首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Summary We investigated the effect of ICS 205-930 [(3-tropanyl)-1H-indole-3-carboxylic acid ester], a selective antagonist at 5-HT3 receptors, on the cardiogenic hypertensive chemoreflex in the anaesthetized dog. The reflex was elicited by injection of 5-HT (12.5–1600 g) into the left cardiac ventricle and consisted of a dose-dependent systemic hypertension associated with a decrease in heart rate. ICS 205-930 (10, 30, and 100 g/kg i.v.) caused a displacement to the right of both the dose-response curves of 5-HT-induced blood pressure increase and heart rate reduction. Its blocking effects upon the action of 5-HT could be surmounted by increasing the dose of the agonist. The selective 5-HT2 receptor antagonist, ketanserin (0.1 mg/kg i.v.) and the combined 5-HT1 and 5-HT2 receptor antagonist, methiothepin (0.1 mg/kg i.v.) had no influence on the hypertensive reflex. When the reflex was elicited by the ganglionic stimulant, 1,1-dimethyl-4-phenyl-piperazinium (DMPP; 100–1600 g), ICS 205-930 had no blocking effect. The results suggest that the 5-HT-induced cardiogenic hypertensive chemoreflex is mediated by 5-HT3 receptors. Send offprint requests to H. Berthold at the above address  相似文献   

2.
Summary The biochemical and behavioural effects of isamoltane, a \-adrenoceptor and 5-HT1B receptor antagonist that has higher affinity for 5-HT1B receptors than for 5-HTIA receptors, on 5-HT neurotransmission in the rat brain were examined. In binding experiments isamoltane was found to be about five times more potent as a ligand for the 5-HT1B receptor than for the 5-HT1A receptor (Ki values 21 and 112 nmol/l, respectively). Isamoltane increased the K+-evoked overflow of 3H from 3H-5-HT loaded slices of rat occipital cortex at 0.1 mol/l, consistent with inhibition of the terminal 5HT autoreceptor. In vivo, isamoltane significantly increased the concentration of 5-hydroxyindoleacetic acid in hypothalamus and hippocampus indicating an increased 5-HT turnover with a maximal effect at 3 mg/kg s.c. A higher dose produced a less pronounced effect. This effect did not seem to be due to the -adrenoceptor blocking action of isamoltane since the -adrenoceptor antagonists, (–)-alprenolol, betaxolol or ICI 118,551 had no significant effects on 5-HT turnover at 5 mg/kg s.c. Isamoltane at 3 mg/kg s.c. induced the wet-dog shake response which was blocked by the tryptophan hydroxylase inhibitor p-chlorophenylalanine. In contrast, the same response induced by the 5-HT2 receptor agonist quipazine was not blocked by pretreatment with p-chlorophenylalanine. The wet-dog shakes evoked by isamoltane and quipazine were blocked by ritanserin, which indicates that 5-HT2 receptors are involved in their expression. These observations indicate that isamoltane, by inhibiting the terminal 5-HT autoreceptors, increased the synaptic concentration of 5-HT to a level that induced a behavioural response. Send of offprint requests to S. B. Ross at the above addressThe present results have been presented in part at the Second IUPHAR Satellite Meeting on Serotonin, Basel, Switzerland, July 11–13, 1990  相似文献   

