacterial properties. The results showed that the AgNPs were irregular with rod-like, spherical shapes and were detected in a range of 25 nm to 75 nm. The AgNPs displayed antibacterial activity against Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus), showing a more significant impact when synthesized with 0.20 g/mL of mango peel extract. Therefore, the antibacterial effect of different diluted AgNP concentrations on the growth kinetic curves of E. coli and S. aureus after synthesis with 0.20 g/mL mango peel extract was analyzed. The results indicated that the AgNP antibacterial activity was higher against S. aureus than against E. coli, while the AgNP IC50 in these two strains was approximately 1.557 mg/mL and 2.335 mg/L, respectively. This research provides new insights regarding the use of postharvest mango byproducts and the potential for developing additional AgNP composite antibacterial materials for fruit and vegetable preservation.  相似文献   

6.
Couroupita guianensis Aubl. is an important medicinal tree. This tree is rich in various phytochemicals, and is therefore used as a potent antioxidant and antibacterial agent. This plant is also used for the treatment of various diseases. Here, we have improved its medicinal usage with the biosynthesis of silver nanoparticles (AgNPs) using Couroupita guianensis Aubl. flower extract as a reducing and capping agent. The biosynthesis of the AgNPs reaction was carried out using 1 mM of silver nitrate and flower extract. The effect of the temperature on the biosynthesis of AgNPs was premeditated by room temperature (25 °C) and 60 °C. The continuous stirring of the reaction mixture at room temperature for approximately one hour resulted in the successful formation of AgNPs. A development of a yellowish brown color confirmed the formation of AgNPs. The efficacious development of AgNPs was confirmed by the characteristic peaks of UV–Vis, X-ray diffraction (XRD) and Fourier transform infrared (FT-IR) spectroscopy spectra. The biosynthesized AgNPs exhibited significant free radical scavenging activity through a DPPH antioxidant assay. These AgNPs also showed potent antibacterial activity against many pathogenic bacterial species. The results of molecular dynamics simulations also proved the average size of NPs and antibacterial potential of the flower extract. The observations clearly recommended that the green biosynthesized AgNPs can serve as effective antioxidants and antibacterial agents over the plant extract.  相似文献   

7.
The synthesis and application of nanomaterials as antioxidants and cytotoxic agents has increased in recent years. Biological methods go beyond the chemical and physical synthesis that is expensive and not friendly to the environment. Foodborne pathogens and microorganisms causing candidiasis are responsible of 5–10% hospitalized patients. The nutritional properties of the fruit called pitaya, from the Stenocereus queretaroensis species, have been little explored. Therefore, in this study the phytochemical composition of S. queretaroensis peel was evaluated and silver nanoparticles (AgNPs) were synthesized biologically in an environmentally friendly way by S. queretaroensis peel aqueous extract that contains phytochemicals capable of reducing silver nitrate. The antimicrobial activity of the AgNPs was tested by determining the minimum inhibitory concentration (MIC), minimal bactericidal concentration (MBC) and time-kill kinetics. AgNPs were characterized visually, by UV-visible spectroscopy and TEM. FTIR spectroscopy identified metabolites responsible for the AgNPs formation. AgNPs showed potent antimicrobial activity against gram-negative and gram-positive bacteria, against fungi, and a methicillin-resistant strain of S. aureus. MIC and MBC values were as low as 0.078 and 0.156 μg/mL using AgNPs biosynthesized by S. queretaroensis fruit peel and the time kill assay started a log reduction in CFU/mL at 1 × MIC and 2 × MIC. S. queretaroensis-mediated AgNPs could be the basis for the formulation of biofilms for packaging products or as disinfectants for use on different surfaces.  相似文献   

