首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
(E)-5-(2-Bromovinyl)-2'-deoxyuridine (BVDU) and various structurally related analogues thereof, i.e., (E)-5-(2-iodovinyl)-2'-deoxyuridine (IVDU) and (E)-5-(2-bromovinyl)-2'-deoxycytidine (BVDC), and the carbocyclic analogues of BVDU, IVDU, and BVDC, were evaluated for their inhibitory effects on the growth of murine mammary carcinoma FM3A cells, deficient in thymidine kinase (TK) activity but transformed with the herpes simplex virus type 1 (HSV-1) TK gene (designated FM3A/TK-/HSV-1 TK+). BVDU and its congeners were much more inhibitory to the growth of FM3A/TK-/HSV-1 TK+ than to the growth of the wild type (FM3A/0) cells. For BVDU, for example, the 50% inhibitory dose for the FM3A/TK-/HSV-1 TK+ cells was 0.5 ng/ml, as compared to 11 micrograms/ml for the FM3A/0 cells. Evidently, BVDU and its congeners required phosphorylation by the HSV-1 TK to exert their cytostatic action. In attempts to evaluate further the mechanism of this cytostatic action, BVDU, IVDU, and their carbocyclic analogues were evaluated for their inhibitory effects on thymidylate synthetase (TS) and their incorporation into DNA. TS was identified as one, but not the sole, target in the cytostatic activity of BVDU and its derivatives. With [125I]IVDU and its carbocyclic analogue C-[125I]IVDU, clear evidence was obtained for the incorporation of these radiolabeled analogues into DNA of the FM3A/TK-/HSV-1 TK+ cell line and a TS-deficient mutant thereof, FM3A/TK-/HSV-1 TK+/TS-. No incorporation was detected with [125I]IVDU or C-[125I]IVDU into DNA of FM3A/0 and FM3A/TS- cells. To what extent the incorporation of [125I]IVDU and C-[125I]IVDU contributed to their cytostatic action against FM3A/TK-/HSV-1 TK+ cells remains the subject of further study.  相似文献   

2.
Thymidine kinase (TK) enzymes encoded by herpes simplex viruses types 1 and 2 (HSV-1, HSV-2), and equine herpesvirus type 1 (EHV-1) catalyze the phosphorylation of thymidine (dThd) and (E)-5-(2-bromovinyl)-2'-deoxyuridine (BVDU). The replication of HSV-1 is sensitive to BVDU, but the replication of HSV-2 and EHV-1 is not. To investigate the differential sensitivity of the viruses to halogenated vinyldeoxyuridine drugs, the phosphorylation of 125I-labeled (E)-5-(2-iodovinyl)-2'-deoxyuridine (IVDU) was studied. Cytosol enzymes from cells infected by HSV-2 and EHV-1 phosphorylated [125I]IVDU to the monophosphate, IVDUMP, but did not convert IVDUMP to higher di- plus triphosphates (IVDUDP plus IVDUTP) forms. In contrast, enzymes from HSV-1-infected cells converted [125I]IVDU to radioactive IVDUMP and IVDUDP plus IVDUTP. Experiments with mixtures of EHV-1- and HSV-1-induced enzymes showed that the EHV-1 enzyme did not inhibit formation of the IVDUDP plus IVDUTP by the HSV-1 enzyme. With [125I]IVDU as substrate, the Km values for the EHV-1 and HSV-1 TKs were 1.82 and 0.34 microM, respectively, and the Ki (dThd) value for the EHV-1 TK was 0.35 microM. In vivo experiments showed that HSV-1-infected cells converted IVDU to the mono- and the di- plus triphosphate forms. In contrast, EHV-1-infected cells converted IVDU to the monophosphate to a lesser extent than did HSV-1-infected cells, and did not produce the di- plus triphosphates. Thus, inefficient phosphorylation of the monophosphates probably contributes to the insensitivity of EHV-1 replication to IVDU, as it does to the insensitivity of HSV-2 replication to this drug.  相似文献   

