首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Han X  Pham DL  Tosun D  Rettmann ME  Xu C  Prince JL 《NeuroImage》2004,23(3):997-1012
Segmentation and representation of the human cerebral cortex from magnetic resonance (MR) images play an important role in neuroscience and medicine. A successful segmentation method must be robust to various imaging artifacts and produce anatomically meaningful and consistent cortical representations. A method for the automatic reconstruction of the inner, central, and outer surfaces of the cerebral cortex from T1-weighted MR brain images is presented. The method combines a fuzzy tissue classification method, an efficient topology correction algorithm, and a topology-preserving geometric deformable surface model (TGDM). The algorithm is fast and numerically stable, and yields accurate brain surface reconstructions that are guaranteed to be topologically correct and free from self-intersections. Validation results on real MR data are presented to demonstrate the performance of the method.  相似文献   

2.
Accurate and consistent reconstruction of cortical surfaces from longitudinal human brain MR images is of great importance in studying longitudinal subtle change of the cerebral cortex. This paper presents a novel deformable surface method for consistent and accurate reconstruction of inner, central and outer cortical surfaces from longitudinal brain MR images. Specifically, the cortical surfaces of the group-mean image of all aligned longitudinal images of the same subject are first reconstructed by a deformable surface method, which is driven by a force derived from the Laplace's equation. And then the longitudinal cortical surfaces are consistently reconstructed by jointly deforming the cortical surfaces of the group-mean image to all longitudinal images. The proposed method has been successfully applied to two sets of longitudinal human brain MR images. Both qualitative and quantitative experimental results demonstrate the accuracy and consistency of the proposed method. Furthermore, the reconstructed longitudinal cortical surfaces are used to measure the longitudinal changes of cortical thickness in both normal and diseased groups, where the overall decline trend of cortical thickness has been clearly observed. Meanwhile, the longitudinal cortical thickness also shows its potential in distinguishing different clinical groups.  相似文献   

3.
Several algorithms for measuring the cortical thickness in the human brain from MR image volumes have been described in the literature, the majority of which rely on fitting deformable models to the inner and outer cortical surfaces. However, the constraints applied during the model fitting process in order to enforce spherical topology and to fit the outer cortical surface in narrow sulci, where the cerebrospinal fluid (CSF) channel may be obscured by partial voluming, may introduce bias in some circumstances, and greatly increase the processor time required.In this paper we describe an alternative, voxel based technique that measures the cortical thickness using inversion recovery anatomical MR images. Grey matter, white matter and CSF are identified through segmentation, and edge detection is used to identify the boundaries between these tissues. The cortical thickness is then measured along the local 3D surface normal at every voxel on the inner cortical surface. The method was applied to 119 normal volunteers, and validated through extensive comparisons with published measurements of both cortical thickness and rate of thickness change with age. We conclude that the proposed technique is generally faster than deformable model-based alternatives, and free from the possibility of model bias, but suffers no reduction in accuracy. In particular, it will be applicable in data sets showing severe cortical atrophy, where thinning of the gyri leads to points of high curvature, and so the fitting of deformable models is problematic.  相似文献   

4.
A fully automatic, multiscale fuzzy C-means (MsFCM) classification method for MR images is presented in this paper. We use a diffusion filter to process MR images and to construct a multiscale image series. A multiscale fuzzy C-means classification method is applied along the scales from the coarse to fine levels. The objective function of the conventional fuzzy C-means (FCM) method is modified to allow multiscale classification processing where the result from a coarse scale supervises the classification in the next fine scale. The method is robust for noise and low-contrast MR images because of its multiscale diffusion filtering scheme. The new method was compared with the conventional FCM method and a modified FCM (MFCM) method. Validation studies were performed on synthesized images with various contrasts and on the McGill brain MR image database. Our MsFCM method consistently performed better than the conventional FCM and MFCM methods. The MsFCM method achieved an overlap ratio of greater than 90% as validated by the ground truth. Experiments results on real MR images were given to demonstrate the effectiveness of the proposed method. Our multiscale fuzzy C-means classification method is accurate and robust for various MR images. It can provide a quantitative tool for neuroimaging and other applications.  相似文献   