8.
Along with the progress of nanoscience and nanotechnology came the means to synthesize nanometric scale materials. While changing their physical and chemical properties, they implicitly changed their application area. The aim of this paper was the synthesis of colloidal silver nanoparticles (Ag-NPs by ultrasonic disruption), using soluble starch as a reducing agent and further as a stabilizing agent for produced Ag-NPs. In this context, an important parameter for Ag-NPs preparation is the pH, which can determine the particle size and stability. The physical-chemical behavior of the synthesized Ag-NPs (shape, size, dispersion, electric charge) is strongly influenced by the pH value (experiment being conducted for pH values in the range between 8 and 13). The presence of a peak located at 412 nm into the UV-VIS spectra demonstrates the presence of silver nano-spheres into the produced material. In UV/VIS spectra, we observed a specific peak for yellow silver nano-spheres located at 412 nm. Samples characterization was performed by scanning electron microscopy, SEM, energy-dispersive X-ray spectroscopy, EDX, Fourier-transform infrared spectroscopy, and FT-IR. For all Ag-NP samples, we determined the zeta and observed that the Ag-NP particles obtained at higher pH and have better stability. Due to the intrinsic therapeutic properties and broad antimicrobial spectrum, silver nanoparticles have opened new horizons and new approaches for the control of different types of infections and wound healing abilities. In this context, the present study also aims to confirm the antimicrobial effect of prepared Ag-NPs against several bacterial strains (indicator and clinically isolated strains). In this way, it was confirmed that the antimicrobial activity of synthesized Ag-NPs was good against Staphylococcus aureus (ATCC 25923 and S. aureus MSSA) and Escherichia coli (ATTC 25922 and clinically isolated strain). Based on this observation, we conclude that the prepared Ag-NPs can represent an alternative or auxiliary material used for controlling important nosocomial pathogens. The fungal reference strain Candida albicans was more sensitive at Ag-NPs actions (zone of inhibition = 20 mm) compared with the clinically isolated strain (zone of inhibition = 10 mm), which emphasizes the greater resistance of fungal strains at antimicrobial agent’s action.  相似文献   

9.
This study involved the preparation and characterization of structures with a honeycomb-like pattern (HCP) formed using the phase separation method using a solution mixture of chloroform and methanol together with cellulose acetate. Fluorinated ethylene propylene modified by plasma treatment was used as a suitable substrate for the formation of the HCP structures. Further, we modified the HCP structures using silver sputtering (discontinuous Ag nanoparticles) or by adding Ag nanoparticles in PEG into the cellulose acetate solution. The material morphology was then determined using atomic force microscopy (AFM) and scanning electron microscopy (SEM), while the material surface chemistry was studied using energy dispersive spectroscopy (EDS) and wettability was analyzed with goniometry. The AFM and SEM results revealed that the surface morphology of pristine HCP with hexagonal pores changed after additional sample modification with Ag, both via the addition of nanoparticles and sputtering, accompanied with an increase in the roughness of the PEG-doped samples, which was caused by the high molecular weight of PEG and its gel-like structure. The highest amount (approx. 25 at %) of fluorine was detected using the EDS method on the sample with an HCP-like structure, while the lowest amount (0.08%) was measured on the PEG + Ag sample, which revealed the covering of the substrate with biopolymer (the greater fluorine extent means more of the fluorinated substrate is exposed). As expected, the thickness of the Ag layer on the HCP surface depended on the length of sputtering (either 150 s or 500 s). The sputtering times for Ag (150 s and 500 s) corresponded to layers with heights of about 8 nm (3.9 at % of Ag) and 22 nm (10.8 at % of Ag), respectively. In addition, we evaluated the antibacterial potential of the prepared substrate using two bacterial strains, one Gram-positive of S. epidermidis and one Gram-negative of E. coli. The most effective method for the construction of antibacterial surfaces was determined to be sputtering (150 s) of a silver nanolayer onto a HCP-like cellulose structure, which proved to have excellent antibacterial properties against both G+ and G− bacterial strains.  相似文献   

10.
Present study was conducted to investigate the adsorption and ultrasound-assisted adsorption potential of silver nanoparticles (AgNPs) and silver nanoparticles loaded on chitosan (AgCS composite) as nano-adsorbents for methylene blue (MB) removal. AgNPs were synthesized using leaf extract of Ligustrum lucidum, which were incorporated on the chitosan’s surface for modification. UV–Vis Spectroscopy, FTIR, XRD, SEM, and EDX techniques were used to confirm the synthesis and characterization of nanomaterials. Batch adsorption and sono-adsorption experiments for the removal of MB were executed under optimal conditions; for fitting the experimental equilibrium data, Langmuir and Freundlich’s isotherm models were adopted. In addition, the antimicrobial potential of the AgNPs and AgCS were examined against selected bacterial and fungal strains. UV–Vis spectroscopy confirmed AgNPs synthesis from the leaf extract of L. lucidum used as a reducer, which was spherical as exposed in the SEM analysis. The FTIR spectrum illustrated phytochemicals in the leaf extract of L. lucidum functioning as stabilizing agents around AgNPs and AgCS. Whereas, corresponding crystalline peaks of nanomaterial, including a signal peak at 3 keV indicating the presence of silver, were confirmed by XRD and EDX. The Langmuir model was chosen as an efficient model for adsorption and sono-adsorption, which exposed that under optimum conditions (pH = 6, dye initial concentration = 5 mg L−1, adsorbents dosage = 0.005 g, time = 120 min, US power 80 W), MB removal efficiency of AgNPs was >70%, using ultrasound-assisted adsorption compared to the non-sonicated adsorption. Furthermore, AgNPs exhibited promising antibacterial potential against Staphylococcus aureus with the maximum zone of inhibition (14.67 ± 0.47 mm). It was concluded that the green synthesis approach for the large-scale production of metallic nanoparticles is quite effective and can be recommended for efficient and cost-effective way to eradicate dyes, particularly from textile wastewater.  相似文献   