3.
TFMPP andm-CPP, non-selective 5-HT agonists, administered in doses of 1–20 mg/kg evoked hyperthermia in rats at a high ambient temperature (28°C). The hyperthermic effect of TFMPP (10 mg/kg) orm-CPP (10 mg/kg) was dose-dependently antagonized by the 5-HT1c and 5-HT2 receptor antagonists mesulergine (0.5–4 mg/kg), ketanserin (0.6–2.5 mg/kg) and ritanserin (0.5–2 mg/kg) and by the non-selective 5-HT antagonist metergoline (0.5–1 mg/kg), or was attenuated by the 5-HT1A, 5-HT2 and dopamine receptor antagonist spiperone (3 mg/kg, but not 0.3 or 1 mg/kg). On the other hand, the 5-HT1A, 5-HT1B and adrenoceptor antagonists pindolol (2 mg/kg) and cyanopindolol (2 mg/kg), the 5-HT1A receptor agonist/antagonist ipsapirone (10 and 35 mg/kg) and haloperidol (0.25 and 0.5 mg/kg) showed a tendency towards enhancing the TFMPP- orm-CPP-induced hyperthermia. The 5-HT1A and 1-adrenoceptor antagonist NAN-190 (1–4 mg/kg), the 5-HT3 antagonists tropisetron (0.01–1 mg/kg) and zacopride (0.5 and 1 mg/kg), the-blockers betaxolol (8 mg/kg) and ICI 118, 551 (8 mg/kg), which have no affinity for 5-HT receptors and prazosin (1 mg/kg), did not affect the hyperthermic effect of TFMPP orm-CPP. The hyperthermias studied were not modified, in animals with 5-HT lesion produced byp-chloroamphetamine (PCA) either. All the drugs used as putative receptor antagonists, as well as PCA, did not change or decreased (ipsapirone) the body temperature in heat-adapted rats. The obtained results suggest that the hyperthermia induced by TFMPP orm-CPP is mediated by 5-HT2, and maybe also by 5-HT1c receptors — those which are located postsynaptically.  相似文献   

4.
1.  Electrophysiological measurements of 5-HT neuronal activity report that repeated administration of 5-HT1A receptor agonists leads to desensitization of the 5-HT1A autoreceptor but this has not yet been detected in measurements of brain 5-HT synthesis or metabolism. Here we have determined the effect of repeated administration of 5-HT1A receptor agonists on brain 5-HT release using microdialysis.
2.  Acute administration of the 5-HT1A receptor agonists buspirone (0.1–5 mg/kg s.c.) and ipsapirone (0.03–3 mg/kg s.c.) caused a dose-dependent decrease in 5-HT output in ventral hippocampus of the chloral hydrate anaesthetized rat.
3.  The 5-HT response to buspirone (0.1 and 0.5 mg/kg s.c.) and ipsapirone (0.3 mg/kg s.c.) was significantly inhibited by pre-treatment with the 5-HT1/-adrenoceptor antagonist pindolol (8–16 mg/kg s.c.). The 5-HT response to buspirone (0.1 mg/kg s.c.) and ipsapirone (0.3 mg/kg s.c.) was not blocked by pretreatment with a combination of the 1 and 2-adrenoceptor antagonists metoprolol and ICI 118,551 (4 mg/kg s.c.).
4.  The effect of an acute challenge of buspirone (0.5 mg/kg s.c.) on 5-HT output in ventral hippocampus was not attenuated in rats treated twice daily for 14 days with 0.5 or 5 mg/kg s.c. buspirone compared to saline-injected controls. Similarly, the decrease in 5-HT induced by an acute challenge of ipsapirone (0.5 mg/kg s.c.) was not attenuated in rats treated twice daily for 14 days with 5 mg/kg s.c. ipsapirone.
5.  In further experiments it was shown that the decrease in 5-HT induced in both ventral hippocampus and striatum by an acute challenge of the selective 5-HT1A receptor agonist 8-OH-DPAT (0.025 mg/kg s.c.), was not attenuated in rats treated twice daily for 14 days with 1 mg/kg s.c. 8-OH-DPAT.
6.  Basal levels of 5-HT in hippocampal and striatal microdialysates of animals treated repeatedly with the 5-HT1A receptor agonists were not consistently altered relative to treatment controls.
7.  In agreement with earlier studies measuring regional brain 5-HT synthesis and metabolism, the present microdialysis measurements of 5-HT release indicate that the inhibitory effect of 5-HT1A receptor agonists on presynaptic 5-HT function is maintained in rats treated repeatedly with the same drugs.
Correspondence to: T. Sharp at the above address  相似文献   

