首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Matrix attachment regions (MARs) are DNA sequences that may be involved in anchoring DNA/chromatin to the nuclear matrix and they have been described in both mammalian and plant species. MARs possess a number of features that facilitate the opening and maintenance of euchromatin. When incorporated into viral or non-viral vectors MARs can increase transgene expression and limit position-effects. They have been used extensively to improve transgene expression and recombinant protein production and promising studies on the potential use of MAR elements for mammalian gene therapy have appeared. These illustrate how MARs may be used to mediate sustained or higher levels of expression of therapeutic genes and/or to reduce the viral vector multiplicity of infection required to achieve consistent expression. More recently, the discovery of potent MAR elements and the development of improved vectors for transgene delivery, notably non-viral episomal vectors, has strengthened interest in their use to mediate expression of therapeutic transgenes. This article will describe the progress made in this field, and it will discuss future directions and issues to be addressed.  相似文献   

2.
Lin FH  Chen CH  Cheng WT  Kuo TF 《Biomaterials》2006,27(17):3333-3338
Currently, gene delivery systems can be divided into two parts: viral or non-viral vectors. In general, viral vectors have a higher efficiency on gene delivery. However, they may sometimes provoke mutagenesis and carcinogenesis once re-activating in human body. Lots of non-viral vectors have been developed that tried to solve the problems happened on viral vectors. Unfortunately, most of non-viral vectors showed relatively lower transfection rate. The aim of this study is to develop a non-viral vector for gene delivery system. Montmorillonite (MMT) is one of clay minerals that consist of hydrated aluminum with Si-O tetrahedrons on the bottom of the layer and Al-O(OH)2 octahedrons on the top. The inter-layer space is about 12 A. The room is not enough to accommodate DNA for gene delivery. In the study, the cationic hexadecyltrimethylammonium (HDTMA) will be intercalated into the interlayer of MMT as a layer expander to expand the layer space for DNA accommodation. The optimal condition for the preparation of DNA-HDTMA-MMT is as follows: 1 mg of 1.5CEC HDTMA-MMT was prepared under pH value of 10.7 and with soaking time for 2 h. The DNA molecules can be protected from nuclease degradation, which can be proven by the electrophoresis analysis. DNA was successfully transfected into the nucleus of human dermal fibroblast and expressed enhanced green fluorescent protein (EGFP) gene with green fluorescence emission. The HDTMA-MMT has a great potential as a vector for gene delivery in the future.  相似文献   

3.
One factor critical to successful gene therapy is the development of efficient delivery systems. Although advances in gene transfer technology including viral and non-viral vectors have been made, an ideal vector system has not yet been constructed. Due to the growing concerns over the toxicity and immunogenicity of viral DNA delivery systems, DNA delivery via improve viral routes has become more desirable and advantageous. The ideal improve viral DNA delivery system should be a synthetic materials plus viral vectors. The materials should also be biocompatible, efficient, and modular so that it is tunable to various applications in both research and clinical settings. The successful steps towards this improve viral DNA delivery system is demonstrated: a magnetofection system mediated by modified cationic chitosan-coated iron oxide nanoparticles. Dense colloidal cationic iron oxide nanoparticles serve as an uptake-enhancing component by physical concentration at the cell surface in presence of external magnetic fields; enhanced viral gene expression (3-100-fold) due to the particles is seen as compared to virus vector alone with little virus dose.  相似文献   

4.
5.
Gene therapy is a promising therapeutic modality for the treatment of cystic fibrosis (CF). Despite a better understanding of the molecular organization of the cystic fibrosis transmembrane conductance regulator (CFTR) gene and mutations resulting in pathophysiological and phenotypic alterations, several forms of treatments including gene therapy have failed to yield clinical success. Major limitations for the delivery of drugs and gene therapy vectors from reaching target cells in CF patients lie in physical and immunological barriers of airway epithelium. Over the last decade, non-viral and viral gene therapy approaches have been tested in preclinical studies and human clinical trials of CF. Outcomes of these studies have helped to identify hurdles that need to be overcome before such approaches can be routinely applied to patients. In addition to the physiological and immunological barriers of airway epithelium, vector transduction is also impaired by the absence or low-abundance of cellular receptors and co-receptors for viral binding and internalization. Thus, the initial enthusiasm for gene replacement therapy for CF following cloning of the CFTR gene dampened, as more limitations were recognized. Research directed towards improving the efficiency of gene transfer technology in CF, is focused on testing of compounds to enhance vector permeability and trafficking, identification and development of vectors which can transduce through alternate pathways, identification of airway epithelium-specific targeting ligands, and the identification of stem cells for combining cell therapy and gene therapy by ex vivo methods. Details provided in this article will give a comprehensive analysis of the prospects and limitations in CF gene therapy using viral and non-viral vectors.  相似文献   

