首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
3alpha-(diphenylmethoxy)tropane (benztropine) and its analogues are tropane ring-containing dopamine uptake inhibitors that display binding and behavioral profiles that are distinct from cocaine. We previously prepared a benztropine-based photoaffinity label [125I]-(N-[4-(4'-azido-3'-iodophenyl)butyl]-3alpha-[bis(4'-fluorophenyl)methoxy]tropane, [125I]1, that covalently attached to the 1-2 transmembrane spanning region of the dopamine transporter (DAT). This was in contrast to the 4-7 transmembrane spanning region labeled by a cocaine-based photoaffinity label, [125I] 2 (RTI 82). To characterize further these different binding domains, photoaffinity ligands that had the 4'-azido-3'-iodophenyl substituent extended from the same position on the tropane ring were desirable. Thus, identification of the optimal alkyl linker between this substituent and the tropane nitrogen in the benztropine series was investigated to ultimately prepare the identical N-substituted analogue of 2. In this pursuit, the N-[4-(4'-azido-3'-iodophenyl)propyl] analogue of 3alpha-[bis(4'-fluorophenyl)methoxy]tropane (9a) was synthesized as well as two isothiocyanate analogues that do not require photoactivation (10a,b) for irreversible binding. The synthesis of these target compounds was achieved using a modification of the strategy developed for 1. Evaluation of these compounds for displacing [3H]WIN 35 428 binding at DAT in rat caudate putamen revealed that the 4'-azido-3'-iodophenylbutyl substituent, found in 1, provided optimal binding affinity and was chosen to replace the N-CH3 group on 2. Both the 4'-azido-3'-iodophenyl- and the 4'-isothiocyanatophenylbutyl analogues of 2 (25 and 26, respectively) were synthesized. Both products bound to DAT with comparable potency (IC(50) = 30 nM) to RTI 82 (2). In addition, compound 26 demonstrated wash-resistant displacement of [3H]WIN 35 428 in HEK 293 cells stably transfected with hDAT. These ligands will provide important tools for further characterizing the binding domains for tropane-based dopamine uptake inhibitors at the DAT.  相似文献   

2.
Isothiocyanate derivatives of (-)-cocaine were prepared and tested for inhibitory potency at the cocaine receptor in rat striatal membranes. Coincubation with m-isothiocyanatobenzoylecgonine methyl ester (m-ISOCOC), p-isothiocyanatobenzoylecgonine methyl ester (p-ISOCOC), and 3 beta-(4-isothiocyanatophenyl)tropane-2-carboxylic acid methyl ester (ISOWIN) resulted in inhibition of [3H]WIN 35,428 binding, but the compounds were about 10-fold weaker than (-)-cocaine. However, p-ISOCOC was approximately 3-fold more potent than metaphit, an isothiocyanate derivative of phencyclidine. p-ISOCOC was equipotent at the serotonin transporter but was much less potent at the norepinephrine transporter and was inactive at the D2 dopamine receptor at 1000 microM concentration. The IC50 value for m-ISOCOC and p-ISOCOC varied with tissue concentration, suggesting irreversible inhibition of binding. Preincubation with m-ISOCOC and p-ISOCOC resulted in inhibition of [3H]WIN 35,428 binding that could not be removed by washing of the membranes; in contrast, preincubation with (-)-cocaine caused inhibition that was readily removed by washing. Preincubation with 1 microM concentrations of p-ISOCOC resulted in a large reduction in Bmax of the high affinity binding site for [3H]WIN 35,428. Preincubation with 100 microM p-ISOCOC eliminated the high affinity site and apparently reduced the affinity at the low affinity site. Coincubation of 10 microM p-ISOCOC with 100 microM cocaine prevented the total loss of [3H]WIN 35,428 binding. The uptake of [3H]dopamine was inhibited by p-ISOCOC with an IC50 comparable to that of cocaine. Additionally, preincubation of rat striatal synaptosomes with 10 microM p-ISOCOC reduced the Vmax of [3H]dopamine uptake after washing. These data suggest that m-ISOCOC and p-ISOCOC are useful irreversible acylators of (-)-cocaine binding sites at the dopamine transporter.  相似文献   