3.
The (+)- and (-)-enantiomers of the carbocyclic analogues of (E)-5-(2-bromovinyl)-2'-deoxyuridine (C-BVDU) and 5-iodo-2'-deoxyuridine (C-IDU) were synthesized by separate routes. Both the (+)- and (-)-enantiomers of C-BVDU and C-IDU were markedly inhibitory to herpes simplex virus type 1 (HSV-1) replication. (+)-C-BVDU and (+)-C-IDU were as inhibitory to HSV-1 as the racemic (+/-)-C-BVDU and (+/-)-C-IDU, respectively, whereas the (-)-enantiomers were only 10-fold less active. Also, the (+)- and (-)-enantiomers of C-BVDU were equally inhibitory to the growth of murine mammary carcinoma cells transformed by the HSV-1 or HSV-2 thymidine kinase (TK) gene (designated FM3A TK-/HSV-1 TK+ and FM3A TK-/HSV-2 TK+). The (+)- and (-)-enantiomers of C-BVDU and the (+)- and (-)-enantiomers of C-IDU had a remarkably similar affinity for HSV-1 TK [Ki, 0.09 and 0.19 microM for (+)-C-BVDU and (+)-C-IDU and 0.16 and 0.19 microM for (-)-C-BVDU and (-)-C-IDU, respectively]. The inhibition of HSV-1 TK by BVDU, IDU, (+)-C-BVDU, and (+)-C-IDU was purely competitive with regard to the natural substrate (thymidine), whereas (-)-C-BVDU, (-)-C-IDU, (+/-)-C-BVDU, and (+/-)C-IDU showed a linear mixed-type inhibition of HSV-1 TK. C-BVDU and C-IDU are examples of chiral molecules of which both isomeric forms are markedly active at both the cellular and enzymatic level.  相似文献   

4.
5'-O-Trityl derivatives of thymidine (dThd), (E)-5-(2-bromovinyl)-2'-deoxyuridine (BVDU), and their acyclic analogs 1-[(Z)-4-triphenylmethoxy-2-butenyl]thymine (KIN-12) and (E)-5-(2-bromovinyl)-1-[(Z)-4-triphenylmethoxy-2-butenyl]uracil (KIN-52) have been synthesized and evaluated for their inhibitory activity against the amino acid sequence related mitochondrial dThd kinase (TK-2), herpes simplex virus type 1 (HSV-1) TK, and Drosophila melanogaster multifunctional 2'-deoxynucleoside kinase (Dm-dNK). Several compounds proved markedly inhibitory to these enzymes and represent a new generation of nucleoside kinase inhibitors. KIN-52 was the most potent and selective inhibitor of TK-2 (IC(50), 1.3 microM; K(i), 0.50 microM; K(i)/K(m), 0.37) but was not inhibitory against HSV-1 TK and Dm-dNK at 100 microM. As found for the alternative substrate BVDU, the tritylated compounds competitively inhibited the three enzymes with respect to dThd. However, whereas BVDU behaved as a noncompetitive inhibitor (alternative substrate) of TK-2 and HSV-1 TK with respect to ATP as the varying substrate, the novel tritylated enzyme inhibitors emerged as reversible purely uncompetitive inhibitors of these enzymes. Computer-assisted modeling studies are in agreement with these findings. The tritylated compounds do not act as alternative substrates and they showed a type of kinetics against the nucleoside kinases different from that of BVDU. KIN-12, and particularly KIN-52, are the very first non-nucleoside specific inhibitors of TK-2 reported and may be useful for studying the physiological role of the mitochondrial TK-2 enzyme.  相似文献   

5.
The affinity of a large number of sugar-modified derivatives of (E)-5-(2-bromovinyl)-2'-deoxyuridine (BVDU) was determined towards deoxythymidine (dThd) kinases (TK) of various origin, i.e. human cytosol and mitochondrial TK, as well as herpes simplex virus (HSV) type 1 and type 2 TK. Substitution at the 3'- and 5'-position had differential effects on the interaction of BVDU with TK from different sources. The binding affinity of the nucleoside analogs for these different TKs was also influenced by the nature of the 5-substituent (2-bromovinyl vs 2- chlorovinyl ). The 5'-azido and 5'-amino derivatives of BVDU showed affinity for HSV-1 TK only and may, therefore, be useful to differentiate HSV-1 TK from all other TKs . There was no stringent correlation between the antiviral effects of the compounds and their binding constants for viral TK, suggesting that phosphorylation by viral TK is an essential but not sufficient factor in determining the antiviral activity of these analogs.  相似文献   

