首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Anesthetized dogs with isolated carotid sinus preparation were used to examine the mechanisms involved in the increase in renin secretion rate produced by carotid baroreceptor reflex renal nerve stimulation (RNS) at constant renal perfusion pressure. Lowering carotid sinus pressure by 41 +/- 5 mmHg for 10 min increased mean arterial pressure and heart rate, caused no or minimal renal hemodynamic changes, decreased urinary sodium excretion, and increased renin secretion rate. Metoprolol, a beta 1-adrenoceptor antagonist, given in the renal artery, did not affect the decrease in urinary sodium excretion but attenuated the increase in renin secretion rate, from 1,764 +/- 525 to 412 +/- 126 ng/min (70 +/- 8%). Indomethacin or meclofenamate, prostaglandin synthesis inhibitors, did not affect the decrease in urinary sodium excretion but attenuated the increase in renin secretion rate, from 1,523 +/- 416 to 866 +/- 413 ng/min (51 +/- 18%). Addition of metoprolol to indomethacin-pretreated dogs attenuated the increase in renin secretion rate from 833 +/- 327 to 94 +/- 60 ng/min (86 +/- 10%). These results indicate that reflex RNS at constant renal perfusion pressure results in an increase in renin secretion rate that is largely mediated by renal beta 1-adrenoceptors and is partly dependent on intact renal prostaglandin synthesis. The beta 1-adrenoceptor-mediated increase in renin secretion rate is independent of and not in series with renal prostaglandins.  相似文献   

2.
The influence of arterial baroreceptors on secretion of catecholamines from the adrenal medulla was evaluated by several methods. Conscious mongrel dogs with surgically denervated hearts were hemorrhaged until an estimated 16% of their blood volume had been removed. On a separate day they were anesthetized and their blood pressure was lowered with intravenous nitroglycerin. Neither of these maneuvers produced appreciable increases in heart rate in these dogs. In contrast, in a group of sham-operated control dogs, hemorrhage induced a mean increase in heart rate of 20 beats/min (P less than 0.05), and nitroglycerin-induced hypotension induced an increase of 50 beats/min (P less than 0.05). In a separate group of conscious dogs with aortic arch denervation but intact cardiac nerves, occlusion of the common carotid arteries for 5 min increased blood pressure and heart rate significantly but elicited only small, insignificant increases in plasma epinephrine and norepinephrine; the peak concentration of epinephrine achieved was considerably less than the amount necessary to cause appreciable effects on blood pressure and heart rate as determined in another experiment by infusing varying amounts of epinephrine into conscious, cardiac-denervated dogs. We conclude that the arterial baroreceptor reflex, within the range of activity likely to occur during most physiological and pathophysiological adjustments in the conscious dog, exerts only minimal effects on the secretion of catecholamines from the adrenal medulla.  相似文献   

3.
The role played by the major arterial baroreceptor reflexes in the cardiovascular response to exercise was examined by comparing the responses of untethered conscious dogs instrumented for the measurement of aortic pressure and cardiac output with those of dogs with total arterial barorecptor denervation (TABD). Moderately severe levels of exercise (12 mph) in intact dogs increased cardiac output from 111 +/- 17 ml/kg per min, increased heart rate from 101 +/- 5 to 265 +/- 8 beats/min, and reduced total peripheral resistance from 0.039 +/- 0.003 to 0.015 +/- 0.002 mmHg/ml per min. Dogs with TABD responded in a very similar fashion; exercise increased cardiac output from 119 +/- 8 to 356 /+- 23 ml/kg per min, increased heart rate from 122 +/- 7 to 256 +/- 5 beats/min, and decreased total peripheral resistance from 0.042 +/- 0.005 to +/- 0.015 +/- 0.001 mmHg/ml per min. The reflex heart rate responses to intravenous bolus doses of methoxamine were also examined in intact animals, both at rest and during exercise. Methoxamine caused striking bradycardia at rest, but little bradycardia during exercise. These results suggest that the arterial baroreceptor reflex is normally turned off during severe exercise and thus does not modify significantly the cardiovascular response to exercise.  相似文献   

