首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Preclinical studies in animal models and human clinical trials have evaluated the safety and efficacy of adenoviral vectors for cancer gene therapy. These studies have indicated that gene delivery via adenoviral vectors, including p53 gene therapy, represents a promising therapeutic modality for many types of human cancers. This review focuses on novel strategies to induce apoptosis in glioma cells by transduction with adenoviral vectors carrying a variety of apoptosis-related genes, including Fas ligand, Fas, FADD, caspase-8, p53, p33ING1, p73alpha, Bax, Apaf-1, caspase-9, IkappaBdN, caspase-3, Bcl-2, and Bcl-X(L). We conclude that adenoviral vector-mediated delivery of apoptosis-related genes other than p53 is a potentially useful gene therapy approach toward the treatment of human brain tumors.  相似文献   

2.
Researchers have conducted numerous pre-clinical and clinical gene transfer studies using recombinant viral vectors derived from a wide range of pathogenic viruses such as adenovirus, adeno-associated virus, and lentivirus. As viral vectors are derived from pathogenic viruses, they have an inherent ability to induce a vector specific immune response when used in vivo. The role of the immune response against the viral vector has been implicated in the inconsistent and unpredictable translation of pre-clinical success into therapeutic efficacy in human clinical trials using gene therapy to treat neurological disorders. Herein we thoroughly examine the effects of the innate and adaptive immune responses on therapeutic gene expression mediated by adenoviral, AAV, and lentiviral vectors systems in both pre-clinical and clinical experiments. Furthermore, the immune responses against gene therapy vectors and the resulting loss of therapeutic gene expression are examined in the context of the architecture and neuroanatomy of the brain immune system. The chapter closes with a discussion of the relationship between the elimination of transgene expression and the in vivo immunological synapses between immune cells and target virally infected brain cells. Importantly, although systemic immune responses against viral vectors injected systemically has thought to be deleterious in a number of trials, results from brain gene therapy clinical trials do not support this general conclusion suggesting brain gene therapy may be safer from an immunological standpoint.  相似文献   

3.
Adenovirus-mediated gene therapy holds significant potential especially for applications requiring high levels of target tissue transduction. While significant advances in clinical adenoviral gene therapy applications have been made in cancer, the clinical translation of adenoviral gene replacement therapy for genetic disease has lagged. Encouragingly, advances in vector production have led to the development of Helper-Dependent ("gutted" or "high capacity") adenoviral vectors (HDV) deleted of all viral coding genes. HDV significantly reduces the chronic toxicity associated with early generation adenoviral vectors that has been most significant after systemic administration in both small and large animal models. However, the field remains confounded by innate immune responses inherent to adenovirus, and more generally, to the adaptive immune response to transgene. Together they decrease the effective therapeutic index for any particular treatment. This review summarizes the current advances toward understanding the decisive cell and molecular mechanisms underlying the acute toxicity to systemic HDV administration. We focus on the complex immune response and consequences of systemic vector delivery in the context of liver-directed monogenic disease therapy. Future development of interventions to avoid the innate immune response, including vector and pharmacologic manipulations, should further contribute to minimizing vector toxicity while maximizing the efficacy of systemic HDV gene transfer.  相似文献   

4.
The efficacy of various currcntly available therapeutic strategies for bladder cancer is not always suffcient, especially for the advanced disease, recurrent superficial cancer, and treatment-resistant carcinoma in situ. Advances in genetic and molecular biology have led to novel approaches for cancer treatment. Gene therapy is currently one of the most promising strategies against various malignancies, and several clinical trials have been approved worldwide. Various strategies for modulating the genetic state have been applied in bladder cancer treatment, and encouraging results have been demonstrated both in vitro and in vivo. Although the therapeutic genes work dramatically when the transgenes are effectively expressed in the targeted cells, however, a sufficient rate of transduction cannot always be achieved. The most significant obstacle for clinical application of cancer gene therapy might be the method for sufficient delivery and expression of the therapeutic genes. Bladder is an easily accessible organ because of its anatomy; however, a glycosaminoglycan (GAG) layer on the bladder mucosa may protect integration of exo-delivered genetic vectors. Various strategies are applied for improving the transduction efficacy of the therapeutic genes into the bladder cancer cells. These strategies include the modification of adenoviral fibers, cotransduction of the materials for enhancing the viral infectivity, and disruption of the GAG layer. Recent advances in the field of gene therapy for bladder cancer are briefly summarized in this review.  相似文献   