6.
5-Fluorouracil, 5-fluorouridine (FUrd), 5-fluoro-2'-deoxyuridine (FdUrd), 5-fluorocytidine (FCyd), 5-fluoro-2'-deoxycytidine (FdCyd), 5-trifluoro-2'-deoxythymidine (F3dThd), and the 5'-monophosphates and 3',5'-cyclic monophosphates thereof were found to inhibit thymidine kinase-deficient (TK-) mutant strains of herpes simplex virus (HSV) at a much lower concentration than the wild-type (TK+) HSV strains. Other 5-substituted 2'-deoxyuridines that have previously been recognized as potent thymidylate synthase inhibitors behaved in a similar fashion. The activity of FdUrd, FdCyd, F3dThd, and their 3',5'-cyclic monophosphates against TK-HSV was readily reversed by 2'-deoxythymidine (dThd) but not by 2'-deoxyuridine (dUrd). These compounds also inhibited the incorporation of [6-3H]dUrd into DNA at a concentration which was up to 5 orders of magnitude lower than the concentration at which the incorporation of [methyl-3H] dThd was inhibited. Thus, while not being a target for the well established anti-HSV compounds in TK+HSV-infected cells, thymidylate synthase appears to be an important target in TK-HSV-infected cells. In addition to dTMP synthase, TK-HSV-infected cells appear to reveal other therapeutically exploitable targets such as OMP decarboxylase (towards pyrazofurin), CTP synthase (towards carbodine and its cyclopentenyl analogue), dihydrofolate reductase (towards methotrexate), and S-adenosylhomocysteine hydrolase (towards neplanocins).  相似文献   

7.
The incorporation of (E)-5-(2-iodovinyl)-2'-deoxyuridine (IVDU) into DNA of varicella-zoster virus (VZV)-infected human embryo fibroblasts was studied, using thymidine kinase-positive (TK+) and thymidine kinase-negative (TK-) VZV strains. [125I]IVDU was taken up by cells infected with TK+ VZV-, but not by TK- VZV- or mock-infected cells. [125I]IVDU was incorporated into both VZV DNA and cellular DNA of TK+ VZV-infected cells. When the cells were exposed to 0.3 microM IVDU, a more marked shift was noted in the buoyant density of viral DNA than of host DNA. In contrast, the DNAs isolated from TK- VZV- or mock-infected cells did not exhibit a detectable incorporation of [125I]IVDU. [125I] IVDU-labeled VZV DNA was purified from the viral nucleocapsids of TK+ VZV-infected cells. Substitution of no more than 0.1-1% of the thymidine residues in the VZV DNA by IVDU seemed to suffice to inhibit the replication of VZV.  相似文献   

8.
The carbocyclic analogues of the potent and selective antiherpes agents (E)-5-(2-bromovinyl)-2'-deoxyuridine (BVDU), (E)-5-(2-iodovinyl)-2'-deoxyuridine (IVDU), and (E)-5-(2-bromovinyl)-2'-deoxycytidine (BVDC) were synthesized by conventional methods with use of carbocyclic 2'-deoxyuridine as starting material. C-BVDU, C-IVDU, and C-BVDC were equally selective, albeit slightly less potent, in their antiherpes action than BVDU, IVDU, and BVDC. Although resistant to degradation by pyrimidine nucleoside phosphorylases, C-BVDU did not prove more effective than BVDU in the systemic (oral, intraperitoneal) or topical treatment of HSV-1 infections in mice.  相似文献   

