首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
More and more electrically conducting materials are required to sustain the technological progress of civilization. Faced with the performance limits of classical materials, the R&D community has put efforts into developing nanomaterials, which can offer sufficiently high operational parameters. In this work, single-walled carbon nanotubes (SWCNTs) were doped with polyethyleneimine (PEI) to create such material. The results show that it is most fruitful to combine these components at the synthesis stage of an SWCNT network from their dispersion. In this case, the electrical conductivity of the material is boosted from 249 ± 21 S/cm to 1301 ± 56 S/cm straightforwardly and effectively.  相似文献   

2.
Polymer composites with electrically conductive inclusions are intensively developed for microwave shielding applications, where lightweight and elastic coatings are necessary. In this paper, dielectric properties of hybrid polyethylene composites containing cobalt nanoparticles and multi-wall carbon nanotubes (MWCNT) were investigated in the wide frequency range of 20–40 GHz for electromagnetic shielding applications. The percolation threshold in the hybrid system is close to 6.95 wt% MWCNT and 0.56 Co wt%. Cobalt nanoparticles (up to highest investigated concentration 4.8 wt%) had no impact on the percolation threshold, and for the fixed total concentration of fillers, the complex dielectric permittivity is higher for composites with bigger MWCNT concentrations. Moreover, the microwave complex dielectric permittivity of composites with high concentration of fillers is quite high (for composites with 13.4 wt% MWCNT and 1.1 wt% Co ε′ ≈ ε″ ≈ 20 at 30 GHz, it corresponds to microwave absorption 50% of 1 mm thickness plate); therefore, these composites are suitable for electromagnetic shielding applications.  相似文献   

3.
The influence of the grinding process on the magnetic properties of as prepared and functionalized multiwall carbon nanotubes (MWCNTs) is presented. We have observed that 3 h mechanical grinding at 400 rpm in contrast to functionalization does not remove the iron contamination from MWCNTs. However, it changes the Fe chemical states. The magnetic properties of iron nanoparticles (Fe-NPs) embedded in the carbon matrix of MWCNTs have been analyzed in detail. We have proven that single-domain non-interacting Fe(C,O)-NPs enriched in the Fe3C phase (~10 nm) enclosed inside these nanotubes are responsible for their magnetic properties. Mechanical grinding revealed a unique impact of -COOH groups (compared to -COONH4 groups) on the magnetism of functionalized MWCNTs. In MWCNT-COOH ground in a steel mill, the contribution of the Fe2O3 and α-Fe phases increased while the content of the magnetically harder Fe3C phase decreased. This resulted in a 2-fold coercivity (Hc) decrease and saturation magnetization (MS) increase. A 2-fold remanence (Mr) decrease in MWCNT-COOH ground in an agate mill is related to the modified Fe(C,O)-NP magnetization dynamics. Comparison of the magnetostatic exchange and effective anisotropy length estimated for Fe(C,O)-NPs allows concluding that the anisotropy energy barrier is higher than the magnetostatic energy barrier. The enhanced contribution of surface anisotropy to the effective anisotropy constant and the unique effect of the -COOH groups on the magnetic properties of MWCNTs are discussed. The procedure for grinding carboxylated MWCNTs with embedded iron nanoparticles using a steel mill has a potential application for producing Fe-C nanocomposites with desired magnetic properties.  相似文献   

4.
Carbon nanotubes (CNTs) coated with SiC coating was successfully prepared by pyrolysis of polycarbosilane (PCS) used as a precursor. The function of pyrolysis temperature on the oxidation resistance and the dielectric properties of CNTs/SiC were studied in X-band. The results demonstrate that the obtained dense SiC film can prevent the oxidation of CNTs when the pyrolysis temperature reaches 600 °C. Correspondingly, after heat treatment is at 400 °C for 200 h, the mass loss of P-600 is less than 1.86%, and the real and imaginary parts of the dielectric constant nearly keep constant (ε′ from 14.2 to 14, and ε″ from 5.7 to 5.5). SiC-coated CNTs have a better oxidation resistance than pristine CNTs. Therefore, this work, with a facile preparation process, enhances the oxidation resistance of CNTs at high temperature for a long time and maintains a stable dielectric property, which means CNTs/SiC composites can be good candidates for applications in the field of high-temperature absorbers.  相似文献   