5.
Gene therapy has the potential to improve the clinical outcome of many cancers by transferring therapeutic genes into tumor cells or normal host tissue. Gene transfer into tumor cells or tumor-associated stroma is being employed to induce tumor cell death, stimulate anti-tumor immune response, inhibit angiogenesis, and control tumor cell growth. Viral vectors have been used to achieve this proof of principle in animal models and, in select cases, in human clinical trials. Nevertheless, there has been considerable interest in developing nonviral vectors for cancer gene therapy. Nonviral vectors are simpler, more amenable to large-scale manufacture, and potentially safer for clinical use. Nonviral vectors were once limited by low gene transfer efficiency and transient or steadily declining gene expression. However, recent improvements in plasmid-based vectors and delivery methods are showing promise in circumventing these obstacles. This article reviews the current status of nonviral cancer gene therapy, with an emphasis on combination strategies, long-term gene transfer using transposons and bacteriophage integrases, and future directions.  相似文献   

6.
Gene therapy is an interesting approach for the correction of defective genes, the treatment of cancer and the introduction of immunomodulatory genes. Various techniques for gene transfer into cells or tissues have been developed within the last decade; these can be divided generally into viral and nonviral gene transfer systems. Nonviral techniques include the liposome- or gene gun-mediated introduction of therapeutic genes; however, the efficiency of gene transfer by these applications is still very low. In contrast, viruses have optimised their strategies for efficient infection of virtually any cell type in a mammalian organism. The genetic modification of genomes from different virus families (Adenoviridae, Retroviridae, Herpesviridae) led to the development of gene therapy vectors with a similar capacity to infect cells or tissues as that of wild type viruses. In contrast to wild type viruses, gene therapy vectors are engineered to transfer therapeutic genes into the target cells or tissues. In addition, they have lost their capacity for replication in target cells, because of the removal of essential genes, which allows replication only in specialised packaging cell lines engineered for the production of recombinant viruses. Despite considerable progress over the past decade in the generation of gene transfer systems with reduced immunogenic properties, the remaining immunogenicity of many gene therapy vectors is still the major hurdle, preventing their frequent application in clinical trials. Recombinant adenoviruses have been shown to be promising vectors for gene therapy, since they are able to transduce both quiescent and proliferating cells very efficiently. However, a major disadvantage of adenoviral vectors lies in the activation of both the innate and adaptive parts of the recipient's immune system when applied in vivo. The inflammatory responses induced by adenovirus particles can be very strong and can be fatal in patients treated with these adenoviral constructs. Therefore, many experiments have been performed in the effort to prevent these inflammatory responses mediated by adenoviral particles. The depletion of cell populations responsible for these inflammatory responses as well as the application of immunosuppressive drugs have been investigated. Moreover, the generation of less immunogenic adenoviral vectors by further genetic modification within the adenoviral genome has led to vectors with reduced immunogenic properties. Both strategies to reduce inflammatory responses against adenoviral particles are discussed in this review.  相似文献   

7.
The introduction of genes to cardiovascular cells in vivo remains the major challenge for current gene therapy modalities. However, recent developments in retargeting adenoviral vectors are promising to improve transduction efficiency in the cardiovascular cells. After systemic application, most adenoviral vectors are trapped by the liver, hampering delivery to target cardiovascular tissues. Furthermore, a majority of vectors for vascular gene transfer utilizes strong heterologous viral promoters, such as CMV. A potential side effect related to the use of such vectors is the systemic organ toxicity resulting from unrestricted transgene expression. These vectors have the additional problem of being frequently shut-down in vivo. Therefore, both retargeting adenoviral vectors and the use of tissue-specific promoter-driven vectors offer an enhanced safety profile by reducing ectopic expression in vital organs including the liver and lung. However, the limiting factor for the use of tissue-specific promoters is the low-level of expression compared with their viral counterparts. Both the development of efficient and strong vectors using cell-specific regulatory elements and the production of therapeutic proteins at sufficient levels is urgently needed to inhibit vasculoproliferative disorders. This review will focus on some of the recent achievements in vector development relevant to the delivery of vascular gene therapies targeted to the vascular endothelium, smooth muscle cells and macrophages during arterial remodelling.  相似文献   