6.
Chen J  Yu Z  Chen H  Gao J  Liang W 《Biomaterials》2011,32(5):1412-1418
Endosomal escape and nuclear entry are the two main barriers for successful non-viral gene delivery. To overcome these barriers, polyethylenimine (PEI) with a molecular weight of 800, conjugated to cholesterol (PEI 800-Chol) was synthesized to prepare polycation liposomes (PCLs). The effect of cationic polymers on transfection was investigated by pre-condensing DNA with these before using PCLs. The complexes of PCLs and protamine/DNA nanoparticles (PLPD) were introduced as efficient gene transfer vectors, and displayed obviously higher transfection efficiency (approximately 39-fold) than PCLs/DNA complexes. Kinetics of transgene expression indicated PLPD complexes could be maintained at a relatively high level over 72?h. The order of protamine addition affected the transfection of PLPD complexes. Pre-mixed and post-mixed PLPD complexes improved transfection, although the former was preferred. Distribution of FAM-labeled oligonucleotides (FAM-ODN) in cells mediated by PCLs were throughout the whole cell, while most FAM-ODN were nuclear when transfected with PLPD. These results suggest that the protonation of PEI and membrane destabilization of 1, 2-Dioleoyl-sn-glycero-3-phosphoethanolamine (DOPE) increases the endosomal escape ability of vectors. The addition of protamine, containing nuclear localization signals, improved nuclear entry of DNA. The internalization pathways for PCLs involved multiple processes and were possibly dependent on cell lines.  相似文献   

7.
Gene delivery has the potential to offer effective treatment to patients with life-threatening lung diseases such as cystic fibrosis, alpha1-antitrypsin deficiency and lung cancer. Phase I/II clinical trials have shown that, in principle, gene transfer to the lung is feasible and safe. However, gene expression from both viral and non-viral gene delivery systems has been inefficient. In addition to extra- and intracellular barriers, the host innate and acquired immune system represents a major barrier to successful gene transfer to the lung. Results from studies in experimental animals and clinical trials have shown that inflammatory, antibody and T cell responses can limit transgene expression duration and readministration of the gene transfer vector. We will review here how the development of pharmacological and/or immunological agents can modulate the host immune system and the limitations of these strategies. A better understanding of the immunological barriers which exist in the lung might allow for a more sustained expression of the transgene and importantly help overcome the problem of readministration of viral vectors.  相似文献   

8.
Abstract

Gene delivery offers therapeutic promise for the treatment of neurological diseases and spinal cord injury. Several studies have offered viral vectors as vehicles to deliver therapeutic agents, yet their toxicity and immunogenicity, along with the cost of their large-scale formulation, limits their clinical use. As such, non-viral vectors are attractive in that they offer improved safety profiles compared to viruses. Poly(ethylene imine) (PEI) is one of the most extensively studied non-viral vectors, but its clinical value is limited y its cytotoxicity. Recently, chitosan/DNA complex nanoparticles have een considered as a vector for gene delivery. Here, we demonstrate that DNA nanoparticles made of hyaluronic acid (HA) and chitosan have low cytotoxicity and induce high transgene expression in neural stem cells and organotypic spinal cord slice tissue. Chitosan-TPP/HA nanoparticles were significantly less cytotoxic than PEI at various concentrations. Additionally, chitosan-TPP/HA nanoparticles with pDNA induced higher transgene expression in vitro for a longer duration than PEI in neural stem cells. These results suggest chitosan-TPP/HA nanoparticles may have the potential to serve as an option for gene delivery to the spinal cord.  相似文献   

