首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Estrogen treatment in symptomatic postmenopausal women appears to improve cognitive performance including memory, an effect which may involve enhanced nitric oxide formation in hippocampal neurons. To study whether 17beta-estradiol (E2) affects NO synthase activity in the hippocampus, we investigated the influence of E2 on hippocampal NO synthase expression and activity in female rats. Ovariectomy, which significantly decreased E2 serum levels, reduced neuronal (nNOS) and endothelial NO synthase (eNOS) expression and Ca(2+)-dependent NOS activity. E2 substitution reversed these effects. It is concluded that E2 increases nNOS and eNOS expression and activity in female hippocampus and thus improves hippocampal function.  相似文献   

3.
BACKGROUND AND PURPOSE: Production of nitric oxide is thought to play an important role in neuroinflammation. Previously, we have shown that combined inhibition of neuronal nitric oxide synthase (nNOS) and inducible NOS (iNOS) can reduce hypoxia-ischemia-induced brain injury in 12-day-old rats. The aim of this study was to analyze changes in expression of nNOS, iNOS and endothelial NOS (eNOS), and nitrotyrosine (NT) formation in proteins in neonatal rats up to 48 h after cerebral hypoxia-ischemia. METHODS: Twelve-day-old rats were subjected to unilateral carotid artery occlusion and hypoxia, resulting in unilateral cerebral damage. NOS and nitrotyrosine expression were determined by immunohistochemistry and Western blot analysis at 30 min-48 h after hypoxia-ischemia. RESULTS: nNOS was increased in both hemispheres from 30 min to 3 h after hypoxia-ischemia. In the contralateral hemisphere, eNOS was decreased 1-3 h after hypoxia-ischemia. In the ipsilateral hemisphere, eNOS was decreased at 0.5 h after hypoxia-ischemia, normalized at 1-3 h and was increased 6-12 h after hypoxia-ischemia. At 24 and 48 h after hypoxia-ischemia, eNOS levels normalized. Surprisingly, iNOS expression did not change from 30 min up to 48 h after hypoxia-ischemia in the ipsi- or contralateral hemisphere. In addition, the regional expression of iNOS in the brain as determined by immunohistochemistry did not change after hypoxia-ischemia. Expression of nitrotyrosine was slightly increased in both hemispheres only at 30 min after hypoxia-ischemia. CONCLUSION: In 12-day-old rat pups, cerebral hypoxia-ischemia induced a transient increase in nNOS, eNOS, and nitrotyrosine in proteins, but no change in iNOS expression up to 48 h after the insult.  相似文献   

4.
一氧化氮合酶在脑缺血再灌注中的双重作用   总被引:14,自引:0,他引:14  
目的 探讨短暂脑缺血再灌注后大鼠脑内3型一氧化氮合酶(nitric oxide synthase,NOS)的表达及作用,为脑缺血治疗提供理论依据。方法 采用免疫组织化学方法,用3型NOS的多克隆抗体检测大鼠局灶性脑缺血2h再灌注15min及22h NOS在脑内的表达情况。结果 大鼠脑缺血2h再灌注15min,在脑缺血边缘区的血管壁及神经细胞出现内皮型一氧化氮合酶(endothelial nitric oxide synthase,eNOS)上调表达;脑缺血2h再灌注22h,在脑梗死区内表达神经元型一氧化氮合酶(neuronal mitric oxide synthase,nNOS)的神经细胞减少,并出现表达诱导型一氧化氮合酶(inducible nitric oxide synthase,iNOS)的胶质细胞,同时梗死边缘区血管及神经细胞出现eNOS及iNOS的上调表达。结论 在短暂脑缺血再灌注早期,缺血区周围可能有eNOS相关的保护机制;亚急性期eNOS及iNOS的保护及损伤机制并存;因此,在短暂脑缺血早期恢复灌注后予选择性iNOS抑制剂及促进eNOS活性有可能减少迟发性神经损伤。  相似文献   