4.
The effect of pentobarbital anesthesia, 30 mg.kg body wt-1, on the rapidly acting arterial pressure control system was studied on splenectomized dogs chronically instrumented with catheters for pressure measurement and hemorrhage and with a flow probe for measurement of aortic flow. The dogs were subjected to 10% hemorrhage in 30 s under conscious and anesthetized states before and after denervation of the carotid sinus nerves (CS) and/or the vagi (V). In the intact nerve condition, arterial pressure fall (delta AP) at 1-2 min after hemorrhage was 8.0 +/- 1.3 (mean +/- SE) mmHg in conscious dogs and 9.4 +/- 2.0 mmHg in dogs under anesthesia. There was no significant difference between these delta APs or other pairs of delta APs in conscious and anesthetized states at any stage of denervation. As long as the CS reflex was intact, heart rate and total peripheral resistance increased in response to hemorrhage as in the intact condition. In conclusion, the pentobarbital anesthesia had little effect on the rapidly acting arterial pressure control system as far as its capacity to restore mean arterial pressure after the brief 10% hemorrhage is concerned.  相似文献   

5.
The reduction in blood pressure due to ANF(103-126) fails to elicit reflex cardioacceleration in the conscious rat. To examine baroreflex sensitivity, the effect of ANF(103-126) on the heart period (HP) response to rapid central volume expansion and to alterations in mean arterial pressure (MAP) induced by bolus injections of phenylephrine and sodium nitroprusside was assessed. ANF(103-126) significantly augmented the bradycardic response induced by acute volume expansion from 426 +/- 21 to 391 +/- 23 beats min-1 versus 421 +/- 23 to 405 +/- 24 without ANF(103-126). Baroreflex sensitivity was defined by the ratio of the change in heart period to the maximal change in mean arterial pressure. The dose of ANF(103-126) utilized did not affect basal heart rate or the magnitude of the mean arterial pressure response to phenylephrine but did significantly enhance the nitroprusside-induced decrease in mean arterial pressure. Baroreceptor sensitivity to phenylephrine was significantly increased by ANF(103-126): 0.997 +/- 0.07 (ms mmHg-1) during ANF(103-126) vs 0.613 +/- 0.08 during vehicle. The total duration of the heart rate response to phenylephrine was also prolonged. In contrast, ANF(103-126) did not alter the baroreceptor sensitivity (1.45 +/- 0.3 vs 1.43 +/- 0.2 ms mmHg-1) or duration of heart rate response to nitroprusside. In the conscious rat, ANF(103-126) modifies the heart rate response to changes in mean arterial pressure and acute central volume expansion. This action appears to be dependent on stimulation of cardiac vagal afferents.  相似文献   

6.
To examine the effects of diazepam on the carotid sinus baroreflex control of circulation, bilateral carotid occlusion was performed on 14 conscious rabbits with aortic denervation. The responses of mean arterial pressure, heart rate, cardiac output and total peripheral resistance were obtained. The haemodynamic responses to carotid occlusion were evaluated at cumulative doses of 0.5 and 1.0 mg kg-1 of diazepam. The administration of diazepam decreased cardiac output and increased total peripheral resistance significantly, but did not affect the arterial pressure and heart rate. The response of total peripheral resistance to carotid occlusion was significantly increased from 0.118 +/- 0.018 (mean +/- SE) to 0.154 +/- 0.026 mmHg min ml-1 at 1.0 mg kg-1 of diazepam. The heart rate response was attenuated significantly from 41 +/- 5 to 24 +/- 4 beats min-1 at 1.0 mg kg-1 of diazepam. Diazepam did not alter the response of arterial pressure to carotid occlusion. We suggest that the dissociated effects of diazepam on the reflex control of circulation reflect the dissociated influences of diazepam on the central sympathetic and vagal-mediated pathways.  相似文献   

