首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
Kim CS  Kim JI  Kim J  Choi SH  Chai JK  Kim CK  Cho KS 《Biomaterials》2005,26(15):2501-2507
The ectopic bone formation of recombinant human bone morphogenetic protein-2(rhBMP-2) was evaluated using absorbable collagen sponges (ACS) and beta tricalcium phosphate (beta-TCP) as carriers in a rat subcutaneous assay model. Subcutaneous pockets were created on the back of rats. The pockets were implanted with rhBMP-2/ACS, rhBMP-2/beta-TCP, ACS alone, and beta-TCP alone. The rats were sacrificed at 2 or 8 weeks for histological and immunohistochemical evaluation. At 2 weeks, bone formation was evident in both the rhBMP-2/ACS and rhBMP-2/beta-TCP sites. At 8 weeks, the quantity of the new bone with a more advanced stage of remodeling had increased further in the rhBMP-2/beta-TCP sites. However, the newly formed bone observed at 2 weeks was not found in the rhBMP-2/ACS sites. On immunohistochemical observation, osteopontin staining was observed on both the rhBMP-2/ACS (2 weeks) and rhBMP-2/beta-TCP (2 and 8 weeks) sites. Osteocalcin was not detected in any of the samples. The lack of space-providing capacity of ACS may be one of the major factors responsible for its failure to maintain the newly induced bone. Therefore, a carrier for BMPs should provide space for bone formation and maturation during the more advanced healing stages.  相似文献   

2.
An ideal substitute for bone graft is autobone tissue, of which there is an ample supply of the required form and with vascularity. Our strategy is to generate intramuscular autogenous bone by administering recombinant human bone morphogenetic protein 2 (rhBMP-2) with beta-tricalcium phosphate (beta-TCP) as a carrier, and to transplant this bone as a muscle-pedicled autograft. However, in a previous study (Jingushi et al., J. Orthop. Sci. 7, 490, 2002), bone resorption occurred early after bone induction. This study was conducted to determine whether rhBMP-2-induced bone tissue could be maintained by simultaneous administration of bisphosphonate, and to investigate whether the induced bone could be used for bone grafting. In this study, we first applied rhBMP-2 alone to a beta-TCP disk and inoculated it into rat quadriceps muscle. Bone area and the number of tartrate-resistant acid phosphatase (TRAP)-positive cells in the induced bone disk peaked at 2 weeks, and induced bone resorption occurred later. Bisphosphonate and rhBMP-2 were then simultaneously applied to a beta-TCP disk and inoculated as in the first experiment. The addition of bisphosphonate decreased the number of TRAP-positive cells and increased the bone area and compression strength at 4 weeks. In the last experiment, a rhBMP-2 applied beta-TCP disk treated with or without bisphosphonate was free-grafted to parietal bone 4 weeks after inoculation. Both bone disks united similarly. We concluded that the concurrent use of bisphosphonate prevented bone absorption attributed to osteoclast activity after bone induction by rhBMP-2. The bisphosphonate application did not disturb the union of induced bone to host bone.  相似文献   

3.
Long intercalated defects in canine ribs can be repaired successfully using porous beta-tricalcium phosphate (beta-TCP) cylinders, infused with a biodegradable polymer (poly D,L-lactic acid-polyethylene block copolymer) containing recombinant human bone morphogenetic protein-2 (rhBMP-2). We previously reported the successful regeneration of bony rib and periosteum defects using beta-TCP cylinders containing 400 microg of rhBMP-2. To reduce the amount of rhBMP-2 and decrease the time required for defect repair, we utilized a biodegradable polymer carrier, in combination with rhBMP-2 and the porous beta-TCP cylinders. An 8 cm long section of rib bone was removed and replaced with an implant comprised of the porous beta-TCP cylinders and the polymer containing 80 microg of rhBMP-2. Six weeks after surgical placement of the beta-TCP cylinder/polymer/BMP-2 implants, new rib bone with an anatomical configuration and mechanical strength similar to the original bone was regenerated at the defect site. The stiffness of the regenerated ribs at 3, 6, and 12 weeks after implantation of the composite implant was significantly higher than that of ribs regenerated by implantation of rhBMP-2/beta-TCP implants. Thus, addition of the synthetic polymer to the drug delivery system for BMP potentiated the bone-regenerating ability of the implant and enabled the formation of mechanically competent rib bone. This new method appears to be applicable to the repair of intercalated long bone defects often encountered in clinical practice.  相似文献   

