首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The ability of a species to reproduce successfully requires the careful orchestration of developmental processes during critical time points, particularly the late embryonic and early postnatal periods. This article begins with a brief presentation of the evidence for how gonadal steroid hormones exert these imprinting effects upon the morphology of sexually differentiated hypothalamic brain regions, the mechanisms underlying these effects, and their implications in adulthood. Then, I review the evidence that aberrant exposure to hormonally-active substances such as exogenous endocrine-disrupting chemicals (EDCs), may result in improper hypothalamic programming, thereby decreasing reproductive success in adulthood. The field of endocrine disruption has shed new light on the discipline of basic reproductive neuroendocrinology through studies on how early life exposures to EDCs may alter gene expression via non-genomic, epigenetic mechanisms, including DNA methylation and histone acetylation. Importantly, these effects may be transmitted to future generations if the germline is affected via transgenerational, epigenetic actions. By understanding the mechanisms by which natural hormones and xenobiotics affect reproductive neuroendocrine systems, we will gain a better understanding of normal developmental processes, as well as develop the potential ability to intervene when development is disrupted.  相似文献   

2.
3.
Seasonal courtship signals, such as mating calls, are orchestrated by steroid hormones. Sex differences are also sculpted by hormones, typically during brief sensitive periods. The influential organizational-activational hypothesis [50] established the notion of a strong distinction between long-lasting (developmental) and cyclical (adult) effects. While the dichotomy is not always strict [1], experimental paradigms based on this hypothesis have indeed revealed long-lasting hormone actions during development and more transient anatomical, physiological and behavioral effects of hormonal variation in adulthood. Sites of action during both time periods include forebrain and midbrain sensorimotor integration centers, hindbrain and spinal cord motor centers, and muscles. African clawed frog (Xenopus laevis) courtship vocalizations follow the basic organization-activation pattern of hormone-dependence with some exceptions, including expanded steroid-sensitive periods. Two highly-tractable preparations—the isolated larynx and the fictively calling brain—make this model system powerful for dissecting the hierarchical action of hormones. We discuss steroid effects from larynx to forebrain, and introduce new directions of inquiry for which Xenopus vocalizations are especially well-suited.  相似文献   

4.
Of the many people that have epilepsy, only about 70% achieve seizure control with traditional pharmacotherapies. Steroids have long been known to influence ictal activity and may have a therapeutic role. This review summarizes recent investigations that have enhanced knowledge of the effects and mechanisms of gonadal, adrenal, and neuroactive steroids on seizure processes. Progesterone, which varies across reproductive cycles, pregnancy, and as a function of aging, has been shown to have anti-seizure effects among women with epilepsy and in animal models of epilepsy. Further, data suggest that progesterone's anti-seizure effects may involve its metabolism to the neuroactive steroid, 5-pregnan-3-ol-20-one (3,5-THP), and its subsequent actions at GABAA receptors. Androgens also have anti-seizure effects. Androgens' anti-seizure effects may be mediated, in part, through actions of the testosterone metabolite, and neuroactive steroid, 5-androstane-3,17-diol (3-diol) at GABAA receptors. Stress can alter seizure susceptibility, suggesting a role of adrenal steroids on seizure processes. In animal models of epilepsy, acute or chronic stress can increase ictal activity. Notably, stress and seizures can alter levels of gonadal, adrenal, and neuroactive steroids, which may then influence subsequent seizure activity. Thus, this review summarizes recent progress in the role of gonadal, adrenal, and/or neuroactive steroids in seizure processes which suggest that greater understanding of these steroids' effects and mechanisms may ultimately lead to improved seizure control for people with epilepsy.  相似文献   