9.
Gene delivery is a promising technique that involves in vitro or in vivo introduction of exogenous genes into cells for experimental and therapeutic purposes. Successful gene delivery depends on the development of effective and safe delivery vectors. Two main delivery systems, viral and non-viral gene carriers, are currently deployed for gene therapy. While most current gene therapy clinical trials are based on viral approaches, non-viral gene medicines have also emerged as potentially safe and effective for the treatment of a wide variety of genetic and acquired diseases. Non-viral technologies consist of plasmid-based expression systems containing a gene associated with the synthetic gene delivery vector. Polysaccharides compile a large family of heterogenic sequences of monomers with various applications and several advantages as gene delivery agents. This chapter, compiles the recent progress in polysaccharide based gene delivery, it also provides an overview and recent developments of polysaccharide employed for in vitro and in vivo delivery of therapeutically important nucleotides, e.g. plasmid DNA and small interfering RNA.  相似文献   

10.
Cros JF  Palese P 《Virus research》2003,95(1-2):3-12
Most RNA viruses that lack a DNA phase replicate in the cytoplasm. However, several negative-stranded RNA viruses such as influenza, Thogoto, and Borna disease viruses replicate their RNAs in the nucleus, taking advantage of the host cell's nuclear machinery. A challenge faced by these viruses is the trafficking of viral components into and out of the nucleus through the nuclear membrane. The genomic RNAs of these viruses associate with proteins to form large complexes called viral ribonucleoproteins (vRNPs), which exceed the size limit for passive diffusion through the nuclear pore complex (NPC). To insure efficient transport across the nuclear membrane, these viruses use nuclear import and export signals exposed on the vRNPs. These signals recruit the cellular import and export complexes, which are responsible for the translocation of the vRNPs through the NPC. The ability to control the direction of vRNP trafficking throughout the viral life cycle is critical. Various mechanisms, ranging from simple post-translational modification to complex, sequential masking-and-exposure of localization signals, are used to insure the proper movement of the vRNPs.  相似文献   

11.
Plasmids are circular or linear DNA molecules propagated extra-chromosomally in bacteria. Evolution shaped plasmids are inherently mosaic structures with individual functional units represented by distinct segments in the plasmid genome. The patchwork of plasmid genetic modules is a convenient template and a model for the generation of artificial plasmids used as vehicles for gene delivery into human cells. Plasmid gene vectors are an important tool in gene therapy and in basic biomedical research, where these vectors offer efficient transgene expression in many settings in vitro and in vivo. Plasmid vectors can be attached to nuclear directing ligands or transferred by electroporation as naked DNA to deliver the payload genes to the nuclei of the target cells. Transgene expression silencing by plasmid sequences of bacterial origin and immune stimulation by bacterial unmethylated CpG motifs can be avoided by the generation of plasmid-based minimized DNA vectors, such as minicircles. Systems of efficient site-specific integration into human chromosomes and stable episomal maintenance in human cells are being developed for further reduction of the chances for transgene silencing. The successful generation of plasmid vectors is governed by a number of vector design rules, some of which are common to all gene vectors, while others are specific to plasmid vectors. This review is focused both on the guiding principles and on the technical know-how of plasmid gene vector design.  相似文献   

12.
L Li  D Zahner  Y Su  C Gruen  G Davidson  PA Levkin 《Biomaterials》2012,33(32):8160-8166
The delivery of nucleic acids such as plasmid DNA and siRNA into cells is a cornerstone of biological research and is of fundamental importance for medical therapeutics. Although most gene delivery therapeutics in clinical trials are based on viral vectors, safety issues remain a major concern. Non-viral vectors, such as cationic lipids and polymers, offer safer alternatives but their gene delivery efficiencies are usually not high enough for clinical applications. Thus, there is a high demand for more efficient and safe non-viral vectors. Here, we present a facile two-step method based on thiol-yne click chemistry for parallel synthesis of libraries of new biomimetic cationic thioether lipids. A library of novel lipids was synthesized using the developed method and more than 10% of the lipids showed highly efficient transfection in different cell types, surpassing the efficiency of several popular commercial transfection reagents. One of the new lipids showed highly efficient siRNA delivery to multiple cell types and could successfully deliver DNA plasmid to difficult-to-transfect mouse embryonic stem cells (mESC). Analysis of structure-activity relationship revealed that the length of the hydrophobic alkyl groups was a key parameter for efficient cell transfection and was more important for transfection efficiency than the nature of cationic head groups. The correlation of the size and surface charge of liposomes with transfection efficiency is described.  相似文献   