4.
Recombinant human bone morphogenetic protein (rhBMP)-2 in a block copolymer composed of poly-D,L-lactic acid with randomly inserted p-dioxanone and polyethylene glycol (PLA-DX-PEG) as a carrier and porous beta-tricalcium phosphate (beta-TCP) blocks were used to generate a new fully absorbable osteogenic biomaterial. The bone regenerability of the rhBMP-2/PLA-DX-PEG/beta-TCP composite was studied in a critical-sized rabbit bone defect model. In an initial study, a composite of PLA-DX-PEG (250 mg) and beta-TCP (300 mg) loaded with or without rhBMP2 (50 microg) was implanted into a 1.5 cm intercalated bone defect created in a rabbit femur. Defects were assessed by biweekly radiography until 8 weeks postoperatively. The bony union of the defect was recognized only in the BMP-loaded group. To obtain further data on biomechanical and remodeling properties, another BMP-loaded composites group was made and observed up to 24 weeks. All defects were completely repaired without residual traces of implants. Anatomical and mechanical properties of the repaired bone examined by histology, 3-dimensional CT (3D-CT) and mechanical testing were essentially equivalent to the nonoperated-on femur at 24 weeks. These experimental results indicate that fully absorbable rhBMP-2/PLA-DX-PEG/beta-TCP is a promising composite having osteogenicity efficient enough for repairing large bone defects.  相似文献   

5.
Hoshino M  Egi T  Terai H  Namikawa T  Takaoka K 《Biomaterials》2006,27(28):4934-4940
A new method to repair rib defects with biomaterials containing recombinant human bone morphogenetic protein-2 (rhBMP-2) is presented in this report. We had reported previously the successful regeneration of bony rib defects by placing a short chain of small beta-tricalcium phosphate (beta-TCP) cylinders on the intact periosteum. The multi-cylinder implants were ineffective in promoting rib repair when the periosteum was absent. By adding rhBMP-2 to the beta-TCP cylinders, we were able to promote rib bone regeneration in the presence or absence of the periosteum. The osteogenic capacity of the rhBMP-2/beta-TCP composite implant and the time required to complete regeneration were evaluated in a canine model. An 8cm long section of rib bone, including the periosteum, was removed and replaced with a chain of the rhBMP-2/beta-TCP cylinders. At 6 weeks after implantation, the ribs were restored to their original configuration and mechanical strength. The multi-cylinder beta-TCP implants were degraded and replaced by new bone in 12 weeks. This new degradable bone-inducing implant material has significant clinical potential for rib repair.  相似文献   

6.
A new putty-like material with bone-inducing capacity was made by combining a block copolymer of poly d,l-lactic acid with randomly inserted p-dioxanone and polyethylene glycol (PLA-DX-PEG) and beta-tricalcium phosphate (beta-TCP) powder with added recombinant human bone morphogenetic protein-2 (rhBMP-2). To optimize the material's efficacy for bone formation, we formulated the optimal composition ratio of the respective constituent that gives the greatest osteoinductive efficacy in a mouse model of ectopic bone formation. In this series of studies, we investigated the size of ectopic bone mass induced 3 and 6 weeks after implantation of the materials composed of 30 mg of PLA-DX-PEG with 2 microg of rhBMP-2 and 0, 15, 30, or 60 mg of beta-TCP powder. An additional experiment was designed to investigate how content ratios of beta-TCP powder in 30 mg-putty implants (0%, 16.7%, 33.3%, 50%, 66.7%, 83.3%, or 100%) for a fixed dose (5 microg) of the rhBMP-2 altered the size of the induced ossicle. The results from the first experiment indicated that the bone yields were linearly dependent on the amount of additional beta-TCP powder. In the second experiment, the largest ossicles induced by 5 microg of rhBMP-2 were obtained when the polymer/beta-TCP ratio was 1/2 in mice. The data provide important insights into the fabrication of implants that provide efficacious delivery of rhBMP-2. The new putty-like material may be valuable for repairing or regenerating bone in a clinical setting.  相似文献   