3.
4.
(+-)-(5 beta,7 alpha,8 beta)-3,4-Dichloro-N-methyl-N-[3-methylene-2- oxo-8-(1-pyrrolidinyl)-1-oxaspiro[4,5]dec-7-yl]benzeneacetamide (14) and its (5 alpha,7 alpha,8 beta) diastereomer 15 have been synthesized from 1,4-cyclohexanedione monoethylene ketal (1) in 10 steps. Compound 14, which we have designated SMBU-1, was found to bind with moderate affinity (Ki = 109 nM) and good selectivity (mu/kappa = 29) to the kappa opioid receptor, while 15 was only 1/10 as potent as a kappa ligand. Preincubation of brain membranes with 14 resulted in wash-resistant inhibition of kappa-receptor binding (69 +/- 6% of control at 10(-6) M). The ketone precursor trans-N-methyl-N-[5-oxo-2-(1- pyrrolidinyl)cyclohexyl]benzeneacetamide (12) showed a higher kappa-affinity (Ki = 78 nM) and a much higher kappa-selectivity (mu/kappa = 166) than 14. Compound 10, the ethylene ketal precursor of 12, exhibited a similar receptor binding profile to 14, with increased kappa-selectivity (mu/kappa = 55), while ketal 11, being a regioisomer of 10 and an oxygen isostere of the kappa-selective analgesic spiradoline (U-62,066), demonstrated the highest kappa-affinity (Ki = 1.5 nM) and kappa-selectivity (mu/kappa = 468) observed in this series.  相似文献   

5.

Rationale

??9-tetrahydrocannabinol (??9-THC) modifies dopamine efflux. However, the extent to which cannabinoid and dopamine drugs modify each other??s behavioral effects has not been fully established.

Objectives

This study examined dopamine releasers and/or transport inhibitors alone and in combination with cannabinoids in two drug discrimination assays.

Methods

Experimentally and pharmacologically experienced rhesus monkeys (n?=?5) discriminated ??9-THC (0.1?mg/kg i.v.) from vehicle while responding under a fixed ratio 5 schedule of stimulus-shock termination. A separate group (n?=?6) of monkeys responded under the same schedule, received daily ??9-THC (1?mg/kg/12?h?s.c.), and discriminated the cannabinoid antagonist rimonabant (1?mg/kg i.v.), i.e., cannabinoid withdrawal, from vehicle. A sign of withdrawal sign (head shaking) was examined in monkeys receiving ??9-THC daily.

Results

Rimonabant antagonized the ??9-THC discriminative stimulus and a dose of ??9-THC greater than the daily treatment attenuated the rimonabant discriminative stimulus. In monkeys discriminating ??9-THC, the dopamine transporter ligands cocaine, amphetamine, bupropion, RTI 113, and RTI 177 produced a maximum of 2% responding on the drug lever and blocked the discriminative stimulus effects of ??9-THC. In ??9-THC treated monkeys discriminating rimonabant, the dopamine transporter ligands partially substituted for and increased the potency of rimonabant to produce discriminative stimulus effects. The dopamine antagonist haloperidol enhanced the ??9-THC discriminative stimulus without significantly modifying the rimonabant discriminative stimulus. Imipramine and desipramine, which have low affinity for dopamine transporters, were less effective in modifying either the ??9-THC or rimonabant discriminations. The dopamine transporter ligands and haloperidol attenuated head shaking, whereas imipramine and desipramine did not.

Conclusions

Dopamine release and/or inhibition of dopamine transport blocks detection of ??9-THC and is potentially the mechanism by which some therapeutics (e.g., bupropion) reduce the subjective effects of marijuana and enhance the subjective effects of marijuana withdrawal.  相似文献   

