首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The TRPV1 channel plays an important role in generating nociceptive signals in mammalian primary sensory neurons. It consists of 838 amino acids with six transmembrane segments (TM1-TM6), a pore-forming loop between TM5 and TM6 and N- and C- terminals located intracellularly. It is a homotetramer and forms a nonselective cationic channel that can be opened by capsaicin, weak acids and noxious heat. There are 18 cysteines (Cys), three of which are located on the extracellular side of the receptor in and around the region of the pore-forming loop. We report that the TRPV1 channel in transfected HEK293T cells and in cultured rat DRG neurons is blocked in the open state by an oxidizing agent Cu-o-phenanthroline complex (Cu:Phe). The effects of Cu:Phe are concentration dependent ( IC50 = 5.2 : 20.8 microm ) and fully reversible. Cu:Phe applied immediately before exposure to an acidic solution, capsaicin or noxious heat is without effect. Substitutions of the extracellular Cys residues (616, 621, 634) by glycine individually or together do not alter the blocking effects of Cu:Phe suggesting that disulfide cross-linking does not represent the underlying mechanism. It is suggested that the complex Cu:Phe, a bulky, positively charged molecule, represents a very effective and reversible open channel blocker of TRPV1.  相似文献   

2.
The clinical use of TRPV1 (transient receptor potential vanilloid subfamily, member 1; also known as VR1) antagonists is based on the concept that endogenous agonists acting on TRPV1 might provide a major contribution to certain pain conditions. Indeed, a number of small-molecule TRPV1 antagonists are already undergoing Phase I/II clinical trials for the indications of chronic inflammatory pain and migraine. Moreover, animal models suggest a therapeutic value for TRPV1 antagonists in the treatment of other types of pain, including pain from cancer. We argue that TRPV1 antagonists alone or in conjunction with other analgesics will improve the quality of life of people with migraine, chronic intractable pain secondary to cancer, AIDS or diabetes. Moreover, emerging data indicate that TRPV1 antagonists could also be useful in treating disorders other than pain, such as urinary urge incontinence, chronic cough and irritable bowel syndrome. The lack of effective drugs for treating many of these conditions highlights the need for further investigation into the therapeutic potential of TRPV1 antagonists.  相似文献   

3.
Substituted 1,2,3,4-tetrahydroaminonaphthols were found to be calcium channel blockers with antihypertensive properties. These compounds also possessed adrenergic beta-receptor blocking activity. From the structure-activity studies, no clear correlation emerged between the in vitro calcium channel blocking activity and the acute anti-hypertensive activity in cannulated spontaneously hypertensive rats. Extensive pharmacological testing of selected compounds indicated that aminonaphthols are antihypertensive agents with many pharmacological properties. The relative contribution of various pharmacological actions toward the observed antihypertensive activity is unclear. Since the clinically useful calcium channel blocker verapamil is structurally related to these compounds, one of the aminonaphthols, trans-3-[(3,3-diphenylpropyl)amino]-1,2,3,4-tetrahydro-6,7 -dimethoxy-2-naphthalenol (12), was compared with verapamil for calcium channel blocking activity, adrenergic blocking activity, and catecholamine-depleting activity. Both compounds were found to be equipotent in these test systems.  相似文献   

4.
Recently, 1,3-diarylalkyl thioureas have merged as one of the promising nonvanilloid TRPV1 antagonists possessing excellent therapeutic potential in pain regulation. In this paper, the full structure-activity relationship for TRPV1 antagonism of a novel series of 1,3-diarylalky thioureas is reported. Exploration of the structure-activity relationship, by systemically modulating three essential pharmacophoric regions, led to six examples of 1,3-dibenzyl thioureas, which exhibit Ca(2+) uptake inhibition in rat DRG neuron with IC(50) between 10 and 100 nM.  相似文献   

5.
The vanilloid receptor (TRPV1) has attracted a great expectation in pain therapeutics for the treatment of chronic inflammatory conditions. As a result, several drug discovery programmes were launched in the past years that yielded a large number of receptor agonists and antagonists. However, despite the claimed therapeutic potential of TRPV1 modulators, a disappointing number of candidates have progressed into clinical trials and those were only for dental pain and migraine, indicating that our understanding of the role of TRPV1 in pain is still very limited. The widespread distribution of TRPV1 in different tissues suggests an involvement in body functions other than pain. Indeed, new findings indicate that TRPV1 is tonically active in physiological conditions and its pharmacological blockade leads to hyperthermia. Furthermore, the full abrogation of TRPV1 in some models of chronic pain results in enhanced pain. Therefore, a remaining challenge is the development of drugs that preserve the physiological activity of TRPV1 and downregulate the function of overactive receptors.  相似文献   

