首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
RPS19 has been identified as the first gene associated with Diamond-Blackfan anemia (DBA), a rare congenital hypoplastic anemia that includes variable physical malformations. It is mutated in approximately 25% of the patients although doubts remain as to whether DBA clinical phenotype depends on the ribosomal function of RPS19 or on an extra-ribosomal role or on both. RPS19 mRNAs with mutations that introduce premature stop codons or eliminate it are rapidly turned over by the surveillance mechanisms possibly causing a decrease in the RPS19 protein level. A decrease in RPS19 level has been shown to cause a defect in the maturation of 18S ribosomal RNA. Less clear is the effect of missense mutations in RPS19. With the aim of analyzing the functional features of mutated RPS19, we prepared cDNA constructs expressing RPS19 containing 11 missense mutations and a trinucleotide insertion found in DBA patients. After transfection, we analyzed the following properties of the mutated proteins: (i) protein stability, (ii) subcellular localization and (iii) assembly into ribosomes. Our results indicate that some RPS19 mutations alter the capacity of the protein to localize in nucleolar structure and these mutated RPS19 are very unstable. Moreover, none of the mutated RPS19 analyzed in this study, including those proteins that appear localized into the nucleolus, is able to be assembled into mature ribosome.  相似文献   

2.
Nonsense mutations account for approximately 11% of all described gene lesions causing human inherited disease and approximately 20% of disease-associated single-basepair substitutions affecting gene coding regions. Pathological nonsense mutations resulting in TGA (38.5%), TAG (40.4%), and TAA (21.1%) occur in different proportions to naturally occurring stop codons. Of the 23 different nucleotide substitutions giving rise to nonsense mutations, the most frequent are CGA --> TGA (21%; resulting from methylation-mediated deamination) and CAG --> TAG (19%). The differing nonsense mutation frequencies are largely explicable in terms of variable nucleotide substitution rates such that it is unnecessary to invoke differential translational termination efficiency or differential codon usage. Some genes are characterized by numerous nonsense mutations but relatively few if any missense mutations (e.g., CHM) whereas other genes exhibit many missense mutations but few if any nonsense mutations (e.g., PSEN1). Genes in the latter category have a tendency to encode proteins characterized by multimer formation. Consistent with the operation of a clinical selection bias, genes exhibiting an excess of nonsense mutations are also likely to display an excess of frameshift mutations. Tumor suppressor (TS) genes exhibit a disproportionate number of nonsense mutations while most mutations in oncogenes are missense. A total of 12% of somatic nonsense mutations in TS genes were found to occur recurrently in the hypermutable CpG dinucleotide. In a comparison of somatic and germline mutational spectra for 17 TS genes, approximately 43% of somatic nonsense mutations had counterparts in the germline (rising to 98% for CpG mutations). Finally, the proportion of disease-causing nonsense mutations predicted to elicit nonsense-mediated mRNA decay (NMD) is significantly higher (P=1.56 x 10(-9)) than among nonobserved (potential) nonsense mutations, implying that nonsense mutations that elicit NMD are more likely to come to clinical attention.  相似文献   

3.
4.
5.
Diamond–Blackfan anemia (DBA) is a rare genetic hypoplasia of erythroid progenitors characterized by mild to severe anemia and associated with congenital malformations. Clinical manifestations in DBA patients are quite variable and genetic testing has become a critical factor in establishing a diagnosis of DBA. The majority of DBA cases are due to heterozygous loss‐of‐function mutations in ribosomal protein (RP) genes. Causative mutations are fairly straightforward to identify in the case of large deletions and frameshift and nonsense mutations found early in a protein coding sequence, but diagnosis becomes more challenging in the case of missense mutations and small in‐frame indels. Our group recently characterized the phenotype of lymphoblastoid cell lines established from DBA patients with pathogenic lesions in RPS19 and observed that defective pre‐rRNA processing, a hallmark of the disease, was rescued by lentiviral vectors expressing wild‐type RPS19. Here, we use this complementation assay to determine whether RPS19 variants of unknown significance are capable of rescuing pre‐rRNA processing defects in these lymphoblastoid cells as a means of assessing the effects of these sequence changes on the function of the RPS19 protein. This approach will be useful in differentiating pathogenic mutations from benign polymorphisms in identifying causative genes in DBA patients.  相似文献   

6.
7.
8.
Diamond-Blackfan anemia (DBA) is a congenital erythroid aplasia characterized as a normochromic macrocytic anemia with a selective deficiency in red blood cell precursors in otherwise normocellular bone marrow. In 40% of DBA patients, various physical anomalies are also present. Currently two genes are associated with the DBA phenotype--the ribosomal protein (RP) S19 mutated in 25% of DBA patients and RPS24 mutated in approximately 1.4% of DBA patients. Here we report the identification of a mutation in yet another ribosomal protein, RPS17. The mutation affects the translation initiation start codon, changing T to G (c.2T>G), thus eliminating the natural start of RPS17 protein biosynthesis. RNA analysis revealed that the mutated allele was expressed, and the next downstream start codon located at position +158 should give rise to a short peptide of only four amino acids (Met-Ser-Arg-Ile). The mutation arose de novo, since all healthy family members carry the wild-type alleles. The identification of a mutation in the third RP of the small ribosomal subunit in DBA patients further supports the theory that impaired translation may be the main cause of DBA pathogenesis.  相似文献   