6.
Syntheses of affinity reagents for opiate receptors based on the fentanyl, endo-ethenotetrahydrooripavine, and etonitazene carbon-nitrogen skeletons are described. The isothiocyanate, bromoacetamido, and methylfumaramido alkylating functions were employed in these compounds, some of which had previously been shown to be mu specific (12, BIT) and delta specific (8, FIT and 19, FAO) in vitro. Antinociceptive activity of the title compounds was determined in the mouse hot-plate test, which revealed that certain compounds in each class showed morphine-like activity. The binding EC50 values against [3H]Dalamid for opiate receptors in NG108-15 (delta receptors) and rat brain membranes (mu + delta receptors) are also reported. With this type of experiment, it was possible to independently measure the apparent affinity of the etonitazene congeners 12-14 for the mu and delta receptors.  相似文献   

7.
The synthesis and pharmacological characterization of a series of N-substituted 3-(4-fluorophenyl)tropane derivatives is reported. The compounds displayed binding characteristics that paralleled those of cocaine, and several had substantially higher affinity at cocaine recognition sites. Conjugate addition of 4-fluorophenyl magnesium bromide to anhydroecgonine methyl ester gave 2 beta-(carbomethoxy)-3 beta-(4-fluorophenyl)tropane (4a, designated CFT, also known as WIN 35,428) after flash chromatography. N demethylation of 4a was effected by Zn/HOAc reduction of the corresponding 2,2,2-trichloroethyl carbamate to give 2 beta-carbomethoxy-3 beta-(4-fluorophenyl)nortropane (5), which was alkylated with allyl bromide to afford the N-allyl analogue, 6. The N-propyl analogue, 7, was prepared by catalytic reduction (Pd/C) of 6. The most potent analogue, 4a, was tritiated at a specific activity of 81.3 Ci/mmol. [3H]4a bound rapidly and reversibly to caudate putamen membranes; the two-component binding curve typical of cocaine analogues was observed. Equilibrium was achieved within 2 h and was stable for at least 4 h. High- and low-affinity Kd values observed for [3H]4a (4.7 and 60 nM, respectively) were more than 4 times lower than those for [3H]cocaine, and the density of binding sites (Bmax = 50 pmol/g, high, and 290 pmol/g, low) for the two drugs were comparable. Nonspecific binding of [3H]4a was 5-10% of total binding.  相似文献   

8.
Cocaine's blockade of dopamine reuptake by brain dopamine transporters (DAT) is a central feature of current understanding of cocaine reward and addiction. Empirical screening of small-molecule chemical libraries has thus far failed to provide successful cocaine blockers that allow dopamine reuptake in the presence of cocaine and provide cocaine "antagonism". We have approached this problem by assessing expression, dopamine uptake, and cocaine analog affinities of 56 DAT mutants in residues located in or near transmembrane domains likely to play significant roles in cocaine recognition and dopamine uptake. A phenylalanine-to-alanine mutant in putative DAT transmembrane domain 3, F154A, retains normal dopamine uptake, lowers cocaine affinity 10-fold, and reduces cocaine stereospecificity. Such mutants provide windows into DAT structures that could serve as targets for selective cocaine blockers and document how combined strategies of mutagenesis and small molecule screening may improve our abilities to identify and design compounds with such selective properties.  相似文献   

9.
The extracellular actions of dopamine are terminated primarily through its binding to dopamine transporters and translocation back into dopamine neurons. The transporter thereby serves as an optimal target to regulate dopamine neurotransmission. Although acute pharmacological blockade of dopamine transporters is known to reversibly inhibit transporter function by preventing the binding of its endogenous substrate dopamine, it recently has become clear that dopamine transporter substrates, such as amphetamines, and blockers, such as cocaine, also have the ability to rapidly and persistently regulate transporter function after their direct pharmacological effect has subsided. Presynaptic receptor ligands can also regulate dopamine transporter function. This has been investigated most extensively for dopamine D2 receptors, but there is also evidence for regulation by gamma-aminobutyric acid (GABA) GABAB receptors, metabotropic glutamate, nicotinic acetylcholine, serotonin, sigma2- and kappa-opioid receptors. The focus of this review is the rapid, typically reversible, regulation of dopamine transporter velocity by substrates, blockers and presynaptic receptor ligands. The research discussed here suggests that a common mechanism through which these different classes of compounds regulate transporter activity is by altering the cell surface expression of dopamine transporters.  相似文献   