6.
7.
Rationale Antagonists acting at the N-methyl-d-aspartate (NMDA) subtype of glutamate receptors inhibit various phenomena associated with exposures to nicotine (e.g., tolerance, sensitization, dependence, and intravenous self-administration). These effects are often discussed in terms of nicotine-induced glutamate release with subsequent glutamate-dependent stimulation of dopamine metabolism and neuronal plasticity in brain areas critically involved in drug-addiction mechanisms. However, it is also well established that certain types of NMDA receptor antagonists (channel blockers) potently bind to nicotinic receptors and may act as nicotinic receptor antagonists.Objective The present study aimed to evaluate the discriminative-stimulus effects of the NMDA receptor channel blockers (+)MK-801, dextromethorphan, and memantine in rats trained to discriminate nicotine from its vehicle.Methods Adult male Wistar rats were trained to discriminate 0.6 mg/kg nicotine from saline under a two-lever, fixed-ratio 10 schedule of food reinforcement. During test sessions, injections of (+)MK-801 (0.03–0.3 mg/kg, i.p.), dextromethorphan (30 mg/kg, s.c.), or memantine (1–10 mg/kg, i.p.) were co-administered with s.c. nicotine (0.075–0.6 mg/kg; interaction tests) or saline (generalization tests). Additional interaction and generalization tests were conducted with the selective nicotinic receptor antagonists mecamylamine (0.1–3 mg/kg, s.c.) and MRZ 2/621 (0.3–10 mg/kg, i.p.), and the mGlu5 receptor antagonist MPEP (3–10 mg/kg, i.p.).Results In generalization tests, none of the compounds produced any appreciable levels of substitution for nicotine. The nicotine discriminative-stimulus control was dose dependently attenuated by mecamylamine (ED50=0.67 mg/kg) and MRZ 2/621 (ED50=9.7 mg/kg). Both agents produced a marked downward shift in the nicotine dose–response curve. Memantine and MPEP slightly attenuated nicotine discriminative-stimulus effects, while (+)MK-801 and dextromethorphan did not affect the nicotine-appropriate responding.Conclusions NMDA receptor channel blockers, such as (+)MK-801, dextromethorphan, and memantine, have minimal interactions with the discriminative-stimulus effects of nicotine.  相似文献   

8.
Choe YJ  Seo HN  Jung SY  Rhim H  Kim J  Choo DJ  Lee JY 《Archiv der Pharmazie》2008,341(10):661-664
3,4-Dihydroquinazoline derivatives have been known to be the novel and potent T-type calcium channel blockers. From a systematic variation of 3,4-dihydroquinazoline derivative 5c (KYS05043), plausible SAR results were established. It was revealed that a 5-(dimethylamino)pentylamino group at R(1), a biphenyl group at R(2), and a benzyl amido group at R(3)in the 3,4-dihydroquinazoline backbone are closely related with the channel selectivity (T/N-type) as well as the potency based on the discovery of 6k (KYS05090).  相似文献   

9.

BACKGROUND AND PURPOSE

Transient receptor potential vanilloid 4 (TRPV4) is a Ca2+-permeable channel with multiple modes of activation. Apigenin is a plant-derived flavone, which has potential preventive effects on the development of cardiovascular disease. We set out to explore the effects of apigenin on TRPV4 channel activity and its role in vasodilatation.

EXPERIMENTAL APPROACH

The effects of apigenin (0.01–30 µM) on TPRV4 channels were investigated in HEK293 cells over-expressing TRPV4, rat primary cultured mesenteric artery endothelial cells (MAECs) and isolated small mesenteric arterial segments using whole-cell patch clamp, fluorescent Ca2+ imaging, intracellular recording and pressure myography.

KEY RESULTS

Whole-cell patch clamp and fluorescent Ca2+ imaging in HEK cells over-expressing TRPV4 showed that apigenin concentration-dependently stimulated the TRPV4-mediated cation current and Ca2+ influx. In MAECs, apigenin stimulated Ca2+ influx in a concentration-dependent manner. These increases in cation current and Ca2+ influx were markedly inhibited by TRPV4-specific blockers and siRNAs. Furthermore, pressure myography and intracellular recording in small third-order mesenteric arteries showed that apigenin dose-dependently evoked smooth muscle cell membrane hyperpolarization and subsequent vascular dilatation, which were significantly inhibited by TRPV4-specific blockers. TRPV4 blocker or charybdotoxin (200 nM) plus apamin (100 nM) diminished the apigenin-induced dilatation.