9.
The broad substrate specificity of herpes simplex virus type 1 (HSV-1) thymidine kinase (TK) has provided the basis for selective antiherpetic therapy and, more recently, suicide gene therapy for the treatment of cancer. We have now constructed an HSV-1 TK mutant enzyme, in which an asparagine (N) residue is substituted for glutamine (Q) at position 125, and have evaluated the effect of this amino acid change on enzymatic activity. In marked contrast with wild-type HSV-1 TK, which displays both thymidine kinase and thymidylate kinase activities, the HSV-1 TK(Q125N) mutant was unable to phosphorylate pyrimidine nucleoside monophosphates but retained significant phosphorylation activity for thymidine and a series of antiherpetic pyrimidine and purine nucleoside analogs. The abrogation of HSV-1 TK-associated thymidylate kinase activity resulted in a 100-fold accumulation of the monophosphate form of (E)-5-(2-bromovinyl)-2'-deoxyuridine (BVDU) in osteosarcoma cells transfected with the HSV-1 TK(Q125N) gene compared with osteosarcoma cells expressing wild-type HSV-1 TK. BVDU monophosphate accumulation gave rise to a much greater inhibition of cellular thymidylate synthase in HSV-1 TK(Q125N) gene-transfected cells than wild-type HSV-1 TK gene-transfected osteosarcoma tumor cells without significantly changing the cytostatic potency of BVDU for the HSV-1 TK gene-transfected tumor cells. Accordingly, the presence of the Q125N mutation in HSV-1 TK gene-transfected tumor cells was found to result in a multilog decrease in the cytostatic activity of those pyrimidine nucleoside analogs that in their monophosphate form do not have marked affinity for thymidylate synthase [i.e., 1-beta-D-arabinofuranosylthymine and (E)-5-(2-bromovinyl)-1-beta-D-arabinofuranosyluracil].  相似文献   

10.
Novel N1-substituted thymine derivatives related to 1-[(Z)-4-(triphenylmethoxy)-2-butenyl]thymine have been synthesized and evaluated against thymidine kinase-2 (TK-2) and related nucleoside kinases [i.e., Drosophila melanogaster deoxynucleoside kinase (Dm-dNK) and herpes simplex virus type 1 thymidine kinase (HSV-1 TK)]. The thymine base has been tethered to a distal triphenylmethoxy moiety through a polymethylene chain (n = 3-8) or through a (2-ethoxy)ethyl spacer. Moreover, substitutions at position 4 of one of the phenyl rings of the triphenylmethoxy moiety have been performed. Compounds with a hexamethylene spacer (18, 26b, 31) displayed the highest inhibitory values against TK-2 (IC50 = 0.3-0.5 microM). Compound 26b competitively inhibited TK-2 with respect to thymidine and uncompetitively with respect to ATP. A rationale for the biological data was provided by docking some representative inhibitors into a homology-based model of human TK-2. Moreover, two of the most potent TK-2 inhibitors (18 and 26b) that also inhibit HSV-1 TK were able to reverse the cytostatic activity of 1-(beta-D-arabinofuranosyl)thymine (Ara-T) and ganciclovir in HSV-1 TK-expressing OST-TK-/HSV-1 TK+ cell cultures.  相似文献   

11.
Herpes simplex virus type 1 (HSV-1) encodes a thymidine kinase (TK) that markedly differs from mammalian nucleoside kinases in terms of substrate specificity. It recognizes both pyrimidine 2'-deoxynucleosides and a variety of purine nucleoside analogs. Based on a computer modeling study and in an attempt to modify this specificity, an HSV-1 TK mutant enzyme containing an alanine-to-tyrosine mutation at amino acid position 167 was constructed. Compared with wild-type HSV-1 TK, the purified mutant HSV-1 TK(A167Y) enzyme was heavily compromised in phosphorylating pyrimidine nucleosides such as (E)-5-(2-bromovinyl)-2'-deoxyuridine and the natural substrate dThd, whereas its ability to phosphorylate the purine nucleoside analogs ganciclovir (GCV) and lobucavir was only reduced approximately 2-fold. Moreover, a markedly decreased competition of natural pyrimidine nucleosides (i.e., thymidine) with purine nucleoside analogs for phosphorylation by HSV-1 TK(A167Y) was observed. Human osteosarcoma cells transduced with the wild-type HSV-1 TK gene were extremely sensitive to the cytostatic effects of antiherpetic pyrimidine [i.e., (E)-5-(2-bromovinyl)-2'-deoxyuridine] and purine (i.e., GCV) nucleoside analogs. Transduction with the HSV-1 TK(A167Y) gene sensitized the osteosarcoma cells to a variety of purine nucleoside analogs, whereas there was no measurable cytostatic activity of pyrimidine nucleoside analogs. The unique properties of the A167Y mutant HSV-1 TK may give this enzyme a therapeutic advantage in an in vivo setting due to the markedly reduced dThd competition with GCV for phosphorylation by the HSV-1 TK.  相似文献   