5.
The terminal 5-HT1B autoreceptors have attracted great pharmacological interest since they are potential targets for compounds modifying serotonergic neurotransmission. In the present work the in vivo biochemical properties of AR-A000002 ((R)-N-[5-methyl-8-(4-methylpiperazin-1-yl)-1,2,3,4-tetrahydro-2-naphthyl]-4-morpholinobenzamide), a novel selective 5-HT1B receptor antagonist, are reported.The effects of AR-A000002 on: 5-HT metabolism was measured as the ratio between 5-HIAA and 5-HT concentrations in different brain regions; 5-HT synthesis was measured as the accumulation of 5-HTP after inhibition of the aromatic amino acid decarboxylase activity with m-hydroxybenzylhydrazine (NSD1015); 5-HT release was measured using the microdialysis technique. 5-HT, 5-HIAA and 5-HTP concentrations were analyzed using high power liquid chromatography (HPLC) with electrochemical detection. AR-A000002 significantly enhanced 5-HT metabolism (5-HIAA/5-HT ratio) and 5-HT synthesis in guinea pig brain in the dose range 0.9–18 mg/kg s.c. (ED50=1 mg/kg s.c. in the four brain regions examined) with maximal effect seen after 2–4 h. AR-A000002 (9 mg/kg s.c.) significantly increased the extracellular concentrations of 5-HT and 5-HIAA by 20% in the guinea pig frontal cortex, measured with the in vivo microdialysis technique in freely moving guinea pigs. AR-A000002 (9 mg/kg s.c.) in combination with the 5-HT uptake inhibitor citalopram (5 mg/kg s.c.) increased the extracellular 5-HT concentration in guinea pig frontal cortex from 250 to 400% of the basal level. Citalopram alone decreased the extracellular 5-HIAA levels to 70% of the basal value. AR-A000002 counteracted the citalopram-induced decrease in 5-HIAA. Since the basal level of extracellular 5-HIAA was 160 times higher than that of 5-HT the 20% increase in 5-HIAA concentrations indicates that only a few percent of the exocytotically released 5-HT from the nerve terminals reached the extracellular space when the re-uptake mechanism was intact. The results also show that the terminal 5-HT1B autoreceptors are tonically activated under drug-free as well as citalopram conditions. The increase in plasma level of cortisol after AR-A000002 administration may indicate stimulation of post-synaptic 5-HT receptors. AR-A000002 also blocked 5-HT1B agonist-induced (CP-135,807) decrease in 5-HT metabolism and hypothermia (ED50=1 mg/kg s.c.), thus indicating competition between these two drugs.It is concluded that AR-A000002 is a 5-HT1B receptor antagonist that enhances the serotonergic neurotransmission in guinea pig brain.  相似文献   

6.
In order to evaluate the role of glutamate in prolactin secretion, we examined the effects of N-methyl-

,

-aspartic acid (NMDA) receptor antagonists on serum prolactin levels at both resting and restraint-stress conditions in female rats at estrus. NMDA increased basal serum prolactin levels. Administration of the selective NMDA receptor antagonist, cis-4-phosphonomethyl-2-piperidine carboxylic acid (CGS 19755) (5 and 10 mg/kg i.p.), to rats under resting conditions enhanced basal prolactin levels. A low dose of CGS 19755 (3 mg/kg) was unable to modify the hormone serum level. Under stress conditions the pretreatment with CGS 19755 (3 and 5 mg/kg) prevented the increase in serum prolactin levels. This effect was reversed by NMDA (60 mg/kg s.c.). The NMDA receptor antagonist (5 mg/kg) decreased the median eminence concentration of the dopamine metabolite, 3,4-dihydroxyphenylacetic acid (DOPAC), without modifying dopamine content. To examine the probable link between serotonin (5-HT) and glutamate in prolactin release, the 5-HT2A/5-HT2C receptor antagonist, ritanserin, was used. Under resting conditions, a dose of 5 mg/kg s.c. blocked the NMDA-induced prolactin release. In rats submitted to restraint, ritanserin decreased the prolactin response and NMDA was unable to correct the stress serum prolactin levels. The 5-HT1A receptor agonist, 8-hidroxypropyl-amino tetralin (8-OH-DPAT) (3 mg/kg s.c.), increased basal serum prolactin levels and restored serum prolactin in stressed animals pretreated with CGS 19755 (5 mg/kg). The present data strongly suggest that the glutamatergic system participates in the regulation of prolactin secretion. A stimulation tone seems to be exerted via the tuberoinfundibular dopaminergic system, and the prolactin release evoked by restraint apparently involves glutamate/NMDA receptors linked to a serotoninergic pathway.  相似文献   