10.
Cocaine initiates its euphoric effects by binding to the dopamine transporter (DAT), blocking uptake of synaptic dopamine. It has been hypothesized that the DAT transmembrane aspartic acid residue D79 forms an ionic interaction with charged nitrogen atoms in both dopamine and cocaine. We examined the consequences of novel and previously studied mutations of the D79 residue on DAT uptake of [3H]dopamine, DAT binding of the cocaine analog [3H]WIN 35,428, and drug inhibition of each process, all under identical conditions. The rat D79E DAT mutation decreased dopamine uptake Vmax by 7-fold and decreased dopamine turnover by 4-fold. Wild-type DAT displayed near-perfect agreement in the uptake and binding inhibition potencies for substrates, but cocaine and other nonsubstrate inhibitor drugs were approximately 3-fold less potent in uptake than in binding assays. Apparent affinities for substrates were unaffected by the D79E mutation unless the catechol moiety was modified. Strikingly, potencies for nonsubstrate inhibitors in uptake and binding assays matched for D79E DAT, because of a 3-fold lowering of binding affinities relative to WT DAT. The present findings reveal a complex role for D79 in determining substrate specificity and high-affinity binding of DAT inhibitors. We propose that at least two discrete inhibitor-binding DAT conformations or populations exist and that the DAT conformation/population responsible for inhibitor high-affinity binding is less responsible for dopamine uptake. The findings may be extensible to other psychostimulants and antidepressants that display discrepancies between binding affinity and monoamine uptake inhibition potency and may be relevant to development of a long-sought "cocaine antagonist".  相似文献   

11.
The present study addressed the possibility that there are distinct but allosterically interacting populations of binding sites for dopamine/cocaine and BTCP/GBR (N-[1-(2-benzo[b]thiophenyl)cyclohexyl]piperidine/1-(2-diphenylmethox y) - ethyl]-4-(3-phenylpropyl)piperazine) (selective dopamine uptake blockers) on the dopamine transporter in the rat striatum. Dopamine uptake sites were labeled in vitro with the cocaine analog [3H]CFT (2 beta-carbomethoxy-3 beta-(4-fluorophenyl)-tropane), and the inhibition of binding by CFT or cocaine was measured. A graphic method was adopted for studying shifts in inhibitory potency resulting from the addition of a second compound. Under the conditions used, the co-presence of dopamine, GBR 12935, or BTCP decreased the inhibitory potency of CFT or cocaine to the extent predicted by a model in which all compounds bind to the same site or the binding of all compounds is mutually exclusive. No evidence for negative allosteric interactions between CFT and BTCP was found in experiments comparing inhibition of [3H]CFT binding by BTCP at a low and high concentration of [3H]CFT.  相似文献   

12.
The discovery and preclinical development of selective dopamine reuptake inhibitors as potential pharmacotherapies for treating cocaine addiction are presented. The studies are based on the hypothesis that a dopamine reuptake inhibitor is expected to partially substitute for cocaine, thus decreasing cocaine self-administration and minimizing the craving for cocaine. This type of indirect agonist therapy has been highly effective for treating smoking addiction (nicotine replacement therapy) and heroin addiction (methadone). To be an effective pharmacotherapy for cocaine addiction, the potential drug must be safe, long-acting, and have minimal abuse potential. We have developed several 3-phenyltropane analogs that are potent dopamine uptake inhibitors, and some are selective for the dopamine transporter relative to the serotonin and norepinephrine transporters. In animal studies, these compounds substitute for cocaine, reduce the intake of cocaine in rats and rhesus monkeys trained to self-administer cocaine, and have demonstrated a slow onset and long duration of action and lack of sensitization. The 3-phenyltropane analogs were also tested in a rhesus monkey self-administration model to define their abuse potential relative to cocaine. Based on these studies, 3beta-(4-chlorophenyl)-2beta-[3-(4'-methylphenyl)isoxazol-5-yl]tropane (RTI-336) has been selected for preclinical development.  相似文献   