CONCLUSION AND IMPLICATIONS

This is the first study to demonstrate the selective stimulation of TRPV4 by apigenin. Apigenin was found to activate TRPV4 channels in a dose-dependent manner in HEK cells over-expressing TRPV4 and in native endothelial cells. In rat small mesenteric arteries, apigenin acts on TRPV4 in endothelial cells to induce EDHF-mediated vascular dilatation.  相似文献   

10.
Transient receptor potential vanilloid 1 (TRPV1) channel antagonists may have clinical utility for the treatment of chronic nociceptive and neuropathic pain. We recently advanced a TRPV1 antagonist, 3 (AMG 517), into clinical trials as a new therapy for the treatment of pain. However, in addition to the desired analgesic effects, this TRPV1 antagonist significantly increased body core temperature following oral administration in rodents. Here, we report one of our approaches to eliminate or minimize the on-target hyperthermic effect observed with this and other TRPV1 antagonists. Through modifications of our clinical candidate, 3 a series of potent and peripherally restricted TRPV1 antagonists have been prepared. These analogues demonstrated on-target coverage in vivo but caused increases in body core temperature, suggesting that peripheral restriction was not sufficient to separate antagonism mediated antihyperalgesia from hyperthermia. Furthermore, these studies demonstrate that the site of action for TRPV1 blockade elicited hyperthermia is outside the blood-brain barrier.  相似文献   

11.
12.
Transient receptor potential vanilloid type 1 (TRPV1), a ligand-gated cation channel, is a polymodal nocitransducer widely expressed within pain transmitting/modulating areas of the peripheral and central nervous system. TRPV1 is both activated and sensitized by inflammatory endogenous mediators during inflammatory pain conditions and appears to be up regulated in neuropathic pain conditions. Owing to its role as pain integrator, its widespread expression in pain neuraxis and its involvement in pain development TRPV1 offers an exciting opportunity for therapeutic interventions in pain management. In particular, its supraspinal expression within the antinociceptive descending pathway, which includes periaqueductal grey (PAG) and rostral ventromedial medulla (RVM), represents an endogenous switch for extinguishing pain in pathological conditions.  相似文献   

13.
TRPV1b, a functional human vanilloid receptor splice variant   总被引:6,自引:0,他引:6  
Transient receptor potential (TRP) genes encode a family of related ion-channel subunits. This family consists of cation-selective, calcium-permeable channels that include a group of vanilloid receptor channels (TRPV) implicated in pain and inflammation. These channels are activated by diverse stimuli, including capsaicin, lipids, membrane deformation, heat, and protons. Six members of the TRPV family have been identified that differ predominantly in their activation properties. However, in neurons, TRPV channels do not account for the observed diversity of responses to activators. By probing human and rat brain cDNA libraries to identify TRPV subunits, we identified a novel human TRPV1 RNA splice variant, TRPV1b, which forms functional ion channels that are activated by temperature (threshold, approximately 47 degrees C), but not by capsaicin or protons. Channels with similar activation properties were found in trigeminal ganglion neurons, suggesting that TRPV1b receptors are expressed in these cells and contribute to thermal nociception.  相似文献   

14.
Several compounds with a 4-aminopiperidine scaffold decorated on both nitrogen atoms by alkyl or acyl moieties containing the structural motifs of verapamil and of flunarizine, as well as those that are more frequent in known N-type calcium channel antagonists, have been synthesized. Antinociceptive activity on the mouse hot-plate test was used to select molecules to be submitted to further studies. Active compounds were tested in vitro on a PC12 rat pheochromocytoma clonal cell line, to evaluate their action on N-type calcium channels, and on a rat model of neuropathic pain. Two compounds that show N-type calcium channel antagonism and are endowed with potent action on pain and neuropathic pain (3 and 18) have been selected for further studies.  相似文献   

15.
The vanilloid receptor subunit 1, or transient receptor potential vanilloid 1 (TRPV1), integrates physical and chemical stimuli in the peripheral nervous system, playing a key role in inflammatory pain. Identification of potent TRPV1 antagonists is thus an important goal of current neuropharmacology. Herein, we describe the solid-phase synthesis of a series of indole-based peptoids (N-alkylglycines) and the biological activity of the peptoids as novel TRPV1 antagonists. The potency and selectivity of the compounds were determined by electrophysiological recordings in Xenopus oocytes. The most potent and selective noncompetitive TRPV1 antagonist of the series, compound 7, represents an interesting pharmacophoric structure for analgesic lead optimization.  相似文献   