7.
We examined the effects of exogenous 5-hydroxytryptamine (5-HT) and selective 5-HT receptor agonists and antagonists on proximal, middle and distal colonic motility in conscious fasted dogs with extraluminal force transducers implanted chronically. 5-HT (0.003–0.1 mg/kg i.v.) dose-dependently enhanced motility along the entire length of the colon. The 5-HT (0.03 mg/kg i.v.)-induced response was inhibited by 0.1–1.0 mg/kg i.v. methysergide, a 5-HT/12 antagonist, at all recording sites and by 0.1–1.0 mg/kg i.v. ketanserin, a 5-HT2A antagonist, at the middle and distal sites only. At 1 mg/kg i.v., YM060, a 5-HT3 antagonist, reduced the amplitude of the initial transient high-amplitude contractions induced by 5-HT, but did not affect the tonic contraction induced by 5-HT. At doses up to 3 mg/kg i.v.,2-methoxy-4-amino-5-chlorobenzoic acid 2-(diethylamino) ethyl ester (SDZ205-557), a 5-HT4 antagonist, and hexamethonium (up to 10 mg/kg i.v.) did not affect 5-HT-induced responses at any recording site. Renzapride, a 5-HT4 agonist, also stimulated motility along the entire length of the colon at 0.3 mg/kg i.v.. The renzapride-induced response was inhibited by 1 mg/kg i.v. SDZ205-557 or 3 mg/kg i.v. hexamethouium. m-Chlorophenylbiguanide (m-CPBG), a 5-HT3 agonist, (1 mg/kg i.v.) produced a transient high-amplitude contraction at all recording sites and this contraction was eliminated by pretreatment with 0.03 mg/kg i.v. YM060. The contraction produced by m-CPBG declined rapidly, so the increase in the motility index by m-CPBG was not significant at any recording site. Of the antagonists tested, 0.1–1 mg/kg i.v. methysergide produced a delayed and prolonged contractile response at the middle and distal sites. The onset of the response was delayed about 20 min after application and the response was maintained over the subsequent 60-min observation period. The methysergide (1 mg/kg i.v.)-induced response was inhibited by 3 mg/kg i.v. hexamethonium. The other antagonists, ketanserin, YM060 and SDZ205-557, had no contractile effect at any recording site.These results indicate that exogenous 5-HT stimulates motility along the entire length of the fasted canine colon and that 5-HT-induced responses in the proximal colon are mediated mainly by 5-HT1, whereas those in the middle and distal colon are mediated by both 5-HT1 and 5-HT2 receptors. Renzapride and methysergide also stimulate colonic motility via additional mechanisms. The activation of 5-HT4 receptors and the blockade of endogenous 5-HT inhibitory regulation via 5-HT1 receptors may be involved in the action of renzapride and methysergide respectively.  相似文献   

8.
Summary The somatodendritic 5-HT1A autoreceptor regulating 5-HT neuronal activity is currently poorly defined pharmacologically because there are no specific antagonists, but also because potent and stereoselective agonists are scarce. Moreover, there have been few, if any, attempts to specifically investigate structure-activity relationships for agonists acting at this site. Employing brain microdialysis techniques, we have examined the effects of the enantiomers of cis-8-hydroxy-1-methyl-2-(di-n-propylamino)tetralin (ALK-3; 0.01-0.3 mg/kg s.c.), its trans-1-methyl analogue (ALK-4; 0.3 mg/kg s.c.) and the pure enantiomers of the parent compound - 8-OH-DPAT (0.3 mg/kg s.c.) — in an attempt to address stereochemical agonist structure-activity requirements of 5-HT release-controlling 5-HT1A autoreceptors in brain. The cis-1-methylated 8-OH-DPAT analogue (+)ALK-3 was comparable to the parent compound in reducing the 5-HT output from rat ventral hippocampus. In comparison, both (–)ALK-3 and the racemic rans-diastereomer to ALK-3, ALK-4, were inactive, while the two stereoisomers of 8-OH-DPAT strongly reduced 5-HT release. Pretreatment with (–)pindolol (8 mg/kg s.c.), which has high affinity for 5-HT1A radioligand binding sites, blocked the reduction of hippocampal 5-HT release induced by a submaximally effective dose of (+)ALK-3. The direct intrahippocampal administration of (+)ALK3 (10 M) via the perfusion medium did not affect 5-HT output.In summary, the data indicate that (+)ALK-3, like 8-OH-DPAT, is a very potent 5-HT receptor agonist which inhibits terminal 5-HT release in rat hippocampus, probably via activation of somatodendritic 5-HT1A autoreceptors. However, unlike 8-OH-DPAT, (+)ALK-3 is highly stereoselective and may therefore represent a useful probe in the further characterization of 5-HT1A receptor-mediated mechanisms and function. The present study defines some of the stereochemical requirements for 5-HT1A receptor interaction, emphasizing the importance of the receptor region complementary to the C1 and C2 carbons of the 8-OH-DPAT molecule. These findings contribute to the establishment of structure-activity relationships for the cell body 5-HT1A autoreceptors and might be of value in resolving structural features that determine agonist/antagonist activity at central 5-HT1A receptors. Finally, in conjunction with our recent finding that (+)ALK-3 is a partial agonist at postsynaptic 5HT1A receptors, the present study extends previous observations suggesting that pre- and postsynaptic 5-HT1A receptor populations differ in their characteristics. Send offprint requests to S. Hjorth at the above address  相似文献   