7.
Attempts were made to stimulate an arterial baroreceptor reflex in anesthetized and conscious pond turtles. In turtles anesthetized with either alpha-chloralose or pentobarbital, occlusion of the ascending or descending aortas produced no reflex heart rate (HR) changes. In pentobarbital-anesthetized turtles, direct electrical or mechanical stimulation of potential baroreceptor sites along the central aortic arches and carotid arteries produced no significant changes in either HR or blood pressure (BP). Occlusion of the common carotid arteries also produced no HR or BP changes. Intravenously administered nitroglycerin lowered BP but caused no reflex tachycardia in anesthetized turtles. Phenylephrine and angiotensin elevated BP in the anesthetized turtle but caused no reflex bradycardia. In conscious turtles phenylephrine increased BP and nitroglycerin decreased BP. Neither response produced a statistically significant HR change, although HR tended to decrease transiently with phenylephrine and increase with nitroglycerin. These HR changes were abolished by atropine. Rapid intra-arterial infusion of 6% dextran transiently raised BP but caused no reflex bradycardia. These experiments suggest that cardiovascular regulation in the turtle is accomplished without a major contribution from arterial baroreceptor reflexes.  相似文献   

8.
The arterial baroreceptors and their afferent fibres provide the sensory arm of the reflex that regulates systemic arterial pressure. We have examined whether the relationship between mean baroreceptor discharge and mean arterial pressure is altered when heart rate changes. Experiments were performed on pentobarbitone-anaesthetized rabbits. We recorded the activity of single and multifibre preparations of the carotid sinus (CSN) and aortic depressor nerves (ADN). Data were collected under control conditions and while heart rate was increased by approximately 30-35% by right atrial pacing. Baroreceptor regions were exposed to ramps of pressure (from approximately 25 to 140 mmHg, at approximately 0.5-1 mmHg s(-1)), generated by inflation and deflation of cuffs placed around the inferior vena cava and descending thoracic aorta. Response curves relating baroreceptor discharge to mean pressure were constructed and fitted with third-order polynomial expressions. To provide a measure of an effect of an increase in heart rate on the response curve in the region of the normal operating pressure, we calculated the position of the test response curve relative to the position of the control curve at 90 mmHg (deltaBP(90)). For the ADN, the activity of single fibres (presumptive myelinated fibres) was unaffected by increasing heart rate (deltaBP(90) = +0.1 +/- 1.0 mmHg), while single fibres in the CSN showed a small increase in activity (deltaBP(90) = -1.5 +/- 0.3 mmHg). In multifibre preparations there was a small increase in activity that may be attributable to additional activity in unmyelinated fibres (ADN, deltaBP(90) = -3.4 +/- 1.2 mmHg; CSN, deltaBP(90) = -5.2 +/- 0.9 mmHg). We conclude that the mean discharge of arterial baroreceptors remains a reliable index of mean arterial pressure in the presence of substantial changes in heart rate.  相似文献   

9.
In a previous study we investigated the relation between afferent and efferent activity of the arterial baroreceptor reflex under nonpulsatile systemic circulation using total left heart bypass. The results indicated that the regulation of the arterial baroreceptor reflex was converted under nonpulsatile systemic circulation, and we inferred that a possible reason for this conversion was the transformation in discharge of the afferent activity of the arterial baroreceptor reflex that took place under nonpulsatile systemic circulation. In the present study we tested this hypothesis by sectioning carotid sinus and aortic depressor nerves and electrically stimulating bilateral aortic depressor nerves under anesthesia in five rabbits (400 spikes for 20s, with 0.02ms pulse width and 8 V amplitude), while recording changes in aortic pressure, mean aortic pressure, and heart rate. Continuous stimulation was taken as discharge of the afferent activity of the arterial baroreceptor reflex under nonpulsatile systemic circulation, and periodic stimulation was taken as discharge under natural pulsatile circulation. Aortic pressure, mean aortic pressure, and heart rate decreased under both continous and periodic stimulation. The decreases in mean aortic pressure and heart rate during continuous stimulation were significantly lower than those during periodic stimulation. Our results suggest that the transformation in discharge of the afferent activity of the arterial baroreceptor reflex under nonpulsatile systemic circulation may have played an important causative role in the conversion of the regulation of the arterial baroreceptor reflex under nonpulsatile systemic circulation.  相似文献   