11.
The synthesis of nanoparticles (NPs) using the green route is environmentally harmonious and cost-effective compared to conventional chemical and physical methods. In this study, the green synthesis of silver NPs was carried out using an extract of Debregeasia salicifolia. The synthesized Ag NPs were characterized by means of different techniques i.e., UV-Vis spectroscopy, FTIR spectroscopy, SEM, and XRD. The XRD pattern exhibited distinctive Bragg’s peaks at (200), (111), (311), and (220). The XRD analysis confirmed the face-centered cubic geometry of the synthesized NPs and revealed that the nature of these NPs is crystalline. The synthesized NPs were verified for their antibacterial activities against Gram-negative Escherichia coli (E. coli) and Gram-positive Staphylococcus aureus (S. aureus) bacteria. It showed that antibacterial activity of synthesized silver (NPs) was increased with increasing concentrations of both calcined and non-calcined NPs. The antioxidant activities of Ag NPs were also determined against ABTS at different concentrations for both calcined and non-calcined Ag NPs. Non-calcined Ag NPs have greater antioxidant activity than calcined Ag NPs. This report has a significant medicinal application, and it might open up new horizons in this field.  相似文献   

12.
Tanned leather can be attacked by microorganisms. To ensure resistance to bacteria on leather surfaces, protection solutions need to be developed, addressing both environmental issues and economic viability. In this work, chitosan nano/microparticles (CNP) and chitosan/silver nano/microstructures (CSNP), containing silver nanoparticles around 17 nm size, were incorporated into leather, obtained from the industrial process. Low loads of chitosan-based nano/microformulations, 0.1% mass ratio, resulted in total bacteria reduction (100%) after 2 h towards Gram-positive Staphylococcus aureus, both with CNP and CSNP coatings. Otherwise, comparable tests with the Gram-negative bacteria, Klebsiella pneumoniae, Escherichia coli, showed no significant improvement under the coating acidic conditions. The antimicrobial activity was evaluated by standard test methods: (1) inhibition halo and (2) dynamic contact conditions. The developed protection of leather either with CNP or CSNP is much higher than the one obtained with a simple chitosan solution.  相似文献   

13.
Ultra-short laser (USL)-induced surface structuring combined with nanoparticles synthesis by multiphoton photoreduction represents a novel single-step approach for commercially pure titanium (cp-Ti) surface enhancement. Such a combination leads to the formation of distinct topographical features covered by nanoparticles. The USL processing of cp-Ti in an aqueous solution of silver nitrate (AgNO3) induces the formation of micron-sized spikes surmounted by silver nanoparticles (AgNPs). The proposed approach combines the structuring and oxidation of the Ti surface and the synthesis of AgNPs in a one-step process, without the use of additional chemicals or a complex apparatus. Such a process is easy to implement, versatile and sustainable compared to alternative methodologies capable of obtaining comparable results. Antimicrobial surfaces on medical devices (e.g., surgical tools or implants), for which titanium is widely used, can be realized due to the simultaneous presence of AgNPs and micro/nano-structured surface topography. The processed surfaces were examined by means of a scanning electron microscope (SEM), energy-dispersive X-ray spectroscopy (EDX), atomic force microscopy (AFM) and Raman spectroscopy. The surface morphology and the oxidation, quality and quantity of AgNPs were analyzed in relation to process parameters (laser scanning speed and AgNO3 concentration), as well as the effect of AgNPs on the Raman signal of Titanium oxide.  相似文献   