5.
6.
7.
Monks DA  Watson NV 《Brain research》2001,895(1-2):73-79
We have recently reported that systemic androgens regulate adult N-cadherin (N-cad) expression in spinal motoneurons. However, the mechanism through which androgen mediates this effect remains undetermined. Androgen may act directly on motoneurons to regulate N-cad expression, or indirectly, via effects on androgen-sensitive afferent or efferent structures. Here, we describe a genetic mosaic investigation of this site-of-action indeterminacy. Following developmental random X chromosome inactivation, androgenized female rats heterozygous for the tfm androgen receptor mutation (X(WT)X(tfm)) are phenotypic mosaics of androgen-sensitive wild-type (WT) and androgen-insensitive (tfm) motoneurons. We compared steroid effects on WT and tfm cells in two sexually-dimorphic motoneuron pools, the spinal nucleus of the bulbocavernosus (SNB) and the dorsolateral nucleus (DLN), as well as a less steroid responsive motoneuron pool, the sexually monomorphic retrodorsolateral nucleus (RDLN). Independent of steroid treatment, a greater proportion of wild-type cells were N-cad immunoreactive (IR) in the DLN and RDLN. Following testosterone treatment, increased N-cad expression was observed in both cell types in the DLN, but in the SNB only the androgen-competent WT cells increased N-cad expression. Testosterone treatment did not significantly alter N-cad expression in the mosaic RDLN. The results indicate both cell autonomous and cell non-autonomous androgenic regulation of N-cad expression in spinal motoneurons.  相似文献   

8.
The acquisition of reproductive competence is organized and activated by steroid hormones acting upon the hypothalamus during critical windows of development. This review describes the potential role of epigenetic processes, particularly DNA methylation, in the regulation of sexual differentiation of the hypothalamus by hormones. We examine disruption of these processes by endocrine-disrupting chemicals (EDCs) in an age-, sex-, and region-specific manner, focusing on how perinatal EDCs act through epigenetic mechanisms to reprogram DNA methylation and sex steroid hormone receptor expression throughout life. These receptors are necessary for brain sexual differentiation and their altered expression may underlie disrupted reproductive physiology and behavior. Finally, we review the literature on histone modifications and non-coding RNA involvement in brain sexual differentiation and their perturbation by EDCs. By putting these data into a sex and developmental context we conclude that perinatal EDC exposure alters the developmental trajectory of reproductive neuroendocrine systems in a sex-specific manner.  相似文献   

9.
Recent studies in humans suggest that alterations in the activity of the neuroendocrine system mediate the effects of psychosocial stress on fetal development and birth outcome. Chronic maternal distress compromises the normal regulation of hormonal activity during pregnancy and elevates free circulating corticotrophin-releasing hormone (CRH), probably of placental origin, before the normal increase occurs at term. Excess CRH, and other hormones like cortisol and met-enkephalin that pass through the placenta, could precipitate preterm labor, reduce birth weight and slow growth rate in prenatally stressed infants. CRH and/or cortisol have also been associated with impaired fetal habituation to stimuli and temperamental difficulties in infants. These changes may result from actions of the hormones on their receptors in the fetal limbic system. In the rat, gestational stress and excess maternal and fetal plasma corticosterone cause downregulation of fetal glucocorticoid (GR) and mineralocorticoid (MR) receptors and impair the feedback regulation of the hypothalamic-pituitary adrenal (HPA) axis in infancy and adulthood. The impairment in HPA axis activity can be prevented by maternal adrenalectomy and mimicked by administration of glucocorticoids. Gestational stress also increases CRH activity in the amygdala and the incidence of anxiogenic and depressive-like behavior in rats and non-human primates, which can be ameliorated by CRH antagonists. Excess amounts of CRH and cortisol reaching the human fetal brain during periods of chronic maternal stress could alter personality and predispose to attention deficits and depressive illness through changes in neurotransmitter activity.  相似文献   

10.
Males, but not females, overproduce dopamine receptors in the striatum of rats across the periadolescent period followed by their elimination during young adulthood. In order to investigate the role that gonadal hormones play in this pubertal process, rats were castrated or ovariectomized at postnatal day (P) 28 when estrogen and testosterone levels are beginning to surge. Dopamine D1 and D2 striatal receptor density was then determined with autoradiography at P40 (adolescence) and P80 (young adulthood) to determine if either testosterone stimulates the overproduction of receptors in males or if estrogen inhibits this process in females. Neither castration nor ovariectomy altered dopamine receptor density, although enhanced testosterone levels increased D1 receptor binding 4.2% and 19.5% in males and females, respectively. The results of this study suggest that the endogenous rise in gonadal steroid hormones during puberty is not responsible for the overproduction of receptors in males or the lack of overproduction in females.  相似文献   