9.
Depression is a common illness with severe morbidity and mortality. Nitric oxide synthase (NOS) inhibitors are shown to elicit antidepressant-like effect in various animals models. It is widely known that serotonin plays an important role in the antidepressant-like effect of drugs. The aim of this study is to investigate the involvement of 5-HT1 and 5-HT2 receptor subtypes in the antidepressant-like effect of TRIM, a nNOS inhibitor, in the rat forced swimming test (FST). TRIM displays an antidepressant-like activity in FST which is blocked by pretreatment with the NOS substrate l-arginine. Depletion of endogenous serotonin using para-chlorophenylalanine (pCPA; 3 × 150 mg/kg, i.p.) partially attenuated TRIM (50 mg/kg)-induced reductions in immobility time in FST. Pretreatment with methiothepin (0.1 mg/kg, i.p, a non-selective 5-HT receptor antagonist), cyproheptadine (3 mg/kg i.p, a 5-HT2 receptor antagonist) or ketanserin (5 mg/kg i.p, a 5HT2A/2C receptor antagonist) prevented the effect of TRIM (50 mg/kg) in the FST. WAY 100635 (0.1 mg/kg i.p, a selective 5-HT1A receptor antagonist) and GR 127935 (3 mg/kg i.p, a selective 5-HT1B/1D receptor antagonist) slightly reversed the immobility-reducing effect of TRIM in the FST, but this failed to reach a statistically significant level. The results of this study demonstrate that antidepressant-like effect of TRIM in the FST seems to be mediated, at least in part, by an interaction with 5-HT2 receptors while non-significant effects were obtained with 5-HT1 receptors.  相似文献   

10.
Summary Agonist-induced desensitization has been utilized to discriminate and independently isolate the neuronal excitatory receptors to 5-hydroxytryptamine (5-HT) in the guinea pig ileum (5-HT3 and putative 5-HT4 receptors). Electrically stimulated longitudinal muscle myenteric plexus preparations, and non-stimulated segments of whole ileum were used. Exposure to 5-methoxytryptamine (10 mol/l) inhibited completely responses to 5-HT at the putative 5-HT4 receptor without affecting 5-HT3-mediated responses. Conversely, exposure to 2-methyl-5-HT (10 mol/l) inhibited completely responses to 5-HT at the 5-HT3 receptor without affecting putative 5-HT4-mediated responses. The inhibition with 5-methoxytryptamine and 2-methyl-5-HT, either alone or in combination, appeared selective as responses to KCI, DMPP, carbachol, histamine, and substance P were unaffected or only very slightly modified. Furthermore, the pA2 values for ICS 205–930 at the putative 5-HT4 (pA2 = 6.2 to 6.5) and 5-HT3 (pA2 = 7.6 to 8.1) receptors (estimated in the presence of 2-methyl-5HT and 5-methoxytryptamine, respectively) were consistent with those estimated in the absence of desensitization.5-Methoxytryptamine, but not 2-methyl-5-HT, suppressed completely but reversibly the concentration-effect curve to renzapride, suggesting that responses to this agent are mediated exclusively via agonism at the putative 5-HT4 receptor.It is concluded that 5-methoxytryptamine and 2-methyl-5-HT can be utilized as selective probes to discriminate the putative 5-HT4 receptor from the 5-HT3 receptor in guinea pig ileum. This finding is of importance as no selective antagonist exists for the putative 5-HT4 receptor. Furthermore, the presently described method of agonist-induced desensitization and 5-HT receptor discrimination may be useful for the identification and characterization of the putative 5-HT4 receptor in other tissues and species. Send offprint requests to D. E. Clarke at the above address  相似文献   