8.
Adenoviral vectors can efficiently transduce a broad variety of different cell types and have been used extensively in preclinical and clinical studies. However, early generation of adenoviral vectors retained residual adenoviral genes that contribute to inflammatory immune responses and toxicity. In addition, these vectors often result in transient expression of the potentially therapeutic transgene. Some clinical trials based on early generation adenoviral vectors have been discontinued because of acute inflammatory responses and toxicity and even one patient has died as a direct consequence of adenoviral toxicity. The latest generation of high-capacity adenoviral vectors is devoid of viral genes, and is having a significantly improved safety profile and yielding more prolonged transgene expression compared to early generation vectors. Nevertheless, transgene expression gradually declines even when high-capacity adenoviral vectors are used, possibly due to the gradual loss of vector genomes. Despite their improved safety, high-capacity adenoviral vectors can still trigger transient toxic effects in animals and patients. Restricting the tropism of adenoviral vectors by immunologic or genetic re-targeting may further improve their therapeutic window. The safety of adenoviral vectors has been improved further through the development of safer packaging systems that eliminate the homologous overlap between vector and helper sequences and therefore prevent formation of replication-competent adenoviruses (RCA). RCA could exacerbate inflammatory responses and act as a helper to rescue adenoviral vectors, potentially increasing the effective vector dose. Conditionally replicating adenoviruses (CRAds) have been developed for cancer gene therapy, which replicate selectively in some cancer cells. The use of CRAds in combination with chemotherapy yielded therapeutic effects in patients suffering from cancer but dose-limiting toxicity was apparent. Although there appears to be a very low theoretical risk of malignancy that is predominantly associated with the occurrence of E1-positive recombinants, no malignancies have been reported that were associated with adenoviral vectors. Nevertheless, integrating adenoviral vectors carry a greater malignancy risk due to their ability to integrate randomly into the target genomes.  相似文献   

9.
Skeletal muscle is a target tissue of choice for the gene therapy of both muscle and non-muscle disorders. Investigations of gene transfer into muscle have progressed considerably from the expression of plasmid reporter genes to the production of therapeutic proteins such as trophic factors, hormones, antigens, ion channels or cytoskeletal proteins. Viral vectors are intrinsically the most efficient vehicles to deliver genes into skeletal muscles. But, because viruses are associated with a variety of problems (such as immune and inflammatory responses, toxicity, limited large scale production yields, limitations in the size of the carried therapeutic genes), nonviral vectors remain a viable alternative. In addition, as nonviral vectors allow to transfer genetic structures of various sizes (including large plasmid DNA carrying full-length coding sequences of the gene of interest), they can be used in various gene therapy approaches. However, given the lack of efficiency of nonviral vectors in experimental studies and in the clinical settings, the overall outcome clearly indicates that improved synthetic vectors and/or delivery techniques are required for successful clinical gene therapy. Today, most of the potential muscle-targeted clinical applications seem geared toward peripheral ischemia (mainly through local injections) and cancer and infectious vaccines, and one locoregional administration of naked DNA in Duchenne muscular dystrophy. This review updates the developments in clinical applications of the various plasmid-based non-viral methods under investigation for the delivery of genes to muscles.  相似文献   

10.
Conclusions The experimental results from the use of gene transfer techniques for cancer therapy are promising but, at the same time, somewhat perplexing. Progress will depend on the further understanding of the biology of tumour interaction with the immune system, as this would be important for the development of optimal strategies for harnessing an effective immune response against tumours. On the other hand, extrapolation from laboratory models to human disease is limited and, therefore, there is a requirement for well-planned clinical studies. Although numerous viral and non-viral methods of gene transfer are available currently, in order to achieve realistic therapeutic efficacy for in vivo gene therapy of cancer there is a pressing need to improve on existing vectors. Hopefully, effort being directed at this objective will result in the development of safer, more highly efficient and well-targeted vectors which in turn will lead to the reality of wide clinical application.  相似文献   