11.
Coregulator proteins and corticosteroid action in the brain   总被引:5,自引:0,他引:5  
  相似文献   

12.
Social anxiety disorder (SAD) is a highly prevalent and disabling disorder with key behavioral traits of social fearfulness, social avoidance, and submissiveness. Here we argue that hormonal systems play a key role in mediating social anxiety, and so may be important in SAD. Hormonal alterations, often established early in development through the interaction between biological and psychological factors (eg, genetic predisposition x early trauma), predispose to socially fearful, avoidant, and submissive behavior. However, whereas gene variants and histories of trauma persist, hormonal systems can be remodeled over the course of life. Hormones play a key role during the periods of all sensitive developmental windows (ie, prenatal, neonatal, puberty, aging), and are capable of opening up new developmental windows in adulthood. Indeed, the developmental plasticity of our social brain, and thus of social behavior in adulthood, critically depends on steroid hormones such as testosterone and peptide hormones such as oxytocin. These steroid and peptide hormones in interaction with social experiences may have potential for reprogramming the socially anxious brain. Certainly, single administrations of oxytocin and testosterone in humans reduce socially fearful, avoidant, and submissive behavior. Such work may ultimately lead to new approaches to the treatment of SAD.  相似文献   

13.
Steroid hormones, such as progesterone, are typically considered to be primarily secreted by the gonads (albeit adrenals can also be a source) and to exert their actions through cognate intracellular progestin receptors (PRs). Through its actions in the midbrain ventral tegmental Area (VTA), progesterone mediates appetitive (exploratory, anxiety, social approach) and consummatory (social, sexual) aspects of rodents' mating behaviour. However, progesterone and its natural metabolites ('progestogens') are produced in the midbrain VTA independent of peripheral sources and midbrain VTA of adult rodents is devoid of intracellular PRs. One approach that we have used to understand the effects of progesterone and mechanisms in the VTA for mating is to manipulate the actions of progesterone in the VTA and to examine effects on lordosis (the posture female rodents assume for mating to occur). This review focuses on the effects and mechanisms of progestogens to influence reproduction and related processes. The actions of progesterone and its 5α-reduced metabolite and neurosteroid, 5α-pregnan-3α-ol-20-one (3α,5α-THP; allopregnanolone) in the midbrain VTA to facilitate mating are described. The findings that 3α,5α-THP biosynthesis in the midbrain occurs with mating are discussed. Evidence for the actions of 3α,5α-THP in the midbrain VTA via nontraditional steroid targets is summarised. The broader relevance of these actions of 3α,5α-THP for aspects of reproduction, beyond lordosis, is summarised. Finally, the potential role of the pregnane xenobiotic receptor in mediating 3α,5α-THP biosynthesis in the midbrain is introduced.  相似文献   

14.
Prenatally stressed offspring exhibit a variety of physiological and behavioral alterations. This paper highlights those alterations associated with prenatal stress-induced elevations in glucocorticoid secretion. Three major alterations are identified that may be produced by glucocorticoid-induced actions on the developing hippocampus. Changes include reductions in steroid receptors that bind endogenous glucocorticoids, enhanced secretion of stress hormones and increased reactivity or emotionality in stressful situations. Some of these alterations may be ameliorated by early postnatal environmental manipulations such as adoption and handling procedures. These latter results suggest that prenatal stress-induced effects of glucocorticoids extend into the early postnatal period to produce long-term hippocampal and behavioral alterations. Support for this hypothesis is based on studies demonstrating that the hippocampus undergoes considerable maturational changes during the early postnatal period such as establishing the regional distribution of corticosteroid receptor densities and development of hippocampal dentate gyrus cells as well as cholinergic systems. Hippocampal corticosteroid receptors are involved in the regulation of glucocorticoid negative feedback and hippocampal dentate gyrus and cholinergic development are influenced by endogenous glucocorticoids and are implicated in the development of defensive or stress-induced behavior. The developing hippocampus appears especially vulnerable to alterations induced by prenatal stress-induced elevations in glucocorticoids that continue to produce their effects throughout the early postnatal period.  相似文献   