5.
Operto G  Bulot R  Anton JL  Coulon O 《NeuroImage》2008,39(1):127-135
As surface-based data analysis offer an attractive approach for intersubject matching and comparison, the projection of voxel-based 3D volumes onto the cortical surface is an essential problem. We present here a method that aims at producing representations of functional brain data on the cortical surface from functional MRI volumes. Such representations are for instance required for subsequent cortical-based functional analysis. We propose a projection technique based on the definition, around each node of the gray/white matter interface mesh, of convolution kernels whose shape and distribution rely on the geometry of the local anatomy. For one anatomy, a set of convolution kernels is computed that can be used to project any functional data registered with this anatomy. Therefore resulting in anatomically-informed projections of data onto the cortical surface, this kernel-based approach offers better sensitivity, specificity than other classical methods and robustness to misregistration errors. Influences of mesh and volumes spatial resolutions were also estimated for various projection techniques, using simulated functional maps.  相似文献   

6.
Liu T  Nie J  Tarokh A  Guo L  Wong ST 《NeuroImage》2008,40(3):991-1002
Reconstruction of the central surface representation of the cerebral cortex is an important means to study the structure and function of the human brain. In this paper, we propose a novel method based on an elastic transform vector field to drive a deformable model for the reconstruction of the central cortical surface. Both simulated brain cortexes and real brain images are used to evaluate this approach. We applied the surface reconstruction method and a hybrid volumetric and surface registration algorithm to detect simulated brain atrophy. Experimental results show that the central cortical surface representation has better performance in detecting simulated atrophy than the traditionally used inner or outer cortical surface representations.  相似文献   

7.
目的 对MR脑肿瘤图像进行分割,并对分割的结果进行矩描述.方法 在分析当前常用的医学图像分割方法的基础上,提出一种基于形变模型的医学图像分割方法,并给出了相应的理论算法模型和实现步骤,最后用Visual C 6.0编程,并对MR脑肿瘤图像进行分割实验.结果 本文分割方法分割边界清晰,总体不确定性较小.结论 本文分割方法切实可行,分割效果较好,为进一步的MR脑肿瘤图像分析和研究提供了一种有效工具.  相似文献   

8.
Patterns of brain atrophy measured by magnetic resonance structural imaging have been utilized as significant biomarkers for diagnosis of Alzheimer's disease (AD). However, brain atrophy is variable across patients and is non-specific for AD in general. Thus, automatic methods for AD classification require a large number of structural data due to complex and variable patterns of brain atrophy. In this paper, we propose an incremental method for AD classification using cortical thickness data. We represent the cortical thickness data of a subject in terms of their spatial frequency components, employing the manifold harmonic transform. The basis functions for this transform are obtained from the eigenfunctions of the Laplace-Beltrami operator, which are dependent only on the geometry of a cortical surface but not on the cortical thickness defined on it. This facilitates individual subject classification based on incremental learning. In general, methods based on region-wise features poorly reflect the detailed spatial variation of cortical thickness, and those based on vertex-wise features are sensitive to noise. Adopting a vertex-wise cortical thickness representation, our method can still achieve robustness to noise by filtering out high frequency components of the cortical thickness data while reflecting their spatial variation. This compromise leads to high accuracy in AD classification. We utilized MR volumes provided by Alzheimer's Disease Neuroimaging Initiative (ADNI) to validate the performance of the method. Our method discriminated AD patients from Healthy Control (HC) subjects with 82% sensitivity and 93% specificity. It also discriminated Mild Cognitive Impairment (MCI) patients, who converted to AD within 18 months, from non-converted MCI subjects with 63% sensitivity and 76% specificity. Moreover, it showed that the entorhinal cortex was the most discriminative region for classification, which is consistent with previous pathological findings. In comparison with other classification methods, our method demonstrated high classification performance in both categories, which supports the discriminative power of our method in both AD diagnosis and AD prediction.  相似文献   