10.
1. In conscious dogs exercising on a treadmill variations in arterial blood pressure and heart rate which were correlated with bursts of panting were observed. The blood pressure variations reflected similar variations in the total peripheral vascular resistance.2. During exercise a change in respiration from slow breathing to panting was followed by a systemic vasodilatation and fall in blood pressure, but a rise in heart rate. Analysis of the time course of these effects demonstrated that the heart rate increase occurred later than the blood pressure fall.3. The correlation between panting and blood pressure changes was not abolished by either of the receptor-blocking drugs atropine sulphate or propranolol, nor by either of the following surgical procedures: acute bilateral cervical vagotomy, and denervation of the carotid sinus baroreceptors and carotid body chemoreceptors.4. The vasodilatation which followed a burst of panting appeared to be due to a decrease in adrenergic vasoconstrictor sympathetic nerve activity, and not to a change in the chemical composition of the arterial blood.5. It is concluded that the vascular changes are not reflex responses to stimulation of peripheral receptors by the bursts of panting. Instead, it is suggested that both the bursts of panting and associated falls in blood pressure are parallel effects resulting from activation at a suprabulbar level of the central nervous system. It is also concluded that the variations in heart rate are mediated by the baroreceptor reflex mechanism, activated by the changes in mean blood pressure.  相似文献   

11.
In the chloralose-anesthetized dog the carotid sinus on one side of the neck was isolated vascularly. Pressure in the isolated sinus [carotid sinus pressure (CSP)], electrocardiogram, and systemic arterial pressure were recorded. Both vagosympathetic trunks were cut and the contralateral common carotid artery was occluded or the contralateral sinus nerve was cut to reduce reflex buffering of arterial pressure changes. By varying CSP from 50 to 250 mmHg the full range of the reflex response was examined. Electrical stimulation of the peripheral end of the cut ipsilateral cervical sympathetic nerve brought about a rapid decrease in mean arterial pressure (MAP) and heart rate (HR) at lower CSPs, no change in these variables at midrange CSPs, and a gradual increase at higher CSPs, such that the gain of the reflex was reduced (1.89 +/- 0.19 to 1.33 +/- 0.15 mmHg/mmHg). The decrease in MAP and HR at lower CSPs implies an increase in baroreceptor activity whereas the converse would appear to occur at higher CSPs. These responses attained a maximum value at low stimulus frequencies (less than 10 Hz).  相似文献   

12.
The neural mechanisms of the thermoregulatory control of core and skin temperatures in response to heat and cold stresses have been well clarified. However, it has been unclear whether baroreceptor reflexes are involved in the control of core and skin temperatures. To investigate how the arterial baroreceptor reflex modulates the body temperatures, we examined the effect of pressure changes of carotid sinus baroreceptors on core and skin temperatures in halothane-anesthetized rats. To open the baroreflex loop and control arterial baroreceptor pressure (BRP), we cut vagal and aortic depressor nerves and isolated carotid sinuses. We sequentially altered BRP in 20-mmHg increments from 60 to 180 mmHg and then in 20-mmHg decrements from 180 to 60 mmHg while measuring systemic arterial pressure (SAP), heart rate (HR), and core blood temperature (T(core)) at the aortic arch and skin temperature (T(skin)) at the tail. In response to the incremental change in BRP by 120 mmHg, SAP, HR, and T(core) fell by 90.3 +/- 5.1 mmHg, 60.3 +/- 10.5 beats min(-1), and 0.18 +/- 0.01 degrees C, respectively. T(skin) rose by 0.84 +/- 0.10 degrees C. The maximum rate of change per unit BRP change was -2.1 +/- 0.2 for SAP, -1.5 +/- 0.4 beats min(-1) mmHg(-1) for HR, -0.003 +/- 0.001 degrees C mmHg(-1) for T(core), and 0.011 +/- 0.002 degrees C mmHg(-1) for T(skin). After the administration of hexamethonium or bretylium, these baroreflexogenic responses were completely abolished. We concluded that T(core) and T(skin) are modulated by the arterial baroreceptor reflex.  相似文献   