15.
Neuroactive steroids and seizure susceptibility   总被引:4,自引:0,他引:4  
There is increasing clinical and experimental evidence that hormones, in particular sex steroid hormones, influence neuronal excitability and other brain functions. The term 'neuroactive steroids' has been coined for steroids that interact with neurotransmitter receptors. One of the best characterized actions of neuroactive steroids is the allosteric modulation of GABA(A)-receptor function via binding to a putative steroid-binding site. Since neuroactive steroids may interact with a variety of other membrane receptors, excitatory as well as inhibitory, they may have an impact on the excitability of specific brain regions. Neuronal excitability is enhanced by estrogen, whereas progesterone and its metabolites exert anticonvulsant effects. Testosterone and corticosteroids have less consistent effects on seizure susceptibility. Apart from these particular properties, neuroactive steroids may regulate gene expression via progesterone receptors. Based on their molecular properties, these compounds appear to have a promising therapeutical profile for the treatment of different neuropsychiatric diseases including epilepsy. This review focuses on the effects of neuroactive steroids on neuronal excitability and their putative impact on the physiology of epileptic disorders.  相似文献   

16.
17.
Steroid hormones systematically affect numerous neuronal targets, thus influencing, in a permanent or a transitory manner, the way the brain reacts to external and internal stimuli. The hippocampus is an important brain region for learning and memory and the glutamatergic intrahippocampal pathway plays a major role in performing such functions. We applied quantitative in vitro receptor autoradiography to examine how the in vivo hormone milieu affects the densities of AMPA, kainate, and NMDA receptors in the hippocampus of adult male rats and females in estrus and diestrus. All three examined receptor types presented significant gender-specific differences in their densities. The hippocampus of male rats contains significantly more AMPA, kainate, and NMDA receptors than that of female rats. Female rats in diestrus have significantly higher AMPA receptor densities than female rats in estrus. AMPA changes occurred to the same extent in CA1-3 and in the dentate gyrus. Significant differences in the densities of NMDA receptors were observed in the CA1-3 regions, whereas kainate receptor differences were restricted to the CA1 region. These results further support that steroid hormones, through their modulation of AMPA and NMDA receptors, may be involved in the control of synaptic efficacy and, therefore, influence learning and memory.  相似文献   

18.
Sex steroid hormones released from the gonads play an important role in mediating social behavior across all vertebrates. Many effects of these gonadal hormones are mediated by nuclear steroid hormone receptors, which are crucial for integration in the brain of external (e.g., social) signals with internal physiological cues to produce an appropriate behavioral output. The African cichlid fish Astatotilapia burtoni presents an attractive model system for the study of how internal cues and external social signals are integrated in the brain as males display robust plasticity in the form of two distinct, yet reversible, behavioral and physiological phenotypes depending on the social environment. In order to better understand where sex steroid hormones act to regulate social behavior in this species, we have determined the distribution of the androgen receptor, estrogen receptor alpha, estrogen receptor beta, and progesterone receptor mRNA and protein throughout the telencephalon and diencephalon and some mesencephalic structures of A. burtoni. All steroid hormone receptors were found in key brain regions known to modulate social behavior in other vertebrates including the proposed teleost homologs of the mammalian amygdalar complex, hippocampus, striatum, preoptic area, anterior hypothalamus, ventromedial hypothalamus, and ventral tegmental area. Overall, there is high concordance of mRNA and protein labeling. Our results significantly extend our understanding of sex steroid pathways in the cichlid brain and support the important role of nuclear sex steroid hormone receptors in modulating social behaviors in teleosts and across vertebrates. J. Comp. Neurol. 518:3302–3326, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号