13.
Immune responses to lentiviral vectors   总被引:2,自引:0,他引:2  
Efficient delivery and sustained expression of a therapeutic gene into human tissues are the requisite to accomplish the high expectations of gene therapy. A major challenge has concerned development of gene transfer systems capable of efficient cell transduction and transgene expression without harm to the recipient. A lot of work has been done to demonstrate the efficacy of gene therapy in animal models that mimic situations in humans. Use of lentiviral vectors (LVs) offers multiple advantages for gene replacement therapy, because they combine efficient delivery, ability to transduce proliferating and resting cells, capacity to integrate into the host chromatin to provide stable long-term expression of the transgene, absence of any viral genes in the vector and absence of interference from preexisting viral immunity. However, one of the major barriers to stable gene transfer by LVs and other viral vectors is the development of innate and adaptive immune responses to the delivery vector and the transferred therapeutic transgene. Since this greatly hinders the therapeutical benefits of gene therapy by LVs, developing strategies to overcome the host immune response to the transfer vector and the transgene is a matter of current investigation.  相似文献   

14.
Non-viral gene delivery holds great promise for promoting tissue regeneration, and offers a potentially safer alternative than viral vectors. Great progress has been made to develop biodegradable polymeric vectors for non-viral gene delivery in 2D culture, which generally involves isolating and modifying cells in vitro, followed by subsequent transplantation in vivo. Scaffold-mediated gene delivery may eliminate the need for the multiple-step process in vitro, and allows sustained release of nucleic acids in situ. Hydrogels are widely used tissue engineering scaffolds given their tissue-like water content, injectability and tunable biochemical and biophysical properties. However, previous attempts on developing hydrogel-mediated non-viral gene delivery have generally resulted in low levels of transgene expression inside 3D hydrogels, and increasing hydrogel stiffness further decreased such transfection efficiency. Here we report the development of biodegradable polymeric vectors that led to efficient gene delivery inside poly(ethylene glycol) (PEG)-based hydrogels with tunable matrix stiffness. Photocrosslinkable gelatin was maintained constant in the hydrogel network to allow cell adhesion. We identified a lead biodegradable polymeric vector, E6, which resulted in increased polyplex stability, DNA protection and achieved sustained high levels of transgene expression inside 3D PEG-DMA hydrogels for at least 12 days. Furthermore, we demonstrated that E6-based polyplexes allowed efficient gene delivery inside hydrogels with tunable stiffness ranging from 2 to 175 kPa, with the peak transfection efficiency observed in hydrogels with intermediate stiffness (28 kPa). The reported hydrogel-mediated gene delivery platform using biodegradable polyplexes may serve as a local depot for sustained transgene expression in situ to enhance tissue engineering across broad tissue types.  相似文献   

15.
Polycation-based gene therapy: current knowledge and new perspectives   总被引:1,自引:0,他引:1  
At present, gene transfection insufficient efficiency is a major drawback of non-viral gene therapy. The 2 main types of delivery systems deployed in gene therapy are based on viral or non-viral gene carriers. Several non-viral modalities can transfer foreign genetic material into the human body. To do so, polycation-based gene delivery methods must achieve sufficient efficiency in the transportation of therapeutic genes across various extracellular and intracellular barriers. These barriers include interactions with blood components, vascular endothelial cells and uptake by the reticuloendothelial system. Furthermore, the degradation of therapeutic DNA by serum nucleases is a potential obstacle for functional delivery to target cells. Cationic polymers constitute one of the most promising approaches to the use of viral vectors for gene therapy. A better understanding of the mechanisms by which DNA can escape from endosomes and traffic to enter the nucleus has triggered new strategies of synthesis and has revitalized research into new polycation-based systems. The objective of this review is to address the state of the art in gene therapy with synthetic and natural polycations and the latest advances to improve gene transfer efficiency in cells.  相似文献   