13.
A series of 2'-substituted cocaine analogs (4-8) was prepared and evaluated in an in vitro dopamine transporter (DAT) binding assay. Compounds 4-7 were prepared by esterifying the 3 beta-hydroxyl group of ecgonine methyl ester (3) using the appropriate acid chloride in the presence of Et3N and benzene. Compound 3 was obtained from cocaine (1) by hydrolysis using 1N HCl to afford ecgonine.HCl which was subjected to acid catalyzed esterification using methanol saturated with HCl gas. Compound 8 was obtained by hydrogenation of 7 using H2/Pd-C. The IC50 values were calculated from displacement experiment of the radioligand [3H]WIN-35,428 (2). 2'-Aminococaine (8) showed high binding affinity to the DAT (14- and 1.3-fold more active than cocaine and the radioligand 2, respectively). These results, along with previous results, emphasize the importance of a hydrogen-bond donor group at the 2'-position of cocaine to enhance binding affinity to the DAT.  相似文献   

14.
Since [3H]emonapride ([3H]YM-09151-2), a benzamide neuroleptic, consistently detects more dopamine D2 receptors than [3H]spiperone in the same tissue, we tested whether this property was inherent in the cloned dopamine D2 receptor. We found that the density of dopamine D2 receptors labelled by [3H]emonapride was 1.5-fold to 2-fold (mean of 1.8-fold) higher than the density of dopamine D2 receptors labelled by [3H]spiperone in cells expressing cloned dopamine D2 receptors (either the short form (from rat) or the long form (from human)), matching similar findings in anterior pituitary tissue (rat or pig) or in post-mortem human caudate nucleus tissue. The situation was similar for another benzamide, [3H]raclopride, which revealed 1.3-fold to 1.8-fold (mean of 1.5-fold) more binding sites than that for [3H]spiperone in cell membranes containing cloned dopamine D2 receptors. The apparently different dopamine D2 receptor densities revealed by these two types of 3H-ligands (i.e. [3H]spiperone and the [3H]benzamides), therefore, arise from an inherent property of the dopamine D2 receptor protein. These findings for the cloned dopamine D2 receptor, therefore, partly explain the higher dopamine D2 receptor density measured in human brain (by positron emission tomography) when using radioactive raclopride compared to results using radioactive methylspiperone.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

15.
The goal of this review is to describe what the voltammetry technique tells us about cocaine-dopamine transporter (DAT) interactions and the subsequent changes in extracellular dopamine levels in the brain. The primary advantage of voltammetry, in this regard, is the capability for kinetic analysis in situ. Analysis of electrically evoked dynamics suggests that cocaine competitively inhibits dopamine uptake in the caudate-putamen and nucleus accumbens with a similar efficacy. The preferential increase in accumbal dopamine following systemic cocaine administration was found to be related not to a unique cocaine-DAT interaction, but rather to a unique combination of dopamine release and uptake rates. Similar enhancement occurs in sub-regions of the caudate-putamen exhibiting this release and uptake combination. Other factors such as diffusion and whether dopaminergic signaling is tonic or phasic also determine the effects of cocaine on striatal dopamine levels.  相似文献   

16.
There are currently several studies in which individual dopamine receptor ligands have been reported to bind with relatively low affinity to opiate receptors. To extend these studies, and to examine the opiate receptor subclass selectivity of such agents, we have examined the ability of six dopamine receptor ligands (prochlorperazine, chlorpromazine, haloperidol, bromocriptine, pimozide and metoclopramide) to compete with four tritiated tracers - [3H]naloxone, [3H][D-Ala2,D-Leu5]enkephalin, [3H]morphine and [3H]ethylketocyclazocine - for binding to rat brain membrane opiate receptors. The dopamine receptor ligands displaced the labelled opiates in a dose-dependent manner, with ED50 values of 3 microM to 3 mM. Pimozide was consistently the most potent (ED50 3-14 microM), and metoclopramide the least potent (ED50 35 microM to 3.5 mM). Dopamine receptor agonists and antagonists thus interact with opiate receptors with no clear subclass selectivity, and with similar hierarchies of inhibitory potency in each of the various opiate receptor systems.  相似文献   