11.
12.
A gene therapy of synovial tissue is potentially a novel therapeutic method in rheumatoid arthritis (RA). The method induces expression of anti-arthritic molecules in target cells, and is also useful for the investigation of novel therapeutic targets in vitro. Previous studies showed that viral vectors, which can infect non-proliferative cells well, i.e. adenovirus-based vector, were effective in gene transfer to synovial tissue. In this review, we discuss the properties and effectiveness of these methods and our investigations in forcing expression in synovial tissue or cells. The methods of gene transfer are classified into two categories : virus vectors and virus-free vectors. The virus vectors seem to be more applicable to clinical approaches since clinical trials of adeno-associated virus mediated gene therapy were performed in 2007. At the same time, many effective novel virus-free vectors have been developed. Although these gene transfer technologies still have to be improved more to warrant their safety, the gene therapy is an ideal technique in performing "Bench to Clinic and Clinic to Bench" research studies. We hope that it will be applied to RA therapy in near future.  相似文献   

13.
Gene therapy is a promising strategy for the treatment of several inherited and acquired human diseases. Several vector platforms exist for the delivery of therapeutic nucleic acids into cells. Vectors based on viruses are very efficient at introducing gene constructs into cells, but their use has been associated with genotoxic effects of vector integration or immunological complications due to repeated administration in vivo. Non-viral vectors are easier to engineer and manufacture, but their efficient delivery into cells is a major challenge, and the lack of their chromosomal integration precludes long-term therapeutic effects. Transposable elements are non-viral gene delivery vehicles found ubiquitously in nature. Transposon-based vectors have the capacity of stable genomic integration and long-lasting expression of transgene constructs in cells. Molecular reconstruction of Sleeping Beauty, an ancient transposon in fish, represents a cornerstone in applying transposition-mediated gene delivery in vertebrate species, including humans. This review summarizes the state-of-the-art in the application of transposable elements for therapeutic gene transfer, and identifies key targets for the development of transposon-based gene vectors with enhanced efficacy and safety for human applications.  相似文献   

14.
There is now conclusive evidence that gene therapy can lead to real clinical benefit. Initial enthusiasm has been muted by set-backs related to viral vectors including retroviral oncogenesis and adenoviral inflammatory response. Plasmid-mediated muscle-targeted gene transfer offers the potential of a cost-effective pharmaceutical grade therapy delivered by simple intramuscular injection without the need for anaesthetic, cell culture, transplantation or immunosuppression. This approach is particularly appropriate for long-term circulating therapeutic protein replacement currently requiring repeated injection therapy. Wide-ranging clinical applications include haemophilia, chronic anaemia, growth hormone deficiency and diabetes. Inadequate transgene expression, unregulated protein delivery and immune response have been major limiting factors. Recent innovations including in situ electroporation enabling sustained systemic protein delivery within the therapeutic range are reviewed. Pharmacological and physiological approaches to regulation are discussed in addition to the role of innate and humoral immunity. Translation of advances in all of these areas to clinical success will enable muscle-targeted gene therapy to capitalise on its inherent strengths and realise its long-standing promise.  相似文献   

15.
Adenovirus-based cancer gene therapy   总被引:11,自引:0,他引:11  
Over the past decade, adenovirus (Ad)-based vectors have been used extensively in the context of cancer gene therapy. Two basic strategies have been pursued for the use of Ad vectors in cancer gene therapy: 1) approaches aimed at direct tumor cell killing through delivery of replicating oncolytic viruses or non-replicating vectors encoding tumor suppressor genes, suicide genes or anti-angiogenic genes, and 2) immunotherapeutic approaches aimed at inducing host anti-tumor immune responses that can destroy tumor cells at both primary and metastatic locations. Both strategies offer the potential of selective tumor cell destruction without damage to normal tissues. Extensive pre-clinical and clinical studies have been conducted based on these strategies. Encouraging results have been obtained but robust clinical efficacy remains elusive. Several obstacles limiting the therapeutic activity of Ad vectors have been encountered, including efficiency of tumor cell transduction and inhibition of efficacy by anti-Ad host immune responses. However, expanding knowledge in the areas of Ad biology and tumor biology continues to lead to increasingly sophisticated approaches to address these issues. A review of various Ad-based cancer gene therapy approaches and recent progress in the area are presented herein.  相似文献   