7.
Ceramic materials are osteoconductive matrices extensively used in bone tissue engineering approaches. The performance of these types of biomaterials can be greatly enhanced by the incorporation of bioactive agents and materials. It is previously reported that chitosan is a biocompatible, biodegradable material that enhances bone formation. In the other hand, bone morphogenetic protein-2 (BMP-2) is a well-known osteoinductive factor. In this work we coated porous beta-tricalcium phosphate (beta-TCP) scaffolds with recombinant human BMP-2 (rhBMP-2) carrier chitosan films and studied how they could modify the ceramic physicochemical properties, cellular response, and in vivo bone generation. Initial beta-TCP disks with an average diameter of 5.78 mm, 2.9 mm thickness, and 53% porosity were coated with a chitosan film. These coating properties were studied by X-ray diffraction, Fourier transform-infrared analysis, transmission electron microscopy, scanning electron microscopy, and energy dispersive X-ray analysis (EDX). Treatment modified the scaffold porous distribution and increased the average hardness. The biocompatibility did not seem to be altered. In addition, adhered C2C12 cells expressed alkaline phosphatase activity, related to cell differentiation toward osteogenic lineage, due to the incorporation of rhBMP-2. On the other hand, in vivo observations showed new bone formation 3 weeks after surgery, a much shorter time than control beta-TCP ceramics. These results suggest that developed coating improved porous beta-TCP scaffold for bone tissue applications and added osteoinductive properties.  相似文献   

8.
Abstract

This study evaluated the effect of the combined treatment of intravenous zoledronic acid (ZA, 0.08?mg/kg) and rhBMP-2 (5?µg) on osteogenesis in a calvarial defect model of ovariectomized SD rats. New bone formation was evaluated 4 or 8 weeks after calvarial defect implantation using micro-CT and histology. Micro-CT results revealed that the rhBMP-2 group showed significantly higher calvarial defect coverage ratio compared with the ZA?+?rhBMP-2 group at 4 weeks. In addition, bone formation indices were significantly lower in ZA?+?rhBMP-2 group when compared with the rhBMP-2 group after 4 weeks, which indicates a negative effect of ZA on the initial bone formation and the bone quality. At 8 weeks, the negative effect induced by ZA treatment was alleviated as time passed. Histological examination showed similar results to the micro-CT measurements. In conclusion, although ZA treatment lowered the new bone formation induced by rhBMP-2 initially, as time passed, the negative effect was decreased.  相似文献   

9.
A beta-tricalcium phosphate-monocalcium phosphate monohydrate (beta-TCP-MCPM) cement was evaluated as an effective carrier of recombinant human bone morphogenetic protein-2 (rhBMP-2) in rat femoral critical-size defects. Hard cement cylinders (4 x 5 mm) impregnated with two different doses of rhBMP-2 (1.26 or 6.28 microg) were implanted into each defect, and the results were compared with those in rats that had implantations of cylinders only. Implantation of the 6.28 microg dose of rhBMP-2 caused a large bone shell to form around the defect, resulting in osseous union in all cases within 3 weeks. Except for beta-TCP granules, the cement was resorbed and replaced by bone tissue at 6 weeks. A torsion test at 9 weeks showed that the failure torque and bone stiffness had recovered 99% and 141%, respectively, compared with the intact contralateral femur. The defects that received 1.26 microg of rhBMP-2 resulted in 40% union and 41% of the failure torque at 9 weeks. However, no instances of union were observed in the defects implanted with cylinders only. In conclusion, the beta-TCP-MCPM cement was shown to be effective as a rhBMP-2 carrier. Combined with rhBMP-2, this cement was rapidly resorbed and completely healed the defects.  相似文献   

10.
The effects of recombinant human bone morphogenetic protein (rhBMP)-2 and a novel carrier, PLGA-coated gelatin sponge (PGS), on bone defect repair was examined. A 1.5 cm unilateral segmental bone defect was created in the ulnar diaphysis of a Japanese white rabbit. In an initial study, defects were either treated with PGS impregnated with various concentrations of rhBMP-2 (0, 0.1, 0.4 and 1 mg/cm(3)) or left untreated. Defect healing was assessed by radiographic union rate, and biomechanical properties of regenerated bones were determined at 16 weeks postoperatively. In a second study, defects were implanted with PGS with or without rhBMP-2, and histologically observed at postoperative weeks 8 and 16. Radiographic union rate increased the dose-dependently at an early time point. All defects treated with rhBMP-2 (0.4 and 1 mg/cm(3)) were radiographically repaired. Mechanical properties of regenerated bones were restored in a dose-dependent manner. Neither ulnae left untreated nor implanted PGS alone showed radiographic union. Longitudinal alignment of lamellar structure was observed histologically at 16 weeks, indicating that remodeling of regenerated bone was complete. Implanted PGS was almost completely resorbed by 8 weeks, and no abnormalities were observed in the surrounding soft tissue. These results suggest that PGS is a promising carrier for rhBMP-2.  相似文献   