17.
The hypothesis that stimulation of the D-1 dopamine receptor subtype affects the recovery of the D-2 subtype after alkylation by EEDQ was investigated. Animals were pretreated with either SCH23390, to protect D-1 receptors, or saline, before administration of EEDQ. After EEDQ one group of saline pretreated animals received 12 hourly injections of the D-1 agonist SKF38393. Animals were sacrificed at 6, 24 and 48 hours after EEDQ and Kd and Bmax of striatal D-1 and D-2 receptors measured. The concentration of D-2 receptors in the groups in which D-1 receptors had been protected by SCH23390 or stimulated by SKF38393 were significantly greater than that of the EEDQ alone group.  相似文献   

18.
Dopamine is a key regulator in the CNS, contributing importantly to functions of arousal and attention, initiation of movement, perception, motivation and emotion. Its imbalance has been implicated in the pathophysiology, and more clearly in the pharmacology, of a number of neurobehavioural disorders, including Parkinson’s disease, schizophrenia, mania and depression, alcohol and drug abuse, as well as attention and eating disorders. Five major dopamine receptor subtypes (D1 – D5) have been identified, with distinct differences in their genes and peptide composition, molecular functions and neuropharmacology. These receptors represent the rational targets for the treatment of a large number of neurological and psychiatric disorders. In recent years, substantial efforts have addressed the most recently described dopamine receptor types, particularly types D3, D4 and D5, although most research involves the longer-known D1 and D2 dopamine receptors. Current pharmacological efforts in medicinal chemistry and neuropharmacology include the development of D1 full agonists and D2 partial agonists, as well as agents with dopaminergic activity combined with effects at CNS serotonergic, muscarinic, adrenergic and histaminic receptors. This review provides an overview of the recent patent literature during 2003 – 2005 on the development of therapeutic agents, mainly targeting the five dopamine receptors.  相似文献   

19.
A series of mazindol (2) and homomazindol (3) analogues with a variety of electron-donating and electron-withdrawing groups in the pendant aryl group and the benzo ring C, as well as H, methoxy, and alkyl groups replacing the hydroxyl group were synthesized, and their binding affinities at the dopamine transporter (DAT) on rat or guinea pig striatal membranes were determined. Several active analogues were also evaluated for their ability to block uptake of DA, 5-HT, and NE and inhibit binding of [(125)I] RTI-55 at HEK-hDAT, HEK-hSERT, and HEK-hNET cells. Mazindane (26) was found to be a pro-drug, oxidizing (5-H --> 5-OH) to mazindol on rat striatal membranes and HEK-hDAT cells. The 4',7,8-trichloro analogue (38) of mazindol was the most potent and selective ligand for HEK-hDAT cells (DAT K(i) = 1.1 nM; SERT/DAT = 1283 and NET/DAT = 38). Experimental results strongly favor the cyclic or ol tautomers of 2 and 3 to bind more tightly at the DAT than the corresponding keto tautomers.  相似文献   

20.
The serotonin (5-HT) receptor system has 14 different subtypes classified by pharmacology and function. Many ligands are widely used for therapeutic and diagnostic purposes in some severe human diseases. Most of the ligands that are specific for each 5-HT receptor have distinctive chemical structures with regard to pharmacophore elements including 4-arylpiperazine, benzimidazole, benzamide, chroman, aminopyridazine, tetralin, and polycycles. However, their affinity and selectivity for 5-HT, dopamine and alpha1 receptors depend on their substituents and linker spacers. 5-HT transporter inhibitors have also been developed as potential antidepressants. In contrast to classical tricyclic compounds, newly developed secondary amine derivatives such as paroxetine and tetralin show high binding affinity and selectivity. Radioisotope-labeled ligands have also been developed, including [carbonyl-(11)C]WAY 100635 for 5-HT1A receptor, [(11C) or (18)F]ketanserine derivatives for 5-HT(2) receptor, [(125)I]DAIZAC for 5-HT(3) receptor, and [123I]IDAM for 5-HT transporter, and these are accumulated in brain regions that are rich in the respective receptors. This review summarizes the recent development of 5-HT receptor- and transporter-specific ligands and their pharmacological properties on the basis of their chemical structures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号