5.
Although the inducible isoform of nitric oxide synthase (iNOS) is a well-established source of nitric oxide (NO*) during inflammation of the central nervous system (CNS), little is known about the involvement of constitutive isoforms of NOS (cNOS) in the inflammatory process. The aim of this study was to compare the responses of the expression and activity of iNOS and the two cNOS isoforms, neuronal and endothelial (nNOS and eNOS, respectively), in the brain to systemic inflammation and their roles in the cascade of events leading to degeneration and apoptosis. A systemic inflammatory response in C57BL/6 mice was induced by intraperitoneal injection of lipopolysaccharide [LPS; 1 mg/kg body weight (b.w.)]. The relative roles of the NOS isoforms were evaluated after injection of NG-nitro-L-arginine (NNLA; 30 mg/kg b.w.), which preferentially inhibits cNOS, or 1400W (5 mg/kg b.w.), an inhibitor of iNOS. Biochemical and morphological alterations were analyzed up to 48 hr after administration of LPS. Systemic LPS administration evoked significant ultrastructural alterations in brain capillary vessels, neuropils, and intracellular organelles of neurons, astrocytes, and microglia. Apoptotic/autophagic processes occurred in many neurons of the substantia nigra (SN), which coincided with exclusive enhancement of iNOS expression and activity in this brain region. Moreover, inhibitors of both iNOS and cNOS prevented LPS-evoked release of apoptosis-inducing factor (AIF) from SN mitochondria. Collectively, the results indicate that synthesis of NO* by both the inducible and constitutive NOS isoforms contribute to the activation of apoptotic pathways in the brain during systemic inflammation.  相似文献   

6.
In the central nervous system, nitric oxide (NO) has a variety of biological functions including vasorelaxation and neurotransmission. The synthesis of NO is catalyzed by NO synthases (NOS) existing in 3 isoforms, neuronal NOS (nNOS), inducible NOS (iNOS) and endothelial NOS (eNOS). NO synthase has implications in the pathophysiology of primary glial brain tumors with enhanced expression of nNOS and eNOS in high-grade astrocytic tumors, WHO grades III and IV. Only minor groups of pure oligodendrogliomas have been investigated. The aim of the investigation was to study the expression of the 3 NOS isoforms in this genetically divergent group of primary gliomas and to correlate the findings with tumor grade and expression pattern for the major group of gliomas--the astrocytomas. We examined the NOS expression in 35 oligodendrogliomas, WHO grade II, and 7 anaplastic oligodendrogliomas, WHO grade III, by immunohistochemical methods using formalin-fixed paraffin-embedded material. We observed only a minor expression of nNOS and sparse expression of eNOS in the tumor cells, but a vivid expression of eNOS in the vascular endothelial cells in both the tumor and the surrounding tissue. The rich expression of eNOS in oligodendroglioma vessels independent of tumor grade may suggest that blood flow and angiogenesis in these richly vascularized tumors are modified by NO. Interestingly, enhanced expression of inducible NOS was observed in the oligodendroglial tumor cells in 19 of 35 oligodendrogliomas (54%) and in 2 of 7 anaplastic oligodendrogliomas (29%). This is diverging for iNOS expression in astroglial tumors and the data could be indicative of iNOS exerting anti-tumor activity which may protract the progression from low-grade oligodendrogliomas to more anaplastic types.  相似文献   

7.
There is growing evidence implicating the kynurenine pathway (KP) and particularly one of its metabolites, quinolinic acid (QUIN), as important contributors to neuroinflammation in several brain diseases. While QUIN has been shown to induce neuronal and astrocytic apoptosis, the exact mechanisms leading to cell death remain unclear. To determine the mechanism of QUIN-mediated excitotoxicity in human brain cells, we measured intracellular levels of nicotinamide adenine dinucleotide (NAD+) and poly(ADP-ribose) polymerase (PARP) and extracellular lactate dehydrogenase (LDH) activities in primary cultures of human neurons and astrocytes treated with QUIN. We found that QUIN acts as a substrate for NAD+ synthesis at very low concentrations (<50 nM) in both neurons and astrocytes, but is cytotoxic at sub-physiological concentrations (>150 nM) in both the cell types. We have shown that the NMDA ion channel blockers, MK801 and memantine, and the nitric oxide synthase (NOS) inhibitor, L-NAME, significantly attenuate QUIN-mediated PARP activation, NAD+ depletion, and LDH release in both neurons and astrocytes. An increased mRNA and protein expression of the inducible (iNOS) and neuronal (nNOS) forms of nitric oxide synthase was also observed following exposure of both cell types to QUIN. Taken together these results suggests that QUIN-induced cytotoxic effects on neurons and astrocytes are likely to be mediated by an over activation of an NMDA-like receptor with subsequent induction of NOS and excessive nitric oxide (NO?)-mediated free radical damage. These results contribute significantly to our understanding of the pathophysiological mechanisms involved in QUIN neuro- and gliotoxicity and are relevant for the development of therapies for neuroinflammatory diseases.  相似文献   