11.
Liang G  Yang Y  Oh S  Ong JL  Zheng C  Ran J  Yin G  Zhou D 《Biomaterials》2005,26(20):4265-4271
The present study investigated the ectopic osteoinduction and early degradation of recombinant human bone morphogenetic protein-2 (rhBMP-2)-loaded porous beta-tricalcium phosphate (beta-TCP) in mice. The porous beta-TCP with 50 microg of rhBMP-2 (n = 25) and porous beta-TCP (control group, n = 25) were implanted into muscle pouches in the right and left thigh of 28-day-old mice (n = 25), respectively. At every time point (3, 7, 14, 21 and 28 days after implantation), five mice were euthanized and the histological examinations of implantation sites were performed. In addition, the alkaline phosphatase (ALP) activity was also quantitatively analyzed. For the rhBMP-2-loaded group, blood vessel formation and immature cartilage was observed within the porous beta-TCP 3 days after implantation. Mature cartilage was observed 7 days after implantation of rhBMP-2-loaded porous beta-TCP. Newly formed woven bone, lamellar bone as well as marrow were observed 14 and 21 days after implantation of the rhBMP-2-loaded porous beta-TCP. Lamellar bone and marrow were observed 28 days after implantation of the rhBMP-2-loaded porous beta-TCP. For the control group, no bone or cartilage was observed at all time points. However, multinucleated giant cells and fibrous tissues were observed in the control group at 7 and 28 days after implantation, respectively. At 21 and 28 days after implantation, porous beta-TCP was observed to fragment indicating early degradation of the porous beta-TCP in both groups. In addition, ALP was observed to be significantly higher in the rhBMP-2-loaded beta-TCP as compared to the control beta-TCP. It was concluded from this study that the rhBMP-2-loaded porous beta-TCP induced blood vessel and ectopic bone formation.  相似文献   

12.
We investigated pellet-shaped implants prepared from biphasic calcium phosphate (BCP) ceramics with five different ratios of hydroxyapatite (HAP) to beta-tricalcium phosphate (beta-TCP) to evaluate these ceramics as bone substitutes. BCP ceramics impregnated with different doses of recombinant human bone morphogenetic protein 2 (rhBMP-2) (1, 5, and 10 microg) were used for experimental purposes and ceramics without rhBMP-2 were used for control. The pellets were implanted under the pericranium in adult Wistar male rats and were harvested 8 weeks after implantation. The retrieved pellets were then examined radiologically, histologically, and histomorphometrically. The results revealed that the pellets treated with rhBMP-2 exhibited new bone and bone marrow, whereas control pellets produced fibrous connective tissues. The formation of new bone induced by rhBMP-2 was dose dependent. The extent of bone and bone marrow formation and the degree of resorption of the ceramic particles were significantly higher in the pellets composed of 25% HAP-75% TCP. In this study, bioresorption of the ceramic produced favorable conditions for rhBMP-2-induced bone formation.  相似文献   

13.
Bone morphogenetic proteins (BMPs) are biologically active molecules capable of inducing new bone formation, and show potential for clinical use in bone defect repair. However, an ideal system for delivering BMPs that can potentiate their bone-inducing ability and provide initial mechanical strength and scaffold for bone ingrowth has not yet been developed. In this study, to construct a carrier/scaffold system for BMPs, we combined two biomaterials: interconnected-porous calcium hydroxyapatite ceramics (IP-CHA), and the synthetic biodegradable polymer poly D,L,-lactic acid-polyethyleneglycol block co-polymer (PLA-PEG). We used a rabbit radii model to evaluate the bone-regenerating efficacy of rhBMP-2/PLA-PEG/IP-CHA composite. At 8 weeks after implantation, all bone defects in groups treated with 5 or 20 microg of BMP were completely repaired with sufficient strength. Furthermore, using this carrier scaffold system, we reduced the amount of BMP necessary for such results to about a tenth of the amount needed in previous studies, probably due to the superior osteoconduction ability of IP-CHA and the optimal drug delivery system provided by PLA-PEG, inducing new bone formation in the interconnected pores. The present findings indicate that the synthetic biodegradable polymer/IP-CHA composite is an excellent combination carrier/scaffold delivery system for rhBMP-2, and that it strongly promotes the clinical effects of rhBMP-2 in bone tissue regeneration.  相似文献   