14.
In this work, silver nanoparticles (Ag NPs) were synthesized using a chemical reduction approach and a pulsed laser fragmentation in liquid (PLFL) technique, simultaneously. A laser wavelength of 532 nm was focused on the as produced Ag NPs, suspended in an Origanum majorana extract solution, with the aim of controlling their size. The effect of liquid medium concentration and irradiation time on the properties of the fabricated NPs was studied. While the X-ray diffraction (XRD) pattern confirmed the existence of Ag NPs, the UV–Vis spectrophotometry showed a significant absorption peak at about 420 nm, which is attributed to the characteristic surface plasmon resonance (SPR) peak of the obtained Ag NPs. By increasing the irradiation time and the Origanum majora extract concentration, the SPR peak shifted toward a shorter wavelength. This shift indicates a reduction in the NPs’ size. The effect of PLFL on size reduction was clearly revealed from the transmission electron microscopy images. The PLFL technique, depending on experimental parameters, reduced the size of the obtained Ag NPs to less than 10 nm. The mean zeta potential of the fabricated Ag NPs was found to be greater than −30 mV, signifying their stability. The Ag NPs were also found to effectively inhibit bacterial activity. The PLFL technique has proved to be a powerful method for controlling the size of NPs when it is simultaneously associated with a chemical reduction process.  相似文献   

15.
This paper presents the properties of the wood-resin composites. For improving their antibacterial character, silver nanoparticles were incorporated into their structures. The properties of the obtained materials were analyzed in vitro for their anti-biofilm potency in contact with aerobic Gram-positive Staphylococcus aureus and Staphylococcus epidermidis; and aerobic Gram-negative Escherichia coli and Pseudomonas aeruginosa. These pathogens are responsible for various infections, including those associated with healthcare. The effect of silver nanoparticles incorporation on mechanical and thermomechanical properties as well as gloss were investigated for the samples of composites before and after accelerating aging tests. The results show that bacteria can colonize in various wrinkles and cracks on the composites with wood flour but also the surface of the cross-linked unsaturated polyester resin. The addition of nanosilver causes the death of bacteria. It also positively influences mechanical and thermomechanical properties as well as gloss of the resin.  相似文献   

16.
Various conventional approaches have been reported for the synthesis of nanomaterials without optimizing the role of synthesis parameters. The unoptimized studies not only raise the process cost but also complicate the physicochemical characteristics of the nanostructures. The liquid–plasma reduction with optimized synthesis parameters is an environmentally friendly and low-cost technique for the synthesis of a range of nanomaterials. This work is focused on the statistically optimized production of silver nanoparticles (AgNPs) by using a liquid–plasma reduction process sustained with an argon plasma jet. A simplex centroid design (SCD) was made in Minitab statistical package to optimize the combined effect of stabilizers on the structural growth and UV absorbance of AgNPs. Different combinations of glucose, fructose, sucrose and lactose stabilizers were tested at five different levels (−2, −1, 0, 1, 2) in SCD. The effect of individual and mixed stabilizers on AgNPs growth parameters was assumed significant when p-value in SCD is less than 0.05. A surface plasmon resonance band was fixed at 302 nm after SCD optimization of UV results. A bond stretching at 1633 cm−1 in FTIR spectra was assigned to C=O, which slightly shifts towards a larger wavelength in the presence of saccharides in the solution. The presence of FCC structured AgNPs with an average size of 15 nm was confirmed from XRD and EDX spectra under optimized conditions. The antibacterial activity of these nanoparticles was checked against Staphylococcus aureus and Escherichia coli strains by adopting the shake flask method. The antibacterial study revealed the slightly better performance of AgNPs against Staph. aureus strain than Escherichia coli.  相似文献   

17.
An environmentally friendly non-thermal DC plasma reduction route was adopted to reduce Ag+ ions at the plasma–liquid interface into silver nanoparticles (AgNPs) under statistically optimized conditions for biological and photocatalytic applications. The efficiency and reactivity of AgNPs were improved by statistically optimizing the reaction parameters with a Box–Behnken Design (BBD). The size of the AgNPs was chosen as a statistical response parameter, while the concentration of the stabilizer, the concentration of the silver salt, and the plasma reaction time were chosen as independent factors. The optimized parameters for the plasma production of AgNPs were estimated using a response surface methodology and a significant model p < 0.05. The AgNPs, prepared under optimized conditions, were characterized and then tested for their antibacterial, antioxidant, and photocatalytic potentials. The optimal conditions for these three activities were 3 mM of stabilizing agent, 5 mM of AgNO3, and 30 min of reaction time. Having particles size of 19 to 37 nm under optimized conditions, the AgNPs revealed a 82.3% degradation of methyl orange dye under UV light irradiation. The antibacterial response of the optimized AgNPs against S. aureus and E. coli strains revealed inhabitation zones of 15 mm and 12 mm, respectively, which demonstrate an antioxidant activity of 81.2%.  相似文献   

18.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号