5.
The polyaniline/single-walled carbon nanotubes (PANI/SWNTs) composites with a content of SWNTs varying from 8 wt% to 32 wt% were synthesized using a solid-state synthesis method. The structure and morphology of the samples were characterized by fourier transform infrared (FTIR) spectra, ultraviolet-visible (UV-vis) absorption spectra, X-ray diffraction (XRD) and transmission electron microscopy (TEM). The electrochemical performances of the composites were investigated by galvanostatic charge–discharge and cycling stability measurements. The structure and properties of PANI/SWNTs were compared with those of PANI/multi-walled carbon nanotubes (PANI/MWNTs) prepared under the same polymerization conditions. The results from FTIR and UV-vis spectra showed that the composites with SWNTs displayed a higher oxidation and doping degree than pure PANI, which is similar to that of PANI/MWNTs. The morphological studies revealed that PANI/SWNTs did not display any rod-like and granular-like features, which appeared in PANI/MWNTs. The galvanostatic charge–discharge measurements indicated that the specific capacitance of PANI/SWNTs is not higher than that of PANI/MWNTs, but the PANI/SWNTs exhibited higher cycling stability and more stable electrochemical behavior in neutral and alkaline electrolytes than PANI/MWNTs.  相似文献   

6.
In this study, behaviors of electromagnetic wave propagation in a double-walled carbon nanotube (DWCNT) are investigated theoretically. For this purpose, the effects of carbon nanotube’s inner and outer tubes’ material property parameters (μ, ε) on electromagnetic wave propagation are discussed. The effects of interaction between the carbon nanotube’s inner and outer tubes on the electromagnetic wave propagation are defined. Nonlocal effects of the DWCNT on electromagnetic wave propagation are examined. Besides, the electromagnetic wave propagation frequencies are specifically investigated, taking the DWCNT’s nonlocal effects and material property parameters (ε, µ) into account. When the wavenumber, k, is greater than 1.8 × 1010, the frequencies of the fundamental mode and the second mode converge to 3.554 × 108 Hz. Additionally, the electromagnetic wave propagation frequencies decrease with the increase of the DWCNT’s nonlocal parameter (ν) and decrease with material parameter (D).  相似文献   

7.
Carbon nanotubes (CNT) were prepared by a modified chemical vapor deposition (CVD) method. The synthesized carbon materials were treated with acidic and basic solutions in order to introduce certain surface functional groups, mainly containing oxygen (OCNT) or amine (ACNT) species. These modified CNTs (OCNT and ACNT) as well as the originally prepared CNT were reacted with a non-ionic Fe complex, Iron (II) Phthalocyanine, and three composites were obtained. The amount of metal complex introduced in each case and the interaction between the complex and the CNT materials were studied with the aid of various characterization techniques such as TGA, XRD, and XPS. The results obtained in these experiments all indicated that the interaction between the complex and the CNT was greatly affected by the functionalization of the latter.  相似文献   

8.
Carbon nanotubes were successfully functionalized for the first time in a free radical phosphonylation reaction. Three synthetic protocols were proposed. Carbon nanotubes and diethylphosphite reacted in the presence of known radical initiator, such as azobisisobutyronitrile, single electron oxidant—Mn(OAc)3, or under UV radiation. The functionalized material was fully characterized by means of spectroscopic methods, together with microscopic, surface area and thermogravimetric analyses. UV-illumination was found to be the most effective approach for introducing phosphonates onto carbon nanotubes. X-ray photoelectron spectroscopy analysis showed 6% phosphorus in this sample. Moreover, the method was performed at room temperature for only one hour, using diethylphosphite as a reactant and as a solvent. The functionalized carbon nanotubes showed an improved thermal stability, with a decomposition onset temperature increase of more than 130 °C. This makes it very promising material for flame retarding applications.  相似文献   

9.
Over the last few years, the addition of small amounts of carbon nanotubes (CNTs) to construction materials has become of great interest, since it enhances some of the mechanical, electrical and thermal properties of the cement. In this sense, single-walled and multi-walled carbon nanotubes (SWCNTs and MWCNTs, respectively) can be incorporated into cement to achieve the above-mentioned improved features. Thus, the current study presents the results of the addition of SWCNTs and MWCNTs on the microstructure and the physical properties of the cement paste. Density was measured through He pycnometry and the mass change was studied by thermogravimetric analysis (TGA). The microstructure and the phases were analyzed using scanning electron microscopy (SEM) and X-ray diffraction (XRD). Finally, the electrical conductivity for different CNT concentrations was measured, and an exponential increase of the conductivity with concentration was observed. This last result opens the possibility for these materials to be used in a high variety of fields, such as space intelligent systems with novel electrical and electronic applications.  相似文献   