8.
Lüth HJ  Münch G  Arendt T 《Brain research》2002,953(1-2):135-143
Various isoforms of the nitric oxide (NO) producing enzyme nitric oxide synthase (NOS) are elevated in Alzheimer's disease (AD) indicating a critical role for NO in the pathomechanism. NO can react with superoxide to generate peroxynitrite, a process referred to as oxidative stress, which is likely to play a role in AD. Peroxynitrite in turn, nitrates tyrosine residues to form nitrotyrosine which can be identified immunohistochemically. To study the potential structural link between the increased synthesis of NO and the deposition of nitrotyrosine in AD, we analyzed the expression of neuronal NOS (nNOS), inducible NOS (iNOS) and endothelial NOS (eNOS) in AD and control brain, and compared the localization with the distribution of nitrotyrosine. Nitrotyrosine was detected in neurons, astrocytes and blood vessels in AD cases. Aberrant expression of nNOS in cortical pyramidal cells was highly co-localized with nitrotyrosine. Furthermore, iNOS and eNOS were highly expressed in astrocytes in AD. In addition, double immunolabeling studies revealed that in these glial cells iNOS and eNOS are co-localized with nitrotyrosine. Therefore, it is suggested that increased expression of all NOS isoforms in astrocytes and neurons contributes to the synthesis of peroxynitrite which leads to generation of nitrotyrosine. In view of the wide range of isoform-specific NOS inhibitors, the determination of the most responsible isoform of NOS for the formation of peroxynitrite in AD could be of therapeutic importance in the treatment of Alzheimer's disease.  相似文献   

9.
The activity and expression of nitric oxide synthase (NOS) isoforms and protein nitrotyrosine (NT) residues were investigated in whole encephalic mass (WEM) homogenates during the development of experimental allergic encephalomyelitis (EAE) in Lewis rats. EAE stages (0-III) were daily defined by clinical evaluation, and in the end of each stage, WEMs were removed for analysis of NOS activity, protein NT residues and mRNA for the different NOS isoforms. In the presence of NADPH, WEMs from EAE-III rats showed lower Ca2+-dependent NOS activity than those from control group. These differences disappeared in the presence of exogenous calmodulin, flavin adenine dinucleotide (FAD), tetrahydrobiopterin (BH4) and NADPH. Of all the cofactors, just the omission of FAD caused comparable decrease of Ca2+-dependent NOS activity from both groups. Ca2+-independent NOS activity from EAE-III animals was insensitive to the omission of any of the cofactors, while in control animals this activity was significantly inhibited by the omission of either FAD or BH4. Increased levels of both iNOS mRNA and protein NT expression were observed in animals with EAE, which also showed lower levels of a thermolabile NOS inhibitor in WEM homogenates and sera than controls. In conclusion, during late EAE stages, constitutive Ca2+-dependent NOS activity decreases concomitantly with iNOS upregulation, which could be responsible for the high protein NT levels. The differential dependence of iNOS activity on cofactors and the absence of an endogenous thermolabile NOS inhibitor in animals with EAE could reflect additional control mechanisms of NOS activity in this model of multiple sclerosis.  相似文献   

10.
Intermittent hypoxia (IH) during sleep induces significant neurobehavioral deficits in the rat. Since nitric oxide (NO) has been implicated in ischemia-reperfusion-related pathophysiological consequences, the temporal effects of IH (alternating 21% and 10% O(2) every 90 s) and sustained hypoxia (SH; 10% O(2)) during sleep for up to 14 days on the induction of nitric oxide synthase (NOS) isoforms in the brain were examined in the cortex of Sprague-Dawley rats. No significant changes of endothelial NOS (eNOS) and neuronal NOS (nNOS) occurred over time with either IH or SH. Similarly, inducible NOS (iNOS) was not affected by SH. However, increased expression and activity of iNOS were observed on days 1 and 3 of IH (P < 0.01 vs. control; n = 12/group) and were followed by a return to basal levels on days 7 and 14. Furthermore, IH-mediated neurobehavioral deficits in the water maze were significantly attenuated in iNOS knockout mice. We conclude that IH is associated with a time-dependent induction of iNOS and that the increased expression of iNOS may play a critical role in the early pathophysiological events leading to IH-mediated neurobehavioral deficits.  相似文献   