13.
1. Brief stimuli were delivered to the carotid chemoreceptors or baroreceptors in dogs anaesthetized with pentobarbitone or chloralose. Chemoreceptor stimulation was achieved by rapid retrograde injections of 0-2-0-5 ml. warmed, CO2-equilibrated saline through a cannula in the external carotid artery. Baroreceptor stimulation was achieved by forceful retrograde injection of 2-5 ml. air-equilibrated saline, or of freshly drawn arterial blood, into the external carotid artery after first clamping the common carotid artery. 2. Brief baroreceptor stimuli had no noticeable effect on breathing. Brief chemoreceptor stimuli had no effect on breathing in some dogs, but in many produced a reflex increase in the depth of inspiration when delivered during inspiration. In these same dogs, brief chemoreceptor stimuli delivered in expiration either prolonged the expiratory pause or evoked an active expiratory effort. 3. Prompt decreases in heart rate were elicited by brief sudden chemoreceptor or baroreceptor stimuli when these were delivered during the expiratory phase of respiration. The stimuli did not modify the control heart rate pattern when delivered during inspiration. If the carotid sinus nerve or the vagus nerves were cut the responses were abolished. 4. Brief chemoreceptor or baroreceptor stimuli remained effective in evoking prompt decreases in heart rate during periods of apnoea in the end-inspiratory position (Hering-Breuer inflation reflex). In periods of apnoea after prolonged artificial hyperventilation the stimuli were sometimes ineffective at first, but were always effective late in the period of apnoea, again producing prompt cardiac slowing. 5. After denervation of the lungs, brief baroreceptor and chemoreceptor stimuli continued to evoke prompt falls in heart rate when given during expiration. When delivered during inspiration the same stimuli were either ineffective, or less effective.  相似文献   

14.
In anaesthetized dogs, a hindlimb was vascularly isolated and perfused at a constant flow rate of 7.7 +/- 1.9 ml min-1 100 g-1 (mean +/- S.E.M.; n = 5) through the femoral artery. The carotid sinuses were isolated and perfused at high (greater than 145 mmHg) or low (less than 75 mmHg) pressure to enable reflex sympathetic tone on the hindlimb vessels to be controlled. Both vagi were sectioned in the neck and mean aortic blood pressure was held constant by connection of the aorta to a reservoir. The responses to infusion of three doses of adenosine at high and low carotid sinus pressures were not significantly different: infusion of 0.60 +/- 0.16 microM-adenosine reduced femoral arterial perfusion pressure (FAPP) by 11.6 +/- 3.2% (n = 6) at high carotid sinus pressure and by 12.6 +/- 5.1% (n = 4) at low carotid sinus pressure, while 4.71 +/- 0.49 microM-adenosine reduced FAPP by 20.8 +/- 4.8% (n = 6) at high carotid sinus pressure and by 20.7 +/- 4.8% (n = 6) at low carotid sinus pressure; 50.1 +/- 7.3 microM-adenosine reduced FAPP by 36.7 +/- 5.5% (n = 6) at high carotid sinus pressure and by 27.7 +/- 7.8% (n = 5) at low carotid sinus pressure.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

15.
Resting cardiovascular parameters and the responses to bilateral carotid occlusions (BCO) were monitored in pentobarbital-anesthetized and conscious dogs before and after placing lesions in the dorsolateral funiculi at C7-C8 and after spinal transections at C7. Pre- and postlesion blood pressure (BP) and heart rate (HR) responses to exercise were also monitored. The lesions significantly attenuated the responses to BCO and decreased resting BP in anesthetized dogs. Yet neither resting HR in anesthetized or conscious dogs nor the resting BP in conscious dogs was affected by the lesions. Subsequent spinal transections significantly decreased resting HR and BP and the responses to BCO but did not affect the BP response to BCO in anesthetized dogs as compared with corresponding postlesion parameters. BP responses to exercise were significantly attenuated by the lesions, but HR responses were not affected. Since stimulation and BP studies indicated that the descending pressor pathway had been ablated, the data suggest that the pathway mediates BP and HR responses to BCO in pentobarbital-anesthetized and conscious dogs. It does not maintain resting HR in anesthetized or conscious animals, and the resting BP in conscious dogs. This pathway is important for BP responses to exercise but is not necessary for HR responses. Finally, other spinal pathways are involved in cardiovascular control.  相似文献   