11.
  1. Although conscious dogs have often been used for colonic motility studies with 5-hydroxytryptamine (5-HT), the effects of 5-HT on the isolated colon have not been thoroughly characterized yet. The current study was undertaken to characterize the response to 5-HT of the canine isolated colon longitudinal muscle.
  2. Longitudinal strips of canine midcolon deprived of (sub)mucosa were prepared for isotonic measurement. 5-HT induced contractions from 3 nM onwards, which were not affected by selective inhibition of 5-HT re-uptake, monoamine oxidase or blockade of α-adrenoceptors. Tetrodotoxin (0.3 μM) did not affect the responses to 5-HT, suggesting that smooth muscle 5-HT receptors are involved. The selective 5-HT4 receptor antagonist SB 204070 (10 nM) slightly enhanced contractions to 5-HT and therefore it was included in the organ bath solution in all further experiments. The 5-HT1 and 5-HT2 receptor antagonist methysergide (0.1 μM) depressed the curve to 5-HT, but the selective 5-HT3 receptor antagonist granisetron (0.3 μM) had no effect.
  3. Besides 5-HT, α-methyl-5-HT (α-Me-5-HT), 5-methoxytryptamine (5-MeOT), 2-methyl-5-HT (2-Me-5-HT) and 5-carboxamidotryptamine (5-CT) also induced contractions, with the following rank order of potency (pEC50 values in parentheses): 5-HT (6.9)=α-methyl-5-HT (6.9)>2-Me-5-HT (5.8)=5-MeOT (5.7)=5-CT (5.6), indicative of 5-HT2 receptor involvement. α-Me-5-HT produced a bell-shaped curve, which was not affected by α-adrenoceptor blockade. 5-HT, 5-MeOT, 2-Me-5-HT and 5-CT produced a monophasic concentration-response curve, consistent with an interaction with a single receptor site. 8-Hydroxy-2-(di-n-propylamino) tetralin (8-OH-DPAT) and tryptamine only induced contractions at a concentration exceeding 1 μM.
  4. The selective 5-HT2B receptor antagonist SB 204741 (0.3 μM) did not affect the curve to 5-HT. Ketanserin, cisapride and spiroxatrine behaved as competitive antagonists with pKb values of, respectively, 8.4, 8.1 and 6.7. Spiroxatrine (1 μM) shifted the curve to 5-MeOT rightward yielding an apparent pA2 of 7.1. Other antagonists at 5-HT2A receptors also surmountably inhibited the contractions to 5-HT (apparent pA2 value in parentheses): mesulergine (8.2), cinanserin (8.2), yohimbine (6.2) and mianserin (8.6). However, as well as a rightward shift, methiothepin (8.3), pizotifen (8.6) and spiperone (8.8) also caused a depression of the curve, indicative of ‘pseudo-irreversible'' antagonism. Taken together, the above mentioned affinity estimates most closely corresponded to literature affinity values for 5-HT2A receptors.
  5. It was concluded that 5-HT induces contractions of the canine midcolon longitudinal muscle primarily by stimulation of smooth muscle 5-HT2A receptors. The presence of inhibitory 5-HT4 receptors cannot be ruled out.
  相似文献   