12.
The thymidine kinases from feline herpesvirus (FHV TK) and canine herpesvirus (CHV TK) were cloned and characterized. The two proteins are closely sequence-related to each other and also to the herpes simplex virus type 1 thymidine kinase (HSV-1 TK). Although FHV TK and CHV TK have a level of identity of 31 and 35%, respectively, with HSV-1 TK, and a general amino acid similarity of approximately 54% with HSV-1 TK, they do not recognize the same broad range of substrates as HSV-1 TK does. Instead the substrate recognition is restricted to dThd and pyrimidine analogs such as 1-beta-d-arabinofuranosylthymine (araT), 3'-azido-2',3'-dideoxythymidine (AZT) and (E)-5-(2-bromovinyl)-2'-deoxyuridine (BVDU). FHV TK and CHV TK differ in substrate recognition from mammalian cytosolic thymidine kinase 1 (TK1) in that TK1 does not phosphorylate BVDU and they also differ from mammalian mitochondrial thymidine kinase 2 (TK2), which, in addition to thymidine and thymidine analogs also phosphorylates dCyd. Although the nucleoside analog BVDU was a good substrate for FHV and CHV TK, the compound was poorly inhibitory to virus-induced cytopathic effect in FHV- and CHV-infected cells. The reason is likely the poor, if any, thymidylate kinase activity of FHV and CHV TK, which in HSV-1 TK-expressing cells convert BVDU-MP to its 5'-diphosphate derivative.  相似文献   

13.
The inhibitory effect of (E)-5-(2-bromovinyl)-2'-deoxyuridine (BVDU) 5'-triphosphate on varicella zoster virus (VZV) DNA polymerase was studied using the parent strain (TK+-VZV) and the mutant strain (TK--VZV). The mutant strain was deficient in thymidine kinase (TK)-inducing activity and resistant to BVDU. In the absence of BVDU, TK--VZV and TK+-VZV induced an equivalent level of viral DNA polymerase activity in human embryo fibroblasts. In the presence of 5 microM BVDU, TK--VZV still induced viral DNA polymerase activity, whereas TK+-VZV failed to do so. BVDU 5'-triphosphate (BVDUTP) was considerably more inhibitory to the TK+- and TK--VZV DNA polymerases than to the cellular DNA polymerases. There were no significant differences in the affinity for dTTP as substrate and the sensitivity to BVDUTP as inhibitor between the TK+- and TK--VZV DNA polymerases. The Km value for dTTP and the Ki value for BVDUTP of the VZV DNA polymerases were 1.43 microM and 0.55 microM, respectively. The inhibitory effect of BVDUTP to VZV DNA polymerase was competitive with respect to the natural substrate.  相似文献   