9.
10.
11.
12.
The cellular quality control systems enable surveillance and selective degradation of nonsense, nonstop, and no-go mRNAs. In the case of nonstop mRNA, different mechanisms of nonstop-mediated decay (NSD) have been described for bacteria, yeast and mammals, but the molecular consequences of nonstop mutations have been examined in only few cases of human disease. We describe a novel homozygous nonstop mRNA mutation (c.1416delC) in the TYMP gene encoding thymidine phosphorylase, in a patient with mitochondrial neurogastrointestinal encephalomyopathy (MNGIE). In contrast to previous reports showing selective decay of pathogenic nonstop mRNAs, quantitative real-time PCR and 3'-RACE-RFLP analysis revealed unreduced nonstop mRNA levels in our patient and 2 heterozygous carriers of the mutation. The absence of thymidine phosphorylase protein in the homozygous patient, together with the partial decrease in levels of this protein in 2 carriers suggest that the main control system in this case resides at the translational or post-translational levels rather than through NSD. This is the first report showing an absence of NSD in a human disease, revealing that this surveillance mechanism has exceptions in vivo.  相似文献   

13.
Diamond-Blackfan anemia (DBA) is an inherited disease characterized by pure erythroid aplasia. Thirty percent (30%) of patients display malformations, especially of the hands, face, heart, and urogenital tract. DBA has an autosomal dominant pattern of inheritance. De novo mutations are common and familial cases display wide clinical heterogeneity. Twenty-five percent (25%) of patients carry a mutation in the ribosomal protein (RP) S19 gene, whereas mutations in RPS24, RPS17, RPL35A, RPL11, and RPL5 are rare. These genes encode for structural proteins of the ribosome. A link between ribosomal functions and erythroid aplasia is apparent in DBA, but its etiology is not clear. Most authors agree that a defect in protein synthesis in a rapidly proliferating tissue, such as the erythroid bone marrow, may explain the defective erythropoiesis. A total of 77 RPS19 mutations have been described. Most are whole gene deletions, translocations, or truncating mutations (nonsense or frameshift), suggesting that haploinsufficiency is the basis of DBA pathology. A total of 22 missense mutations have also been described and several works have provided in vitro functional data for the mutant proteins. This review looks at the data on all these mutations, proposes a functional classification, and describes six new mutations. It is shown that patients with RPS19 mutations display a poorer response to steroids and a worse long-term prognosis compared to other DBA patients.  相似文献   

14.
We report on maternal first cousins with bilateral microtia, micrognathia, cleft palate and hematologic findings of Diamond-Blackfan anemia (DBA). The similarity of findings shared between our cases and a female reported by Hasan and Inoue [1993] suggests that this is a distinctive syndrome, rather than a chance association. DBA is a heterogeneous disorder, caused in about 25% of cases by heterozygous mutations in the RPS19 gene (DBA1). Mutation analysis in our cases did not show an RPS19 mutation, and 2 alleles were present in each. Segregation analysis for DBA1 on chromosome 19 and DBA2 on 8p23 was not consistent with linkage. We conclude that this syndrome of microtia, cleft palate and DBA is not allelic to known DBA loci.  相似文献   

15.
16.
17.
We report on maternal first cousins with bilateral microtia, micrognathia, cleft palate and hematologic findings of Diamond‐Blackfan anemia (DBA). The similarity of findings shared between our cases and a female reported by Hasan and Inoue [ 1993 ] suggests that this is a distinctive syndrome, rather than a chance association. DBA is a heterogeneous disorder, caused in about 25% of cases by heterozygous mutations in the RPS19 gene (DBA1). Mutation analysis in our cases did not show an RPS19 mutation, and 2 alleles were present in each. Segregation analysis for DBA1 on chromosome 19 and DBA2 on 8p23 was not consistent with linkage. We conclude that this syndrome of microtia, cleft palate and DBA is not allelic to known DBA loci. © 2001 Wiley‐Liss, Inc.  相似文献   

18.
BACKGROUND: Spontaneous read-through of a premature termination codon (PTC) has so far not been observed in patients carrying nonsense mutations. This report describes a patient with junctional epidermolysis bullosa who was expected to die because of compound heterozygous nonsense mutations in the gene LAMA3 (R943X/R1159X), but was rescued by spontaneous read-through of the R943X allele. RESULTS AND CONCLUSION: FACS analysis of cells carrying various PTCs surrounded by their natural neighbouring codons revealed significant reporter gene expression despite the PTC only for this patient's genetic context. Gene expression could be abolished by replacing the first or third nucleotide before, or one of the two nucleotides following the PTC. Site-directed mutagenesis was used to identify genotypes allowing PTC read-through. The genetic context of the LAMA3 mutation R943X is close to a hypothetical consensus sequence for maximum PTC read-through. Bioinformatic analysis showed that this consensus sequence is present in four sequences from the NCBI reference database, each of which contains another in-frame termination codon three or four codons apart. This indicates strong selective pressure against leaky termination codons in the human genome. This patient's mutated full length mRNA escaped nonsense-mediated decay, leading to LAMA3 mRNA levels similar to those of a healthy control, and full length laminin α3 could be detected in culture supernatant of the patient's keratinocytes. Immunofluorescence analyses of skin biopsies and continuous clinical improvement of the patient's condition suggested accumulation of intact laminin-332 in the epidermal basement membrane. These findings provide important clues for the prediction of PTC read-through in human genetic disease.  相似文献   

19.
无义介导的mRNA降解(nonsense-mediated mRNA decay,NMD)能够选择性降解含有翻译提前终止密码子(premature translation termination condon, PTC)的mRNA,从而防止对机体有害的截短蛋白(truncated proteins)的产生,它是真核生物中广泛存在的一种高度保守的有效的监督机制。 NMD与肿瘤发生发展过程中的基因突变有密切关系。  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号