16.
The separate and combined effects of bilateral common carotid occlusion (C.C.O.) and hemorrhage on renal blood flow (R.B.F.) were studied in 11 unanesthetized dogs.C.C.O. increased arterial blood pressure (4.4 kPa; 33 mm Hg) and heart rate (10 beats/min) while R.B.F. remained unchanged. When kidney perfusion pressure was maintained at its resting level during C.C.O. (implanted pneumatic cuff) there was also no change in R.B.F.After cutting the aortic nerves in 2 dogs the increase in blood pressure and heart rate with C.C.O. was greater (10.6 kPa; 80 mm Hg and 72 beats/min); however, there was no change in R.B.F.A blood loss of 16% (13.6 ml/kg) reduced central venous pressure (0.3 kPa; 2 mm Hg), increased heart rate (8–14 beats/min) and decreased arterial mean pressure by a maximum of 0.7 kPa (5 mm Hg) (nonhypotensive hemorrhage, N.H.H.). R.B.F. showed a tendency to rise and 90 min after the onset of bleeding was slightly increased (12% of control).After N.H.H. carotid occlusion had no effect on R.B.F. when kidney perfusion pressure increased; when perfusion pressure was controlled during C.C.O. the maximum observed decrease of R.B.F. was 15 ml/min (5% of control).It is concluded that the control of R.B.F. during the baroreceptor reflex under normovolemia and after a blood loss of 16% in the conscious dog at rest does not involve sympathetic vasoconstrictor effects which result in a significant changes in total blood flow.This study was supported by the German Research Foundation within the S.F.B. 90, Heidelberg  相似文献   

17.
The role of vasopressin in the regulation of blood pressure during water deprivation was assessed in conscious dogs with two antagonists of the vasoconstrictor activity of vasopressin. In water-replete dogs, vasopressin blockade caused no significant changes in mean arterial pressure, heart rate, plasma renin activity (PRA), or plasma corticosteroid concentration. In the same dogs following 48-h water deprivation, vasopressin blockade increased heart rate from 85 +/- 6 to 134 +/- 15 beats/min (P less than 0.0001), increased cardiac output from 2.0 +/- 0.1 to 3.1 +/- 0.1 1/min (P less than 0.005), and decreased total peripheral resistance from 46.6 +/- 3.1 to 26.9 +/- 3.1 U (P less than 0.001). Plasma renin activity increased from 12.4 +/- 2.2 to 25.9 +/- 3.4 ng ANG I X ml-1 X 3 h-1 (P less than 0.0001) and plasma corticosteroid concentration increased from 3.2 +/- 0.7 to 4.9 +/- 1.2 micrograms/dl (P less than 0.05). Mean arterial pressure did not change significantly. When the same dogs were again deprived of water and pretreated with the beta-adrenoceptor antagonist propranolol, the heart rate and PRA responses to the antagonists were attenuated and mean arterial pressure decreased from 103 +/- 2 to 91 +/- 3 mmHg (P less than 0.001). These data demonstrate that vasopressin plays an important role in blood pressure regulation during water deprivation in conscious dogs.  相似文献   