14.
A series of 42 lipophilic bromovinyldeoxyuridine monophosphates (BVDUMPs) are presented as potential prodrugs of the antiviral agent (E)-5-(2-bromovinyl)-2'-deoxyuridine (BVDU). The 5'-cycloSal-masking group technique has been applied to this cyclic nucleoside analogue to achieve delivery of the monophosphate of BVDU inside the target cells. The new substances have been tested for their antiviral activity against herpes simplex virus types 1 and 2 (HSV-1 and -2), thymidine kinase-deficient (TK(-)) HSV-1, varicella-zoster virus (VZV), human cytomegalovirus (HCMV) and Epstein-Barr virus (EBV). The XTT-based tetrazolium reduction assay EZ4U (for HSV), the plaque inhibition test (for VZV and HCMV) and a DNA hybridisation assay (for EBV) were used to assess antiviral activity. The results indicate that cycloSal-BVDUMP triesters proved to be potent and selective inhibitors of HSV-1 comparable with aciclovir. VZV replication was inhibited by very low concentrations, and two substances had a slightly better anti-VZV activity than the parent compound BVDU. No antiviral effect could be demonstrated against TK(-)-HSV-1, HSV-2 and HCMV, most likely owing to the lack of phosphorylation to BVDU diphosphate. Most remarkably, several cycloSal-BVDUMP triesters yielded promising anti-EBV activity whereas the parent compound BVDU was entirely inactive.  相似文献   

15.
In the rat, the highly potent anti-herpes drug (E)-5-(2-bromovinyl)-2'-deoxyuridine (BVdUrd) is rapidly converted to its base (E)-5-(2-bromovinyl)uracil (BVUra) through the action of pyrimidine nucleoside phosphorylases. However, BVdUrd can be regenerated or even generated de novo from BVUra by a pentosyl transfer reaction upon the administration of 2'-deoxythymidine (dThd), 2'-deoxyuridine (dUrd) or 5-ethyl-2'-deoxyuridine (EtdUrd). The antiherpetic drugs EtdUrd and 5-(2-chloroethyl)-2'-deoxyuridine (ClEtdUrd) can also be regenerated or generated de novo from their respective bases 5-ethyluracil (EtUra) and 5-(2-chloroethyl)uracil (ClEtUra), by a pentosyl transfer mediated by the administration of dThd or dUrd as deoxyribosyl donor. The generation or regeneration of BVdUrd, EtdUrd and ClEtdUrd from their bases (BVUra, EtUra and ClEtUra, respectively) is readily achieved because the latter have long half-lifes. Thus, the active anti-herpes drugs can be (re)generated repeatedly after a single administration of these nucleosides or their bases, followed by repeated administrations of dUrd.  相似文献   

16.
2'-Fluoro-5-iodo-1-beta-D-arabinofuranosylcytosine (FIAC) is a potent antiviral agent with minimal cytotoxicity. In Vero cells, incorporation of labeled dCyd and dThd into the acid-insoluble DNA fraction was, respectively, competitively and noncompetitively inhibited by FIAC. In herpes simplex type 1 (HSV-1) infected Vero cells, these inhibition patterns became noncompetitive. The inhibition constants of FIAC on dThd and dCyd incorporation into the acid-insoluble fraction during a 15-min period were greater than 30 microM which were much higher than the antiviral concentration of FIAC (ED90 = 0.003-0.013 microM) for continuous exposure. Incorporation of dUrd into acid-insoluble DNA was inhibited by 10 microM FIAC in HSV-1-infected Vero cells, but not in uninfected cells. The radioactivity of [2-14C]FIAC was incorporated into the acid-insoluble DNA fraction, and this incorporation in uninfected cells was strongly inhibited by 10 microM dCyd but not by dThd. By contrast, the incorporation in HSV-1-infected Vero cells was strongly inhibited by 10 microM dThd but not by dCyd. These data indicate that FIAC behaves metabolically like dThd, dUrd, or 5-iodo-dUrd in HSV-1-infected cells but like dCyd in noninfected cells. Thus, combined use of dCyd and FIAC may reduce cytotoxicity of FIAC or incorporation of FIAC into host cell DNA without affecting its antiviral activity. This finding is of significance since, for practical reasons, incorporation of FIAC into host cell DNA needs to be reduced as much as possible.  相似文献   