10.
In this work, the possibility of using carbon nanotubes for the treatment of olive vegetation waters (OVWs) was investigated. In general, the disposal of OVWs represents an important environmental problem. The possibility of considering these waters no longer just as a problem but as a source of noble substances, thanks to the recovery of biophenols from them, was tested. In particular, predetermined quantities of olive vegetation waters were treated with carbon nanotubes. The quantities of adsorbed biophenols were studied as a function of the quantities of carbon nanotubes used and the contact time. The experimental conditions for obtaining both the highest possible quantities of biophenol and a purer adsorbate with the highest percentage of biophenols were studied. After the adsorption tests, the vegetation waters were analyzed by UV spectrophotometry to determine, in particular, the variation in the concentration of biophenols. The carbon nanotubes were weighed before and after each adsorption test. In addition, kinetic studies of the adsorption processes were considered. Carbon nanotubes proved their effectiveness in recovering biophenols.  相似文献   

11.
Polymer composites containing carbon nanofillers are extensively developed for electromagnetic shielding applications, where lightweight and flexible materials are required. One example of the microwave absorbers can be thermoplastic fibers fabricated from copolyamide hot melt adhesives and 7 wt% of multi-walled carbon nanotubes, as presented in this paper. A broadband dielectric spectroscopy confirmed that the addition of carbon nanotubes significantly increased microwave electrical properties of the thin (diameter about 100 μm) thermoplastic fibers. Moreover, the dielectric properties are improved for the thicker fibers, and they are almost stable at the frequency range 26–40 GHz and not dependent on the temperature. The variances in the dielectric properties of the fibers are associated with the degree of orientation of carbon nanotubes and the presence of bundles, which were examined using a high-resolution scanning microscope. Analyzing the mechanical properties of the nanocomposite fibers, as an effect of the carbon nanotubes addition, an improvement in the stiffness of the fibers was observed, together with a decrease in the fibers’ elongation and tensile strength.  相似文献   

12.
Most of the dyes used today by the textile industry are of synthetic origin. These substances, many of which are highly toxic, are in many cases not adequately filtered during the processing stages, ending up in groundwater and water courses. The aim of this work was to optimize the adsorption process of carbon nanotubes to remove an azo-dye, called Reactive Black-5, from aqueous systems. Particular systems containing carbon nanotubes and dye solutions were analyzed. Furthermore, the reversibility of the process and the presence of possible degradation phenomena by the dye molecules were investigated. For this purpose, the influence of different parameters on the adsorption process, such as the nature of the carbon nanotubes (purified and nonpurified), initial concentration of the dye, stirring speed, and contact times, were studied. The solid and liquid phases after the tests were characterized by chemical-physical techniques such as thermogravimetric analysis (TG, DTA), UV spectrophotometry, BET (Brunauer, Emmett, Teller), and TOC (total organic carbon) analysis. The data obtained showed a high adsorbing capacity of carbon nanotubes in the removal of the Reactive Black-5 dye from aqueous systems. Furthermore, the efficiency of the adsorption process was observed to be influenced by the stirring speed of the samples and the contact time, while purified and nonpurified nanotubes provided substantially the same results.  相似文献   

13.
Carbon nanotubes (CNTs) have displayed great potential as anode materials for lithium ion batteries (LIBs) due to their unique structural, mechanical, and electrical properties. The measured reversible lithium ion capacities of CNT-based anodes are considerably improved compared to the conventional graphite-based anodes. Additionally, the opened structure and enriched chirality of CNTs can help to improve the capacity and electrical transport in CNT-based LIBs. Therefore, the modification of CNTs and design of CNT structure provide strategies for improving the performance of CNT-based anodes. CNTs could also be assembled into free-standing electrodes without any binder or current collector, which will lead to increased specific energy density for the overall battery design. In this review, we discuss the mechanism of lithium ion intercalation and diffusion in CNTs, and the influence of different structures and morphologies on their performance as anode materials for LIBs.  相似文献   

14.
In this work, a personal thermal management (PTM) device based on single walled carbon nanotubes (SWCNTs) functionalized polyester fabrics had been studied. Polyester fabrics were functionalized with SWCNTs through coating method with poly (butyl acrylate) emulsion as the adhesive. The SEM images exhibited that SWCNTs formed high-efficiently conductive networks due to the large aspect ratio and uniform dispersion. A steady-state temperature of 40 °C was achieved at the input voltage of 2.5 V within 7 s, which exhibited excellent electro-thermal performance. Even under periodic heating-cooling conditions, heating system still displayed relatively stable temperature and relative resistance, which could have potential application for wearable clothes.  相似文献   

15.
Carbon nanotubes with single and few walls are highly appreciated for their technological applications, regardless of the limited availability due to their high production cost. In this paper we present an alternative process that can lead to lowering the manufacturing cost of CNTs of only few walls by means of the use of the spray pyrolysis technique. For this purpose, ferrocene is utilized as a catalyst and aliphatic alcohols (methanol, ethanol, propanol or butanol) as the carbon source. The characterization of CNTs was performed by scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The study of the synthesized carbon nanotubes (CNTs) show important differences in the number of layers that constitute the nanotubes, the diameter length, the quantity and the quality as a function of the number of carbons employed in the alcohol. The main interest of this study is to give the basis of an efficient synthesis process to produce CNTs of few walls for applications where small diameter is required.  相似文献   