16.
陆宏霞 《中国当代医药》2012,19(35):159-160
目的 分析本院H1受体阻断剂的临床应用情况,为临床合理用药提供科学参考.方法 回顾性分析本院临床应用H1受体阻断剂的种类、用药金额、用药频度、日均用药费用以及药物的利用指数等.结果 本院H1受体阻断剂的临床用药基本合理,其中第一代H1受体阻断剂中苯海拉明针剂、异丙嗪针剂的DUI>1,用药不合理;第二代H1受体阻断剂中仅特非那定片的DIU>1;本院第一代H1受体阻断剂的临床用量显著少于第二代H1受体阻断剂,P<0.01.结论 第一代H1受体阻断剂临床用量逐渐下降,第二代H1受体阻断剂的临床用量显著高于第一代H1受体阻断剂的临床用量.  相似文献   

17.
The voltage-gated potassium channel Kv1.5 is regarded as a promising target for the development of new atrial selective drugs with fewer side effects. In the present study the discovery of ortho,ortho-disubstituted bisaryl compounds as blockers of the Kv1.5 channel is presented. Several compounds of this new class were synthesized and screened for their ability to block Kv1.5 channels expressed in Xenopus oocytes. The observed structure-activity relationship (SAR) is described by a pharmacophore model that consists of three hydrophobic centers in a triangular arrangement. The hydrophobic centers are matched by a phenyl or pyridyl ring of the bisaryl core and both ends of the side chains. The most potent compounds (e.g., 17c and 17o) inhibited the Kv1.5 channel with sub-micromolar half-blocking concentrations and displayed 3-fold selectivity over Kv1.3 and no significant effect on the HERG channel and sodium currents. In addition, compounds 17c and 17m have already shown antiarrhythmic effects in a pig model.  相似文献   

18.
The PARK7 gene (encode DJ-1 protein) was first discovered as an oncogene and later found to be a causative gene for autosomal recessive early onset Parkinson’s disease. DJ-1 has been proposed as a potential therapeutic anticancer target due to its pivotal role in tumorigenesis and cancer progression. Based on the homodimer structure of DJ-1, a series of bis-isatin derivatives with different length linkers were designed, synthesized, and evaluated as dimeric inhibitors targeting DJ-1 homodimer. Among them, DM10 with alkylene chain of C10 displayed the most potent inhibitory activity against DJ-1 deglycase. We further demonstrated that DM10 bound covalently to the homodimer of DJ-1. In human cancer cell lines H1299, MDA-MB-231, BEL7402, and 786-O, DM10 (2.5–20 μM) inhibited the cell growth in a concentration-dependent manner showing better anticancer effects compared with the positive control drug STK793590. In nude mice bearing H1299 cell xenograft, intratumor injection of DM10 (15 mg/kg) produced significantly potent tumor growth inhibition when compared with that caused by STK793590 (30 mg/kg). Moreover, we found that DM10 could significantly enhance N-(4-hydroxyphenyl)retinamide-based apoptosis and erastin-based ferroptosis in H1299 cells. In conclusion, DM10 is identified as a potent inhibitor targeting DJ-1 homodimer with the potential as sensitizing agent for other anticancer drugs, which might provide synergistical therapeutic option for cancer treatment.  相似文献   

19.
A series of naphthyl-based compounds were synthesized as potential inhibitors of vascular endothelial growth factor (VEGF) receptors. Investigations of structure-activity relationships led to the identification of a series of naphthamides that are potent inhibitors of the VEGF receptor tyrosine kinase family. Numerous analogues demonstrated low nanomolar inhibition of VEGF-dependent human umbilical vein endothelial cell (HUVEC) proliferation, and of these several compounds possessed favorable pharmacokinetic (PK) profiles. In particular, compound 48 demonstrated significant antitumor efficacy against established HT29 human colon adenocarcinoma xenografts implanted in athymic mice. A full account of the preparation, structure-activity relationships, pharmacokinetic properties, and pharmacology of analogues within this series is presented.  相似文献   

20.
The synthesis and structure-activity relationship studies of novel indole derivatives as peroxisome proliferator-activated receptor (PPAR) agonists are reported. Indole, a drug-like scaffold, was studied as a core skeleton for the acidic head part of PPAR agonists. The structural features (acidic head, substitution on indole, and linker) were optimized first, by keeping benzisoxazole as the tail part, based on binding and functional activity at PPARgamma protein. The variations in the tail part, by introducing various heteroaromatic ring systems, were then studied. In vitro evaluation led to identification of a novel series of indole compounds with a benzisoxazole tail as potent PPAR agonists with the lead compound 14 (BPR1H036) displaying an excellent pharmacokinetic profile in BALB/c mice and an efficacious glucose lowering activity in KKA(y) mice. Structural biology studies of 14 showed that the indole ring contributes strong hydrophobic interactions with PPARgamma and could be an important moiety for the binding to the protein.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号