11.
12.
We used Western blotting to analyse the expression of different isoforms of nitric oxide synthase (NOS) in the rat vestibular nucleus complex (VNC) at various times following unilateral vestibular deafferentation (UVD), together with a radioenzymatic assay to compare NOS activity at the same time points. nNOS expression did not change significantly in the ipsilateral or contralateral VNC at any time following UVD. However, eNOS expression decreased significantly (P<0.05) in the contralateral VNC at 6 h post-UVD, recovering to normal levels by 50 h. iNOS was not expressed at any time following UVD. NOS activity demonstrated a significant increase in the contralateral VNC at 6 h post-UVD (P<0.05), recovering toward normal levels by 50 h.  相似文献   

13.
In this report, our findings highlighted the presence of a high level of calcium in the cortex following traumatic brain injury (TBI) in a rat model of fluid percussion-induced brain injury. This calcium increase represents a pitfall in the assessment of Ca2+-independent nitric oxide synthase (NOS) activity supposed to play a role in the secondary brain lesion following TBI. The so-called Ca2+-independent NOS activity measured in the injured cortex 72 h after TBI had the pharmacological profile of a Ca2+-dependent NOS and was therefore inhibited with a supplement of calcium chelator. The remaining activity was very low and iNOS protein was hardly immunodetected on the same sample used for NOS activity assay. The concentration of calcium chelator used in the assay should be revised and adjusted consequently to make sure that the calcium-free condition is achieved for the assay. Otherwise, the findings tend towards an overestimation of Ca2+-independent and underestimation of Ca2+-dependent NOS activities. The revised Ca2+-independent NOS activity assay was then tested, in relation with the amount of iNOS protein, in a model of LPS-induced neuroinflammation. Taken together, precautions should be taken when assessing the Ca2+-independent enzymatic activity in cerebral tissue after a brain insult.  相似文献   

14.
Nitric oxide (NO) is known to be involved in the modulation of neuroendocrine function. To clarify the role of different isoforms of NO synthase (NOS) in the neuroendocrine response to immune challenge, the expressions of neuronal NOS (nNOS) and inducible NOS (iNOS) genes in the hypothalamus following lipopolysaccharide (LPS) injection were examined using in situ hybridization. NOS activity was also determined by NADPH-diaphorase (NADPH-d) histochemistry. LPS (25 mg/kg) or sterile saline was injected intraperitoneally to male Wistar rats and the rats sacrificed 30 min, or 1, 2, 3, 5, 12 or 24 h after injection. nNOS mRNA expression in the paraventricular nucleus (PVN) was significantly increased 2 h after LPS injection. iNOS mRNA, which was not detected until 2 h after LPS injection, was significantly increased in the PVN 3 h after LPS injection. Both RNA expressions had returned to basal levels by 12 h after LPS injection. The number of NADPH-d positive cells was significantly increased 5 h after LPS injection. iNOS expression was more robust in parvocellular PVN, while nNOS was distributed mainly in the magnocellular PVN. Double in situ hybridization histochemistry revealed that some of the iNOS- (48.4%) or nNOS-positive cells (34. 3%) in the parvocellular PVN expressed CRF mRNA. The results demonstrate that LPS-induced sepsis causes significant increases in nNOS and iNOS gene expression with different time-courses and distributions, and that iNOS mRNA was more frequently co-localized with CRF-producing parvocellular neurons in the PVN. Thus, NO produced by iNOS and nNOS may play an important role in the neuroendocrine response to an immune challenge. Distinct differences in the distribution and time-course changes of iNOS and nNOS suggest different roles for the hypothalamic-pituitary-adrenal axis and/or neurohypophyseal system.  相似文献   