16.
A thermoplastic intumescent coating system (IC) based on poly(vinyl acetate) was modified by two forms of multiwalled carbon nanotubes (CNTs), i.e., by a nanofiller powder and its solid dispersions in pentaerythritol (PER-CNTs). It was revealed that only the PER-CNTs modifier allows us to obtain solvent-borne ICs with a relatively high CNTs concentration (1–3 wt. parts of CNTs/100 wt. parts of paint solids) and acceptable application viscosity. Thermal insulation time (TIT) and intumescent factor (IF) of the ICs on a steel substrate (a fire test according to a cellulosic fire curve), as well as morphology, chemical structure (by the FT-IR technique) and mechanical strength of the charred systems, were investigated. It was found that the CNTs powder decreases TIT and IF values while PER-occluded CNTs improve these parameters (e.g., +4.6 min and +102% vs. an unmodified sample, respectively). Compressive strength of the charred ICs was improved by the PER-CNTs modifier as well.  相似文献   

17.
We have fabricated nanocarbon-based palm-sized cubic paper balloons that can be levitated by light irradiation. These paper balloons are composed of carbon nanotube (CNT) freestanding films and cellulose nanofiber (CNF) freestanding films. The number of CNT freestanding films (NCNT) and the number of CNF freestanding films (6-NCNT) among the six walls of the cube were varied. We investigated the effect of NCNT on the levitation behaviors under light irradiation. We found that the balloons were levitated when NCNT was greater than or equal to two. The levitation height was found to be increased by increasing NCNT.  相似文献   

18.
We report here a detailed experimental investigation on noncovalent functionalization of single-walled carbon nanotubes (SWNTs) with four different metallo-octaethylporphyrins (MOEPs). It has been found that the identity of the center metal of MOEP strongly influences the solubilization of SWNTs. MnOEPs and ZnOEPs successfully extracted SWNTs in methanol, as confirmed by absorption spectroscopy, while CoOEPs and CuOEPs were not able to extract SWNTs at all. Atomic force microscopy (AFM) studies revealed that large SWNTs bundles could be exfoliated into either individual SWNTs or very small bundles by complexation with ZnOEP molecules. As for enrichment of SWNTs, ZnOEPs and MnOEPs show similar diameter discrimination ability toward 76-CoMoCAT, providing the extracted SWNTs with relatively large diameters.  相似文献   

19.
The CVD route for carbon nanotube production has become a popular method to make large amounts of multiwall carbon nanotubes. The structure, morphology and size of carbon materials depend critically on the catalyst preparation and deposition conditions. According to current knowledge, CVD method is the only process which can produce carbon nanocoils. These nanocoils are perfect candidates for nanotechnology applications. One might indeed hope that these coils would have the extraordinary stiffness displayed by straight nanotubes. Based on theoretical studies, regular coiled nanotubes exhibit exceptional mechanical, electrical, and magnetic properties due to the combination of their peculiar helical morphology and the fascinating properties of nanotubes. In spite of its technological interest, relatively low attention has been paid to this special field. In this paper we attempt to summarize results obtained until now.  相似文献   

20.
This paper focuses on the fabrication of defective-induced nanotubes via the catalytic chemical vapor deposition method and the investigation of their properties toward gas sensing. We have developed defective multi-walled carbon nanotubes with porous and crystalline structures. The catalyst layer used in CNTs’ growth here was based on 18 and 24 nm of Ni, and 5 nm of Cr deposited by the dc-sputtering technique. The CNTs’ defects were characterized by observing the low graphite peak (G-band) and higher defect peaks (D-band) in the Raman spectrum. The defectives sites are the main source of the sensitivity of materials toward different gases. Thus, the current product was used for sensing devices. The device was subjected to various gases such as NO, NO2, CO, acetone, and ethanol at a low operating temperature of 30 °C and a concentration of 50 ppm. The sensor was observed to be less sensitive to most gas while showing the highest response towards ethanol gas. The sensor showed the highest response of 8.8% toward ethanol at 30 °C of 50 ppm, and a low response of 2.8% at 5 ppm, which was investigated here. The signal repeatability of the present sensor showed its capability to detect ethanol at much lower concentrations and at very low operating temperatures, resulting in reliability and saving power consumption. The gas sensing mechanism of direct interaction between the gas molecules and nanotube surface was considered the main. We have also proposed a sensing mechanism based on Coulomb dipole interaction for the physical adsorption of gas molecules on the surface.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号