9.
Mémoli F  Sapiro G  Thompson P 《NeuroImage》2004,23(Z1):S179-S188
We describe how implicit surface representations can be used to solve fundamental problems in brain imaging. This kind of representation is not only natural following the state-of-the-art segmentation algorithms reported in the literature to extract the different brain tissues, but it is also, as shown in this paper, the most appropriate one from the computational point of view. Examples are provided for finding constrained special curves on the cortex, such as sulcal beds, regularizing surface-based measures, such as cortical thickness, and for computing warping fields between surfaces such as the brain cortex. All these result from efficiently solving partial differential equations (PDEs) and variational problems on surfaces represented in implicit form. The implicit framework avoids the need to construct intermediate mappings between 3-D anatomical surfaces and parametric objects such planes or spheres, a complex step that introduces errors and is required by many other cortical processing approaches.  相似文献   

10.
We explored how developing neural artifact and animal representations in the dorsal and ventral stream play a role in children's increasingly more proficient interactions with objects. In thirty-three 6- to 10-year-old children and 11 adults, we used fMRI to track the development of (1) the cortical category preference for tools compared to animals and (2) the response to complex objects (as compared to scrambled objects) during a passive viewing task. In addition, we related a cognitive skill that improved substantially from age 6 to 10, namely the ability to recognize tools from unusual viewpoints, to the development of cortical object processing. In multiple complementary analyses we showed that those children who were better at recognizing tools from unusual viewpoints outside the scanner showed a reduced cortical response to tools and animals when viewed inside the scanner, bilaterally in intraparietal and inferotemporal cortex. In contrast, the cortical preference for tools in the dorsal and ventral visual stream did not predict object recognition performance, and was organized in an adult-like manner at six. While cortical tool preference did not change with age, the findings suggest that animal-preferring regions in the ventral visual stream may develop later, concordant with previous reports of a protracted development in similar regions for faces. We thus conclude that intraparietal and inferotemporal cortical networks that support aspects of object processing irrespective of tool or animal category, continue to develop during the school-age years and contribute to the development of object recognition skills during this period.  相似文献   

11.
A Dirichlet process mixture model for brain MRI tissue classification   总被引:1,自引:0,他引:1  
Accurate classification of magnetic resonance images according to tissue type or region of interest has become a critical requirement in diagnosis, treatment planning, and cognitive neuroscience. Several authors have shown that finite mixture models give excellent results in the automated segmentation of MR images of the human normal brain. However, performance and robustness of finite mixture models deteriorate when the models have to deal with a variety of anatomical structures. In this paper, we propose a nonparametric Bayesian model for tissue classification of MR images of the brain. The model, known as Dirichlet process mixture model, uses Dirichlet process priors to overcome the limitations of current parametric finite mixture models. To validate the accuracy and robustness of our method we present the results of experiments carried out on simulated MR brain scans, as well as on real MR image data. The results are compared with similar results from other well-known MRI segmentation methods.  相似文献   

12.
Shape-based cortical surface segmentation for visualization brain mapping   总被引:1,自引:0,他引:1  
We describe a knowledge-based approach to cortical surface segmentation that uses learned knowledge of the overall shape and range of variation of the cortex (excluding the detailed gyri and sulci) to guide the search for the grey-CSF boundary in a structural MRI image volume. The shape knowledge is represented by a radial surface model, which is a type of geometric constraint network (GCN) that we hypothesize can represent shape by networks of locally interacting constraints. The shape model is used in a protocol for visualization-based mapping of cortical stimulation mapping (CSM) sites onto the brain surface, prior to integration with other mapping modalities or as input to existing surface analysis and reconfiguration programs. Example results are presented for CSM data related to language organization in the cortex, but the methods should be applicable to other situations where a realistic visualization of the brain surface, as seen at neurosurgery, is desired.  相似文献   