15.
The nitric oxide-synthesizing enzyme nitric oxide synthase (NOS) is present in the mammalian brain in three different isoforms, two constitutive enzymes (i.e., neuronal, nNOS, and endothelial eNOS) and one inducible enzyme (iNOS). All three isoforms are aberrantly expressed in Alzheimer's disease giving rise to elevated levels of nitric oxide apparently involved in the pathogenesis of this disease by various different mechanisms including oxidative stress and activation of intracellular signalling mechanisms. It still is a matter of debate, however, whether the abnormal expression of NOS isoforms has some primary importance in the pathogenetic chain and might thus be a potential therapeutic target or only reflects a secondary effect that occurs at more advanced stages of the disease process. To tackle this question, we analysed the expression of both eNOS and iNOS in patients with sporadic AD, in transgenic mice expressing human amyloid precursor protein (APP) with the Swedish double mutation under control of the Thy1 promotor (APP23 mice), and after electrolytic cortical lesion in rat, an experimental paradigm associated with elevated expression of APP. In all three conditions, an astrocytosis was induced accompanied by a strong increase of both iNOS and eNOS. Both NOS isoforms were frequently though not always colocalized. Thus, based on the expression pattern of NOS isoforms three types of astrocytes, expressing only one of the two isoforms or both together could be distinguished. In both AD and transgenic mice eNOS-expressing astrocytes exceeded iNOS-expressing astrocytes in number. Astrocytes with elevated levels of iNOS or eNOS were constantly seen in direct association with Abeta-deposits in AD and transgenic mice and were found in the vicinity of the lesion site in the rat cortex. The results of the present study show that expression of both iNOS and eNOS is increased in activated astrocytes under experimental conditions associated with elevated expression of APP (electrolytic brain lesion) or Abeta-deposition (APP23 transgenic mice). Therefore, it is suggested that altered expression of these NOS isoforms being part of AD pathology is secondary to the amyloid pathology and might not be primarily involved in the pathogenetic chain though it might contribute to the maintenance, self-perpetuation and progression of the neurodegenerative process.  相似文献   

16.
The nitric oxide-synthesizing enzyme nitric oxide synthase (NOS) is present in the mammalian brain in three different isoforms, two constitutive enzymes (i.e., neuronal, nNOS, and endothelial eNOS) and one inducible enzyme (iNOS). All three isoforms are aberrantly expressed in Alzheimer’s disease giving rise to elevated levels of nitric oxide apparently involved in the pathogenesis of this disease by various different mechanisms including oxidative stress and activation of intracellular signalling mechanisms. It still is a matter of debate, however, whether the abnormal expression of NOS isoforms has some primary importance in the pathogenetic chain and might thus be a potential therapeutic target or only reflects a secondary effect that occurs at more advanced stages of the disease process. To tackle this question, we analysed the expression of both eNOS and iNOS in patients with sporadic AD, in transgenic mice expressing human amyloid precursor protein (APP) with the Swedish double mutation under control of the Thy1 promotor (APP23 mice), and after electrolytic cortical lesion in rat, an experimental paradigm associated with elevated expression of APP. In all three conditions, an astrocytosis was induced accompanied by a strong increase of both iNOS and eNOS. Both NOS isoforms were frequently though not always colocalized. Thus, based on the expression pattern of NOS isoforms three types of astrocytes, expressing only one of the two isoforms or both together could be distinguished. In both AD and transgenic mice eNOS-expressing astrocytes exceeded iNOS-expressing astrocytes in number. Astrocytes with elevated levels of iNOS or eNOS were constantly seen in direct association with Aβ-deposits in AD and transgenic mice and were found in the vicinity of the lesion site in the rat cortex. The results of the present study show that expression of both iNOS and eNOS is increased in activated astrocytes under experimental conditions associated with elevated expression of APP (electrolytic brain lesion) or Aβ-deposition (APP23 transgenic mice). Therefore, it is suggested that altered expression of these NOS isoforms being part of AD pathology is secondary to the amyloid pathology and might not be primarily involved in the pathogenetic chain though it might contribute to the maintenance, self-perpetuation and progression of the neurodegenerative process.  相似文献   