16.
Since Cystic Fibrosis (CF) is an autosomal recessive disorder due to mutations in the CFTR (Cystic Fibrosis Transmembrane Conductance Regulator) gene, studies towards a gene therapy approach to its treatment followed immediately upon the cloning of the gene. It was demonstrated that the insertion of a single copy of the wild-type gene restored the normal phenotype in CF cells in vitro. Encouraging results were obtained in many in vivo model systems (CF transgenic mice) involving viral as well as non-viral vectors, which demonstrated the recovery of CFTR function in the airways. These results constituted the basis for human studies. Of those with a non-viral approach, a total of seven clinical trials using cationic lipids have reported data on efficiency, efficacy and safety. An effective gene transfer approach for the treatment of CF lung disease is not however imminent: low transfection efficiency and poor maintenance of gene expression are so far the main obstacles on this therapeutic path. On the other hand, no important adverse effects have been documented and repeated administration in humans is possible. The understanding of tissue and cellular barriers is a prerequisite for the development of more efficient non-viral gene therapy protocols for CF patients. While cationic lipids have been shown to be blocked by the mucous airway barrier and not be able to transfect differentiated respiratory epithelial cells, a new class of non-viral vectors, cationic polymers, are endowed with chemical and biological properties that make them more efficient in mediating gene transfer than lipids. Cationic polymers, such as polyethylenimine, are promising vectors for CF lung gene therapy.  相似文献   

17.
Adenovirus-mediated gene transfer to cerebral circulation   总被引:3,自引:0,他引:3  
Gene therapy may, be a promising approach for treatment of cerebrovascular disease. An adenoviral vector encoding beta-galactosidase was administered intracisternally or intraventricularly into the brain of rats. Efficient expression of the reporter gene was observed at the cerebral blood vessels and perivascular tissues. When the adenoviral vector was delivered into CSF of dogs suffering from subarachnoid hemorrhage, prominent expressions of transgene were observed. Introduction of the vector to the ischemic brain of rats provided efficient transgene expression in the peri-ischemic area. Therefore, gene transfer to the cerebral blood vessel and brain may be a promising approach for gene therapy of stroke. Atherosclerotic lesion plays an important role in stroke. We evaluated efficacy of adenovirus-mediated gene transfer to the atherosclerotic vessels from monkeys and rabbits using an ex vivo gene transfer system. Efficiency of transgene expression in the atherosclerotic endothelium was better than that of normal vessels in both animals. Thus, the endothelium of atherosclerotic vessels may be a good target for gene therapy. Next, we transfected atherosclerotic carotid arteries from rabbits with an adenoviral vector encoding endothelial nitric oxide synthase (eNOS). After overexpression of eNOS in the atherosclerotic arteries, the response to acetylcholine was augmented, showing similar relaxation with normal vessels. These results suggest that gene transfer to atherosclerotic vessels improves endothelial function, which may be a new therapeutic approach for cerebrovascular disease.  相似文献   

18.
Adenovirus-mediated gene transfer to muscle is a promising technology for gene therapy of Duchenne muscular dystrophy (DMD). However, currently available recombinant adenovirus vectors have several limitations, including a limited cloning capacity of approximately 8.5 kb, and the induction of a host immune response that leads to transient gene expression of 3-4 weeks in immunocompetent animals. Gene therapy for DMD could benefit from the development of adenoviral vectors with an increased cloning capacity to accommodate a full-length (approximately 14 kb) dystrophin cDNA. This increased capacity should also accommodate gene regulatory elements to achieve expression of transduced genes in a tissue-specific manner. Additional vector modifications that eliminate adenoviral genes, expression of which is associated with development of a host immune response, might greatly increase long-term expression of virally delivered genes in vivo. We have constructed encapsidated adenovirus minichromosomes theoretically capable of delivering up to 35 kb of non-viral exogenous DNA. These minichromosomes are derived from bacterial plasmids containing two fused inverted adenovirus origins of replication embedded in a circular genome, the adenovirus packaging signals, a beta-galactosidase reporter gene and a full-length dystrophin cDNA regulated by a muscle-specific enhancer/promoter. The encapsidated minichromosomes are propagated in vitro by trans-complementation with a replication-defective (E1 + E3 deleted) helper virus. We show that the minichromosomes can be propagated to high titer (> 10(8)/ml) and purified on CsCl gradients due to their buoyancy difference relative to helper virus. These vectors are able to transduce myogenic cell cultures and express dystrophin in myotubes. These results suggest that encapsidated adenovirus minichromosomes may be useful for gene transfer to muscle and other tissues.   相似文献   