16.
For efficient gene delivery, chimeric vectors combining non-viral vectors with viral components have been developed. In particular, increasing attention has been paid to viral fusion activity. HVJ (hemagglutinating virus of Japan; Sendai virus) fuses with the cell membrane at neutral pH, and HN and F, fusion proteins of the virus, contribute to the cell fusion. For fusion-mediated gene transfer, DNA-loaded liposomes were fused with UV-inactivated HVJ to form the fusion liposome, HVJ-liposome. Fusion-mediated delivery protects the molecules incorporated in the liposome from degradation in endosomes and lysosomes before reaching the cytoplasm. Reconstituted pseudovirions of fusion-competent viruses such as HVJ and influenza virus have been also developed by a detergent-lysis and-removal method. A more direct and practical approach is the conversion of fusion-competent virions to non-viral gene delivery particles. Based on this concept, the HVJ envelope vector was developed using inactivated particles of HVJ and has been utilized for gene therapy experiments and functional screening for therapeutic genes. A tissue-targeting HVJ envelope vector was also constructed.  相似文献   

17.
Summary.  Peptide and cationic lipid-based gene transfer vectors have shown promise for gene therapy but are still less efficient than viral gene transfer vectors. We have examined the mechanism of gene transfer of different adenovirus-mimetic peptides in the presence and absence of a cationic lipid, lipofectamine and/or adenovirus with the aim of improving the design of nonviral vectors for efficient gene transfer. Three polylysine-adenovirus-mimetic peptides were synthesised and examined for their efficacy for gene transfer. Transfection levels in four cell lines: adenovirus permissive human tracheal epithelial (56FHTE8o), human lung carcinoma (A549), human colon carcinoma (Caco-2) cells, and adenovirus low-permissive Chinese hamster ovary (CHO) cells, were examined. The polylysine-adenovirus-mimetic peptides increased the level of transfection of a reporter transgene in all cell lines. Transfection was substantially increased when an adenovirus was added to cells after pre-incubation with the vector complexes. Formulation of the peptide vector complexes with lipofectamine increased their transfection efficacy and the subsequent addition of an adenovirus increased transfection levels even further but only in permissive cells. Pre-incubation of cells with lipofectamine-peptide vector complexes increased cell binding of the adenovirus but uptake was only increased in intermediate- or non-permissive cells. The addition of lipofectamine increased transgene expression of a recombinant adenovirus in non-permissive cells but not in permissive cells. Enhancement with an adenovirus of peptide vector gene transfer is probably due to more efficient endosome escape while enhancement of gene transfer by peptide vectors complexed to lipofectamine is due to an increase in cellular binding and/or internalisation of the adenovirus. Received February 8, 2002; accepted August 23, 2002  相似文献   

18.
Min KA  Lee SK  Kim CK 《Biomaterials》2005,26(9):1063-1070
To improve transgene expression of a non-viral gene delivery system, an Epstein-Barr virus (EBV)-based plasmid and cationic emulsion complex was prepared and evaluated. Cationic emulsion was formulated with castor oil, 3-N-(N',N'-dimethylaminoethane)-carbamoyl cholesterol (DC-Chol) and other co-emulsifiers. An EBV-based plasmid containing the two EBV components, origin of replication (oriP) and EBV nuclear antigen 1 (EBNA-1), was constructed. The physical characteristics of the emulsion and the emulsion/DNA complex were determined. After cells were transfected with cationic emulsion/EBV-based plasmid complex, transfection efficiency and expression pattern were evaluated using green fluorescent protein (GFP) as a reporter. The average particle size and zeta potential of the emulsion itself were 96 nm and + 17 mV, respectively. The emulsion showed stable size distribution up to at least one month. With an increase of emulsion to DNA ratio, zeta-potential increased from negative to positive and the particle size decreased to 200-300 nm. The complex was stable against DNase I digestion and showed comparable transfection efficiency with Lipofectin for several tested cell lines. An enhanced and prolonged gene expression was achieved using EBV-based plasmid and cationic emulsion complex. Combining physically stable emulsion with self-replicating EBV-based plasmid may confer more effective gene expression.  相似文献   