14.
In this study, a CaP biomaterial was used as a carrier for rhBMP-2. Biomaterials were investigated in calvarial and femoral defects using a rabbit animal model, with unloaded biomaterials serving as control. Fluorochrome labels were administered at days 14 and 70. Specimens were retrieved after 12 weeks for histological analysis. When area fractions were assessed by conventional histomorphometry, no significant effect of rhBMP-2 on the amounts of regenerated bone and residual biomaterial were seen by 12 weeks. After mineral appositional rate (MAR) measurement using double labels, calculation yielded significantly higher MARs for defects at both implantation sites, when compared with surrounding bone, whether or not biomaterials were loaded with rhBMP-2. Analyzing the effect of rhBMP-2, both defect sites showed significantly higher MARs in the rhBMP-2 group. MARs of bone surrounding the defects had also been elevated significantly by rhBMP-2 at calvarial and femoral implantation sites. It is concluded that MAR measurement is suitable to identify long-term effects of rhBMP-2 on bone formation at a time when conventional histomorphometry using fractional area determination is inadequate. Also, by MAR assessment, effects of rhBMP-2 on surrounding bone can be documented.  相似文献   

15.
We have investigated pellet-shaped implants prepared from biphasic calcium phosphate (BCP) ceramics with five different ratios of hydroxyapatite (HAP) to beta tricalcium phosphate (beta-TCP). The purpose of this study was to evaluate these BCP ceramics as carriers for rhBMP-2. BCP ceramics impregnated with the different doses of recombinant human bone morphogenetic protein 2 (rhBMP-2) (1, 5 and 10g) were used for the experimental purpose and the ceramics without rhBMP-2 were used as control. The pellets were placed into subcutaneous pockets on the dorsum of 4-week-old male Wistar rats. The animals were sacrificed 2 and 4 weeks after implantation. Bone induction was estimated by alkaline phosphatase (ALP) activity measured at 2 weeks after implantation. Pellets were also examined radiologically, histologically and histomorphometrically. The results showed that all experimental pellets exhibited new bone formation whereas the control pellets produced only fibrous connective tissue. Here, 100% HAP ceramic showed most amount of bone formation, whereas 25% HAP to 75% TCP ceramic produced the bone least in amount among different BCP ceramics at the end of 4 weeks. This study indicates that formation of new bone depends on the ceramic content with high HAP-TCP ratio and high dose of rhBMP-2.  相似文献   

16.
Recombinant human bone morphogenetic protein-2 (rhBMP-2) was encapsulated in biodegradable poly(DL-lactide-co-glycolide) (PLGA) capsules to regenerate bone by controlling the release rate of rhBMP-2. The rhBMP-2/PLGA capsules containing 12 microg of rhBMP-2 were implanted in seven 15-mm segmental defects of rabbits radii to examine the healing capacity of the rhBMP-2/PLGA capsules. For the control group, four segmental defects were left empty and two were implanted with ghost PLGA capsules. Healing of the defects was followed for 24 weeks and periodically evaluated by radiographs and histological examination. Mechanical testing was applied to three regenerated bone samples at 24 weeks postoperatively when the mature cortex was observed. Mechanical properties of regenerated bone were not significantly different from normal intact bone statistically. Histologically, the rhBMP-2/PLGA capsules disappeared completely during the process of bone regeneration. These results increased possibilities for clinical application of rhBMP-2/PLGA capsules.  相似文献   

17.
背景:载体+骨诱导因子+生长因子模式人工骨已被证实是理想的人工骨材料。 目的:验证血管内皮生长因子+骨形态发生蛋白与脱蛋白骨复合成重组合人工骨的再血管化及成骨作用,并与深低温冷冻骨比较。 方法:新西兰大白兔左前臂制成桡骨15 mm骨缺损模型,随机分成2组,实验组植入重组血管内皮生长因子165/重组骨形态发生蛋白2/脱蛋白骨;对照组植入深低温冷冻骨。 结果与结论:16周,实验组骨缺损区骨性愈合,移植物密度接近周围正常骨组织;对照组:断端间可见较多骨痂生成,移植物密度稍高于周围正常骨组织。实验组移植物-受体介面无明显分界,达到骨愈合;对照组移植物-受体分界线模糊,部分骨愈合。第3天及第1,2,4,8周,墨汁灌注微血管分析结果显示,实验组血管生成明显多于对照组(P < 0.01);生物力学测试结果显示,实验组三点抗弯曲应力负荷明显强于对照组(P < 0.01)。结果表明,重组血管内皮生长因子165/重组骨形态发生蛋白2/脱蛋白骨重组合人工骨能诱导断端间骨痂形成,加快移植物的血管化速度,且具有良好的生物学功能及生物力学功能。   相似文献   