19.
Gene therapy is used to correct genetic defects or to deliver new therapeutic functions to the target cells. Viral vectors are employed mainly as a gene delivery system. A great variety of viral expression systems have been developed and assessed for their ability to transfer genes into somatic cells. In particular, retroviral and adenoviral mediated gene transfer have been extensively studied and improved. Preclinical and clinical studies covering a large range of genetic disorders are currently underway to solve basic issues dealing with gene transfer efficiencies, regulation of gene expression, and potential risks of the use of viral vectors. The majority of clinical gene therapy trials that employ viral vectors perform ex vivo gene transfer into target cells. The main issue in potential clinical application of gene therapy is the need for increased gene transfer efficiency and target specificity associated with regulated gene expression at therapeutically relevant levels in vivo. Gene regulatory elements, such as promoters and enhancers, possess cell type specific activities and can be activated by certain induction factors (e.g., hormones, growth factors, cytokines, cytostatics, irradiation, heat shock) via responsive elements. A controlled and restricted expression of these genes can be achieved using such regulatory elements as internal promoters to drive the expression of therapeutic genes in viral vector constructs. In addition to high level and efficient gene expression, minimizing or excluding inappropriate gene expression in surrounding nontarget cells is of great importance for numerous gene therapeutic approaches. This contribution furnishes insight into the field of cell type specific promoter and enhancer systems which have been used for targeted and inducible expression of therapeutic genes in certain genetic disorders, viral infections, and malignancies. We also discuss promoters that represent attractive candidates for the construction of viral vectors.Abbreviations ADA Adenosine deaminase - AFP -Fetoprotein - AIDS Acquired immunodeficiency syndrome - CAT Chloramphenicol acetyltransferase - CD Cytosine deaminase - CEA Carcinoembryonic antigen - DMD Duchenne muscular dystrophy - 5-FC 5-Fluorocytosine - HIV Human immunodeficiency virus - LAD Leukocyte adherence deficiency - LCR Locus control region - LTR Long terminal repeats - MCK Muscle creatinine kinase - MLV Moloney murine leukemia virus - MMTV Mouse mammary tumor virus - PEPCK Phosphoenolpyruvate carboxykinase - PSA Prostate-specific antigen - SCLC Small cell lung cancer cells - SLPI Secretory leukoprotease inhibitor - SPA/B/C Human surfactant protein A/B/C - TAR Trans-activation-responsive - TNF Tumor necrosis factor-  相似文献   

20.
Perspectives for gene therapy of Wilson disease   总被引:1,自引:0,他引:1  
Wilson disease is a rare autosomal-recessive copper overload disorder due to mutations of the Wilson disease gene ATP7B. The disease typically manifests at late childhood or in young adults with hepatic and/or neurological symptoms. Being fatal without medical treatment or liver transplantation the long-term outcome of Wilson disease depends on the adherence to an effective treatment. Because current medical treatment options are not effective in all Wilson disease patients and adherence to therapy is a problem, gene therapy might represent an alternative curative future therapy. In the rat model of Wilson disease adenoviral and lentiviral gene transfer studies could prove that viral gene transfer is therapeutically effective and can reverse clinical symptoms. However, both approaches were limited by a more or less transient transgene expression. As several tactics can be used to overcome these current limitations, gene therapy approaches may become more efficient than standard medical treatment for Wilson disease in the future. This review discusses both, existing vectors and strategies and prospective developments towards liver-directed gene therapy, although there is still a long way to go until gene therapy can be used for safe treatment of Wilson disease in humans.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号