17.
The phosphonylmethoxyalkyl derivatives HPMPA [(S)-9-(3-hydroxy-2-phosphonylmethoxypropyl)adenine], HPMPC [(S)-1-(3-hydroxy-2-phosphonylmethoxypropyl)cytosine] and PMEA [9-(2-phosphonylmethoxyethyl)adenine] were evaluated as 0.2% eyedrops for their efficacy in the treatment of experimental herpes simplex virus type 1 (HSV-1) keratitis in the rabbit model. BVDU 0.2% eyedrops were used as the reference treatment. HPMPA, HPMPC, PMEA and BVDU eyedrops showed a rapid and highly significant healing effect (P less than 0.005) on keratitis caused by TK+ HSV-1 (McIntyre strain) when compared with placebo eyedrops, whereas BVDU treatment did not affect the course of TK- HSV-1 (VMW-1837) keratitis. HPMPA and HPMPC treatment again caused a highly significant healing (P less than 0.005, compared with placebo eyedrops). Although PMEA eyedrops were less effective than HPMPA or HPMPC eyedrops, the effect of PMEA eyedrops was significantly (P less than 0.05) different from the effect of either BVDU or placebo eyedrops.  相似文献   

18.
The carbocyclic analogue of (E)-5-(2-iodovinyl)-2'-deoxyuridine (C-IVDU) is, like its parent compound (E)-5-(2-iodovinyl)-2'-deoxyuridine (IVDU), a potent and selective inhibitor of herpes simplex virus type 1 (HSV-1). There is a close correlation between the inhibition of viral DNA synthesis and the antiviral activity of both IVDU and C-IVDU. IVDU and C-IVDU inhibit viral DNA synthesis at 0.2 and 0.5 microM, respectively, and interfere with cellular DNA synthesis at concentrations that are 10- to 40-fold in excess of their antivirally effective doses. At concentrations affording a similar antiviral effect, C-[125I]IVDU is incorporated into viral and cellular DNA of HSV-1-infected Vero cells to a 7- to 10-fold lesser extent than IVDU. [125I]IVDU but not C-[125I]IVDU leads to breakage of both DNA strands when incorporated into HSV-1 DNA.  相似文献   

19.
(E)-5-(2-Bromovinyl)uridine (BVUrd), the riboside counterpart of (E)-5-(2-bromovinyl)-2'-deoxyuridine (BVdUrd), effected a dose-dependent inhibition of viral progeny formation and viral DNA synthesis in herpes simplex virus type 1 (HSV-1, strain KOS)-infected human (E6SM) diploid fibroblast cells. BVUrd was directly phosphorylated in HSV-1-infected cells, presumably by the virus-encoded thymidine kinase (TK), since (i) BVUrd was not phosphorylated by extracts of cells infected with a HSV-1 strain deficient in TK expression and (ii) the phosphorylation was inhibited by a polyclonal anti-HSV-1 antibody. Within the HSV-1-infected cells, BVUrd was incorporated into the viral DNA as BVdUMP (BVdUrd 5'-monophosphate). This incorporation may account for the antiviral action of BVUrd, and implies that, following its initial phosphorylation by the viral TK, BVUrd is converted to its 2'-deoxy counterpart, most likely at the 5'-diphosphate level (BVUDP----BVdUDP).  相似文献   

20.
Various 5-substituted-2'-deoxyuriclines (dUrd), inclucling 5-ethyl-,5-propyl-, 5-trifluoromethyl-, 5-hydroxymethyl-, 5-formyl-, 5-vinyl-, (E)-5-(2-chlorovinyl)-, (E)-5-(2-bromovinyl)-, 5-fluoro-. 5-chloro-. 5-bromo-. 5-iodo-, 5-cyano-, 5-thiocyano-, 5-nitro- and 5-amino-dUrd. were shown to be effective substrates for the thymidine (dThd) phosphorylase isolated from human blood platelets. Some of dUrd analogs, i.e. the highly potent and selective antiherpes agent (E)-5-(2-bromovinyl)-dUrd. were degraded more rapidly than the natural substrates, dUrd and dThd. All dUrd analogs were also readily catabolised by intact human blood platelets. The potent inhibitors of thymicline phosphorylase, 6-amino-thymine and 6-amino-5-bromo-uracil, strongly inhibited the phosphorolysis of (E)-5-(2-bromovinyl)-dUrd by both purified enzyme and intact platelets.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号