13.
The parcellation of the human cortex into meaningful anatomical units is a common step of various neuroimaging studies. There have been multiple successful efforts to process magnetic resonance (MR) brain images automatically and identify specific anatomical regions, following atlases defined from cortical landmarks. Those definitions usually rely first on a high-quality brain surface reconstruction. On the other hand, when high accuracy is not a requirement, simpler methods based on warping a probabilistic atlas have been widely adopted. Here, we develop a cortical parcellation method for MR brain images based on Convolutional Neural Networks (ConvNets), a machine-learning method, with the goal of automatically transferring the knowledge obtained from surface analyses onto something directly applicable on simpler volume data. We train a ConvNet on a large (thousand) set of cortical ribbons of multiple MRI cohorts, to reproduce parcellations obtained from a surface method, in this case FreeSurfer. Further, to make the model applicable in a broader context, we force the model to generalize to unseen segmentations. The model is evaluated on unseen data of unseen cohorts. We characterize the behavior of the model during learning, and quantify its reliance on the dataset itself, which tends to give support for the necessity of large training sets, augmentation, and multiple contrasts. Overall, ConvNets can provide an efficient way to parcel MRI images, following the guidance established within more complex methods, quickly and accurately. The trained model is embedded within a open-source parcellation tool available at https://github.com/bthyreau/parcelcortex.  相似文献   

14.
With the improvements in techniques for generating surface models from magnetic resonance (MR) images, it has recently become feasible to study the morphological characteristics of the human brain cortex in vivo. Studies of the entire surface are important for measuring global features, but analysis of specific cortical regions of interest provides a more detailed understanding of structure. We have previously developed a method for automatically segmenting regions of interest from the cortical surface using a watershed transform. Each segmented region corresponds to a cortical sulcus and is thus termed a "sulcal region." In this work, we describe two important augmentations of this methodology. First, we describe a user interface that allows for the efficient labeling of the segmented sulcal regions called the Program for Assisted Labeling of Sulcal Regions (PALS). An additional augmentation allows for even finer divisions on the cortex with a methodology that employs the fast marching technique to track a curve on the cortical surface that is then used to separate segmented regions. After regions of interest have been identified, we compute both the cortical surface area and gray matter volume. Reliability experiments are performed to assess both the long-term stability and short-term repeatability of the proposed techniques. These experiments indicate the proposed methodology gives both highly stable and repeatable results.  相似文献   

15.
Human brain mapping aims at establishing correspondences between brain function and brain anatomy. One of the most intriguing problems in this field is the high interpersonal variability of human neuroanatomy which makes studies across many subjects very difficult. The cortical folds ('sulci') often serve as landmarks that help to establish correspondences between subjects. In this paper, we will present a method that automatically detects and attributes neuroanatomical names to the cortical folds using image analysis methods applied to magnetic resonance data of human brains. We claim that the cortical folds can be subdivided into a number of substructures which we call sulcal basins. The concept of sulcal basins allows us to establish a complete parcellation of the cortical surface into separate regions. These regions are neuroanatomically meaningful and can be identified from MR data sets across many subjects. Sulcal basins are segmented using a region growing approach. The automatic labelling is achieved by a model matching technique.  相似文献   

16.
Human frontal cortex: an MRI-based parcellation method.   总被引:5,自引:0,他引:5  
The frontal lobe is not a single anatomical and functional brain region. Several lines of research have demonstrated that particular subregions within the frontal lobe are associated with specific motor and cognitive functions in the human being. Our main purpose is to develop a magnetic resonance image (MRI)-based parcellation method of the frontal lobe that permits us to explore plausible abnormalities in functionally relevant frontal subregions in brain illnesses. We describe a procedure using MRI for subdividing the entire frontal cortex into 11 subregions: supplementary motor area (SMA), rostral anterior cingulate gyrus (r-ACiG), caudal anterior cingulate gyrus (c-ACiG), superior cingulate gyrus (SCiG), medial frontal cortex (MFC), straight gyrus (SG), orbitofrontal cortex (OFC), precentral gyrus (PCG), superior frontal gyrus (SFG), inferior frontal gyrus (IFG), and middle frontal gyrus (MFG). Our method posits to conserve the topographic uniqueness of individual brains and is based on our ability to visualize both the three-dimensional (3D) rendered brain and the three orthogonal planes simultaneously. The reliability study for gray matter volume and surface area of each subregion was performed on a set of 10 MR scans by two raters. The intraclass R coefficients for gray matter volume of each subregion ranged between 0.86 and 0.99. We describe here a reproducible and reliable topography-based parcellation method of the frontal lobe that will allow us to use new approaches to understand the role of particular frontal cortical subregions in schizophrenia and other brain illnesses.  相似文献   