17.
This study assessed the role of de novo nitric oxide (NO) production in the pathogenesis of experimental allergic encephalomyelitis (EAE) by using aminoguanidine (AG), an inhibitor of nitric oxide synthase (NOS). which preferentially inhibits the cytokine- and endotoxin-inducible isoform of NOS versus the constitutive isoforms consisting of endothelial and neuronal NOS. The maximum clinical severity of EAE and the duration of illness were significantly reduced or totally inhibited by twice daily subcutaneous injection of 100 mg/kg body weight AG. Histochemical staining for NADPH diaphorase, which detects enzymatic activity of NOS, revealed positive reactivity in untreated EAE rats both in parenchymal blood vessel walls and in anterior horn cell neurons, while normal rats and rats with EAE treated with AG showed predominantly the neuronal positivity. Moreover, this NADPH staining pattern was further supported by the immunohistochemical findings that endothelial NOS (eNOS) expression was increased in blood vessels in the inflamed lesions of untreated EAE rats and that inducible NOS (iNOS) was detected in some infiltrating inflammatory cells, while treatment with AG could significantly reduce both iNOS and eNOS production. These results suggest that: (i) both iNOS and eNOS are upregulated in inflamed areas of the rat central nervous system in EAE; (ii) increased NO production plays a role in the development of clinical signs in EAE; and (iii) selective inhibitors of iNOS and/or eNOS may have therapeutic potential for the treatment of certain autoimmune diseases.  相似文献   

18.
目的探讨依达拉奉预处理对小鼠脑缺血再灌注(IR)损伤后皮质一氧化氮合酶(NOS)表达的影响。方法 48只健康ICR小鼠被分为假手术组、对照组和依达拉奉组。依达拉奉组和对照组分别给予依达拉奉3 mg/(kg.d)和同等体积的生理盐水腹腔注射共7 d,然后建立小鼠IR模型;缺血1 h、再灌注24 h时应用2,3,5-氯化三苯基四氮唑(TTC)染色法测量各组脑梗死体积,应用免疫组化法检测各组小鼠皮质神经元型、、诱导型和内皮型NOS(nNOS、iNOS、eNOS)阳性细胞数。结果与假手术组比较,对照组小鼠皮质nNOS、iNOS和eNOS阳性细胞数明显增多(均P<0.05);与对照组比较,依达拉奉组脑梗死体积明显缩小,皮质nNOS和iNOS阳性细胞数明显减少,eNOS阳性细胞数明显增多(均P<0.05)。结论依达拉奉预处理可以影响IR小鼠皮质nNOS、iNOS和eNOS的表达,发挥神经保护作用。  相似文献   

19.
Nitric oxide has multiple physiologic roles in the CNS. Inhibiting nitric oxide synthesis might therefore alter functional activity within the brain. We used [14C]-2-deoxyglucose in vivo autoradiography to measure local CMRglc in "knockout" mice lacking the genes for either the endothelial (eNOS) or neuronal (nNOS) isoforms of nitric oxide synthase, and in the progenitor strains (SV129, C57B1/6). Glucose utilization levels did not significantly differ between nNOS and eNOS knockout mice and C57B1/6 mice in any of the 48 brain regions examined, but were relatively lower in some subcortical regions in SV129 mice.  相似文献   

20.
We have used several approaches (immunohistochemistry and enzyme histochemistry, Western blotting, biochemical assay of Ca(2+)-dependent catalytic activity) in order to detect differences in neuronal nitric oxide synthase (nNOS) expression and activity in various brain regions of young-adult (4-month-old) and aged (28-month-old) rats. In most of the brain regions examined (striatum, neocortex, olfactory cortex and hippocampus) some significant decrease in the density per unit area of nNOS neurons, detected either through immunohistochemistry or enzyme histochemistry, was observed in aged rats. However, only in the striatum and olfactory cortex this was accompanied by a significant decrease of the catalytic activity of the constitutive, Ca(2+)-dependent NOS form. In these two regions, the relative level of expression of nNOS protein was also significantly decreased, as assessed by Western blotting of proteic extracts from young-adult and aged rats. Other observed differences were a paler stain of neurons in some brain areas of the aged rats and differences of cellular compartmentalization of the protein in the same rats, as assessed through confocal microscopy. The present observations demonstrate that the expression and activity of nNOS show regionally-specific alterations in the brain of aged healthy rats, with a trend towards decrease, rather than toward increase as suggested by some previous reports. Therefore, hypotheses implicating nitric oxide increase in brain aging should be reconsidered on the basis of a clear-cut distinction between the physiological and the pathological aspects of the aging process.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号