19.
We have reported that tyrosine-phosphorylated forms of a cellular protein, FKBP52, inhibit the second-strand DNA synthesis of adeno-associated virus 2 (AAV), leading to inefficient transgene expression from recombinant AAV vectors. To further explore the role of FKBP52 in AAV-mediated transduction, we established murine embryo fibroblasts (MEFs) cultures from FKBP52 wild-type (WT), heterozygous (HE), and knockout (KO) mice. Conventional AAV vectors failed to transduce WT MEFs efficiently, and the transduction efficiency was not significantly increased in HE or KO MEFs. AAV vectors failed to traffic efficiently to the nucleus in these cells. Treatment with hydroxyurea (HU) increased the transduction efficiency of conventional AAV vectors by approximately 25-fold in WT MEFs, but only by approximately 4-fold in KO MEFs. The use of self-complementary AAV (scAAV) vectors, which bypass the requirement of viral second-strand DNA synthesis, revealed that HU treatment increased the transduction efficiency approximately 23-fold in WT MEFs, but only approximately 4-fold in KO MEFs, indicating that the lack of HU treatment-mediated increase in KO MEFs was not due to failure of AAV to undergo viral second-strand DNA synthesis. Following HU treatment, approximately 59% of AAV genomes were present in the nuclear fraction from WT MEFs, but only approximately 28% in KO MEFs, indicating that the pathway by which HU treatment mediates nuclear transport of AAV was impaired in KO MEFs. When KO MEFs were stably transfected with an FKBP52 expression plasmid, HU treatment-mediated increase in the transduction efficiency was restored in these cells, which correlated directly with improved intracellular trafficking. Intact AAV particles were also shown to interact with FKBP52 as well as with dynein, a known cellular protein involved in AAV trafficking. These studies suggest that FKBP52, being a cellular chaperone protein, facilitates intracellular trafficking of AAV, which has implications in the optimal use of recombinant AAV vectors in human gene therapy.  相似文献   

20.
Transfection efficiencies of non-viral gene delivery vectors commonly vary with cell type, owing to differences in proliferation rates and intracellular characteristics. Previous work demonstrated that the poly(diethylaminoethylmethacrylate) (PDEAEM)/Pluronic F127 pentablock copolymers exhibit transfection in vitro selectively in cancer cell lines as opposed to non-cancerous cell lines. This study continues the investigation of intracellular barriers to transfection using this vector in "normal" and cancer cell lines to understand the underlying mechanisms of the selectivity. Results from Part I of this investigation showed, using conjugated epidermal growth factor, that cellular uptake of these polyplexes is not a major barrier in these systems. Part II of this work continues the investigation into the other potential intracellular barriers, endosomal escape and nuclear entry, using a lysosomotropic agent chloroquine (CLQ), and a nuclear localization signal (NLS) SV40, respectively. Lack of effectiveness of NLS peptide in improving the transfection efficiency suggests that nuclear uptake might not be the major intracellular barrier using the pentablock copolymer vectors, or that the nuclear transport might not be primarily achieved through nuclear pores. However, inclusion of CLQ led to a dramatic enhancement in the level of gene expression, with an almost two orders of magnitude increase in expression seen in normal cell lines, compared with that the increase observed in cancer cell lines. The different lysosomal pH values in normal vs cancer cells was believed to cause the pentablock copolymer vectors to behave distinctly during transport through endocytic pathways, with greater loss of functional DNA occurring in normal cells containing more acidic endocytic vesicles in contrast to cancer cells with less acidic vesicles. Interestingly, CLQ introduced almost no enhancement in the transfection with the control vector ExGen which lacked selectivity of transfection. Exploiting intracellular differences between normal and cancer cells for gene delivery vector design offers a new paradigm to achieve transfection selectivity based on intracellular differences rather than conventional approaches involving vector modification using specific ligands for targeted delivery.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号