17.
FreeSurfer     
Fischl B 《NeuroImage》2012,62(2):774-781
FreeSurfer is a suite of tools for the analysis of neuroimaging data that provides an array of algorithms to quantify the functional, connectional and structural properties of the human brain. It has evolved from a package primarily aimed at generating surface representations of the cerebral cortex into one that automatically creates models of most macroscopically visible structures in the human brain given any reasonable T1-weighted input image. It is freely available, runs on a wide variety of hardware and software platforms, and is open source.  相似文献   

18.
The segmentation of brain tissue from nonbrain tissue in magnetic resonance (MR) images, commonly referred to as skull stripping, is an important image processing step in many neuroimage studies. A new mathematical algorithm, a model-based level set (MLS), was developed for controlling the evolution of the zero level curve that is implicitly embedded in the level set function. The evolution of the curve was controlled using two terms in the level set equation, whose values represented the forces that determined the speed of the evolving curve. The first force was derived from the mean curvature of the curve, and the second was designed to model the intensity characteristics of the cortex in MR images. The combination of these forces in a level set framework pushed or pulled the curve toward the brain surface. Quantitative evaluation of the MLS algorithm was performed by comparing the results of the MLS algorithm to those obtained using expert segmentation in 29 sets of pediatric brain MR images and 20 sets of young adult MR images. Another 48 sets of elderly adult MR images were used for qualitatively evaluating the algorithm. The MLS algorithm was also compared to two existing methods, the brain extraction tool (BET) and the brain surface extractor (BSE), using the data from the Internet brain segmentation repository (IBSR). The MLS algorithm provides robust skull-stripping results, making it a promising tool for use in large, multi-institutional, population-based neuroimaging studies.  相似文献   

19.
Neuroanatomical and neurofunctional studies are often referenced to high-resolution magnetic-resonance brain datasets. For the analysis of the cortical surface, mapping of functional information on to the cortex or visualization, it is necessary to remove the outer surfaces of the brain. For intersubject comparison, it is useful to align the dataset with a coordinate system and introduce a spatial normalization. We describe an image processing chain that combines all of these steps in an interaction-free procedure. We report on a period of 2 years of routine application of this procedure, with >250 successfully processed datasets from healthy subjects and patients with various forms of brain damage.  相似文献   

20.
Cerebral abnormalities such as white matter hyperintensity (WMH), cortical infarct (CI), and lacunar infarct (LI) are of clinical importance and frequently present in patients with stroke and dementia. Up to date, there are limited algorithms available to automatically delineate these cerebral abnormalities partially due to their complex appearance in MR images. In this paper, we describe an automated multi-stage segmentation approach for labeling the WMH, CI, and LI using multi-modal MR images. We first automatically segment brain tissues (white matter, gray matter, and CSF) based on the T1-weighted image and then identify hyperintense voxels based on the fluid attenuated inversion recovery (FLAIR) image. We finally label the WMH, CI, and LI based on the T1-weighted, T2-weighted, and FLAIR images. The segmentation accuracy is evaluated using a community-based sample of 272 old adults. Our results show that the automated segmentation of the WMH, CI, and LI is comparable with manual labeling in terms of spatial location, volume, and the number of lacunes. Additionally, the WMH volume is highly correlated with the visual grading score based on the Age-Related White Matter Changes (ARWMC) protocol. The evaluations against the manual labeling and ARWMC visual grading suggest that our algorithm provides reasonable segmentation accuracy for the WMH, CI, and LI.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号