18.
Carriers for bone morphogenetic protein-2 (BMP-2) used in clinical practice still suffer from limitations such as insufficient protein retention. In addition, there is a clinical need for injectable carriers. The main objective of this study was to assess bone forming ability of rhBMP-2 combined either with chitosan hydrogel (rhBMP-2/CH) or chitosan hydrogel containing β-tricalcium phosphate (β-TCP) (rhBMP-2/CH/TCP). Formulations were first compared in a rat ectopic intramuscular bone formation model, and the optimal formulation was further evaluated in healing of 15-mm critical size defect in the radius of a rabbit. Three weeks after injection ectopically formed bone was analyzed by microcomputerized tomography (micro-CT) and histology. Significantly higher (4.7-fold) mineralized bone formation was observed in the rhBMP-2/CH/TCP group compared to rhBMP-2/CH group. In a pilot study, defect in a rabbit radius treated with rhBMP-2/CH/TCP showed incomplete regeneration at 8 weeks with composite leakage from the defect, indicating the need for formulation refinement when segmental defect repair is foreseen.  相似文献   

19.
目的:探讨重组人骨形成蛋白-2与珊瑚人工骨复合物(复合骨 )在拔牙窝修复中的作用。方法:拔除 12只成年狗两侧上颌第二及第三切牙,并去除牙槽窝之间的牙槽间隔,一侧随即植入复合骨,对侧植入珊瑚人工骨(珊瑚骨 )作为对照。并于植入后 4、8、12周取材,采用组织学观察、图像分析和 [99Tcm]-MDP核素骨显像等方法比较两种植入材料在牙槽窝中的骨修复能力。结果:复合骨植入牙槽骨后,材料被逐渐降解吸收,新骨不断生成,12周后,植入材料完全被成熟的骨组织取代;图像分析结果显示不同时间复合骨组新骨形成的比值显著高于珊瑚骨组(P <0.05 );4和 8周复合骨组核素浓聚程度高于珊瑚骨组,12周两组核素浓聚程度差异不明显。结论:复合骨在牙槽骨缺损中的骨修复能力和修复效果明显优于珊瑚骨.  相似文献   

20.
背景:磷酸钙骨水泥克服了聚甲基丙烯酸甲酯的诸多缺点并具有良好的生物相容性。而负载复合重组人类骨形态发生蛋白2的磷酸钙骨水泥经固化后可具有微孔结构,可提高经皮椎体成形充填材料的临床价值。 目的:探讨以可注射型磷酸钙骨水泥和纤维蛋白胶作为共同载体,复合重组人类骨形态发生蛋白2,替代聚甲基丙烯酸甲酯应用于新西兰大白兔椎体成形的可行性。 方法:制备磷酸钙骨水泥/纤维蛋白胶/复合重组人类骨形态发生蛋白2新型复合材料。采用小鼠肌袋异位诱导成骨模型对不同植入材料进行骨诱导活性评价;模仿椎体成形观察新型复合材料和聚甲基丙烯酸甲酯植入兔椎体后的生物力学改变。 结果与结论:新型复合材料植入后2,4周碱性磷酸酶水平最高,植入后4周软骨细胞逐渐成熟,新骨形成,抗压强度和抗扭转强度明显低于正常椎体和聚甲基丙烯酸甲酯植入后(P < 0.05),8周后材料被进一步降解,抗压强度和抗扭转强度均有所上升,扛扭转强度与正常椎体相比无显著差别,但仍明显低于聚甲基丙烯酸甲酯(P < 0.05)。microCT提示其新生骨形成多而早,但聚甲基丙烯酸甲酯未见材料吸收及周围骨质长入。说明新型复合材料植入椎体后能够获得良好的骨诱导和骨传导功能,材料降解和新骨替代同步,接近于正常椎体的骨愈合,可望替代聚甲基丙烯酸甲酯应用于椎体成形。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号