18.
The mechanisms influencing arterial blood pressure and heart rate were studied in conscious foxhounds after chronic sino-aortic and cardiopulmonary denervation (N = 6). In previous investigations it was shown, that this denervation produces hypertension and tachycardia, which is confirmed by the present study: Mean arterial blood pressure increased from 101 +/- 3 to 123 +/- 6 mmHg (P less than 0.05), and heart rate rose from 85 +/- 6 to 124 +/- 5 beats min-1 (P less than 0.001). The variability of mean arterial blood pressure, but not that of heart rate increased (from 6 +/- 1 to 22 +/- 2 mmHg (P less than 0.001). The administration of the alpha-adrenergic blocker prazosin reduced both mean arterial blood pressure (-33 +/- 8 mmHg, P less than 0.01) and its variability (-12 +/- 1 mmHg, P less than 0.01), thus suggesting an alpha-adrenergic mediated hypertension. beta-blockade by propranolol blunted the heart rate increase (-24 +/- 5 beats min-1, P less than 0.05). Although plasma renin activity increased in the denervated dogs, converting enzyme inhibition had little effect on mean arterial blood pressure and heart rate. In conclusion, chronic sino-aortic and cardiopulmonary denervation enhances the alpha and beta-adrenergic component of cardiovascular control in a different fashion. While the alpha-adrenergic component induces fluctuations around an elevated arterial blood pressure level, the beta-adrenergic tone to the heart increases without any significant increase in variability.  相似文献   

19.
The isolated and combined influence of cardiopulmonary and arterial baroreceptor denervation on long-term blood pressure (MAP), heart rate (HR), plasma volume (PV) and plasma renin activity (PRA) was studied in 10 conscious, chronically instrumented foxhounds receiving a normal sodium diet. Cardiopulmonary denervation was achieved by surgically stripping both thoracic vagi. Near complete arterial baroreceptor denervation, leaving most cardiopulmonary fibres intact, was made by left vagal deafferentiation which has been shown to eliminate most aortic baroreceptor afferents, and a carotid sinus denervation. Five groups were studied: (I) control (n = 9), (II) cardiopulmonary denervation (n = 5), (III) aortic baroreceptor denervation (n = 5), (IV) arterial baroreceptor denervation (n = 4) and (V) total denervation (n = 6). No changes in PV were observed. Only group V revealed significantly higher levels of MAP (119.5 +/- 5.4 vs. 100.1 +/- 1.6 mmHg; P less than 0.05), HR (118.1 +/- 4.4 vs. 87.8 +/- 3.7 beats min-1; P less than 0.001) and PRA (3.0 +/- 0.8 vs. 0.9 +/- 0.2 ng AI m-1 h-1; P less than 0.05). It is suggested that the isolated function of either cardiopulmonary or arterial baroreceptors is sufficient to maintain these variables at a normal level. Contrary to the results of other reports the cardiopulmonary receptors do not seem to regulate MAP at a level about which the arterial baroreceptors operate. When both groups of afferents were interrupted MAP, HR and PRA rose to significantly higher levels, implying that cardiopulmonary and arterial baroreceptor afferents interact in a sense of a non-additive attenuation.  相似文献   

20.
AIM: It has been reported that spaceflight attenuates the arterial baroreceptor reflex. As this reflex function changes dramatically during postnatal development, we hypothesized that space flight depresses the developmental changes of the reflex system. To test this hypothesis, we evaluated the baroreceptor reflex function in rats, which were exposed to a microgravity environment on a space shuttle 9-25 days after birth. METHODS: Baroreceptor reflex sensitivity and the afferent sensitivity were evaluated by measuring heart rate (HR) and aortic nerve activity (ANA) changes in response to an increase in mean arterial pressure (MBP) derived by phenylephrine injection (20-50 microg kg(-1)) under urethane-anaesthesia. RESULTS: Baroreceptor reflex sensitivity (% change of HR/% change of MBP) was lower in the flight group (FLT: -0.19 +/- 0.04, n = 4) than either the asynchronous ground control group (AGC: -0.47 +/- 0.06, n = 6, P < 0.01) or the vivarium group (VIV: -0.41 +/- 0.07, n = 6, P < 0.05). This was similar to the differences of the afferent sensitivity (% change of ANA/% change of MBP) between FLT (2.07 +/- 0.30) and the control groups (AGC: 2.71 +/- 0.22, n.s.; VIV: 3.00 +/- 0.32, P < 0.05). At the end of 30 days of recovery under normal gravity conditions, however, there were no significant group differences in these parameters. conclusion: These results suggest that the space environment attenuates the postnatal development of the arterial baroreceptor reflex function in rats, which may be partially because of a depression of the postnatal development of the baroreceptor afferents. These functional alterations, however, recover to their normal level on re-exposure to the Earth's gravity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号