12.
Rationale The delay in onset and treatment resistance of subpopulations of depressed patients to conventional serotonin reuptake inhibitors has lead to new drug development strategies to produce agents with improved antidepressant efficacy. Objectives We report the in vivo characterization of the novel 5-HT1A/1B autoreceptor antagonist/5-HT transporter inhibitor (6-[(1-{2-[(2-methyl-5-quinolinyl)oxy]ethyl}-4-piperidinyl)methyl]-2H-1,4-benzoxazin-3(4H)-one), SB-649915-B. Materials and methods Ex vivo binding was used to ascertain 5-HT1A receptor and serotonin transporter occupancy. 8-OH-DPAT-induced hyperlocomotion and SKF-99101-induced elevation of seizure threshold were used as markers of central blockade of 5-HT1A and 5-HT1B receptors, respectively. In vivo electrophysiology in the rat dorsal raphe and microdialysis in freely moving guinea pigs and rats were used to evaluate the functional outcome of SB-649915-B. Results SB-649915-B (1–10 mg/kg p.o.) produced a dose-related inhibition of 5-HT1A receptor radioligand binding and inhibited ex vivo [3H]5-HT uptake in both guinea pig and rat cortex. SB-649915-B (0.1–10 mg/kg p.o.) reversed both 8-OH-DPAT-induced hyperlocomotor activity and SKF-99101-induced elevation of seizure threshold in the rat, demonstrating in vivo blockade of both 5-HT1A and 5-HT1B receptors, respectively. SB-649915-B (0.1–3 mg/kg i.v.) produced no change in raphe 5-HT neuronal cell firing per se but attenuated the inhibitory effect of 8-OH-DPAT. Acute administration of SB-649915-B resulted in increases (approximately two- to threefold) in extracellular 5-HT in the cortex of rats and the dentate gyrus and cortex of guinea pigs. Conclusions Based on these data, one may speculate that the 5-HT autoreceptor antagonist/5-HT transport inhibitor SB-649915-B will have therapeutic efficacy in the treatment of affective disorders with the potential for a faster onset of action compared to current selective serotonin reuptake inhibitors.  相似文献   

13.
Summary The effects of modafmil on acetylcholine and GABA outflow from the cerebral cortex of awake freely moving guinea pigs provided with an epidural cup were studied. In the dose range of 3–30 mg/kg s. c. modafmil produced a dose dependent significant inhibition of GABA outflow without influencing cortical acetylcholine release. Methysergide (2 mg/kg, i.p.) and ketanserin (0.5 mg/kg, i. p.) but not prazosin (0.14 mg/kg, i. p.) counteracted the inhibitory action of modafinil on cortical GABA outflow. Modafinil both acutely and chronically in the same dose range increased striatal 5-HIAA levels and 5-HT utilization in the rat (acute) and mouse (chronic). The action on cortical GABA release may be dependent on activity at 5-HT2 receptors, since the action of modafmil in this respect is blocked by the non-selective 5-HT antagonist methysergide and the 5-HT2 antagonist ketanserin. The involvement of 5-HT mechanisms in the inhibitory action of modafmil on cortical GABA release is also suggested by the findings that 5-HT metabolism may become increased by modafmil at least in the striatum. The reduction of cortical GABA outflow via 5-HTZ receptors by modafmil is probably related to some of its actions on the central nervous system including behavioural effects. Send offprint requests to K. Fuxe at the above address  相似文献   

14.
Desensitisation of 5-HT1A and 5-HT1B autoreceptors is thought to be the mechanism underlying the therapeutic effects of fluoxetine and other selective serotonin re-uptake inhibitors (SSRIs) when these are administered chronically, while blockade of these autoreceptors occurring on administration of an SSRI together with an autoreceptor antagonist is responsible for the acute increase in 5-HT levels in vivo observed under these circumstances. The effects of repeated administration of SSRIs together with 5-HT1B receptor antagonists on 5-HT levels and autoreceptor activity have not been studied previously with an in vivo method. In this work we found, using in vivo microdialysis that the effect of fluoxetine (5 mg/kg i.p. daily for 7 days) to desensitise 5-HT1B autoreceptors in frontal cortex, as measured by the action of CP 93129 (10 M) to reduce 5-HT levels, was prevented by concomitant administration of the 5-HT1B receptor antagonist SB 224289 (2.5 mg/kg s.c.). 5-HT1B receptor activity in hypothalamus and 5-HT1A autoreceptor activity, as determined by the effects of s.c. 8-OH-DPAT to reduce 5-HT levels, were not altered either by fluoxetine alone at this dose or by fluoxetine in the presence of SB 224289. We conclude that the effects obtained when 5-HT1B autoreceptor antagonists are administered acutely together with SSRIs may not be maintained after repeated administration.  相似文献   

15.
Four non-selective 5-HT2C/5-HT2A receptor antagonists, mianserin (2–8 mg/kg), 1-naphthyl piperazine (1-NP) (0.5–1 mg/kg), ICI 169,369 (20 mg/kg) and LY 53857 (5 mg/kg), increased punished responding for a food reward in the rat Geller-Seifter test 30 min after subcutaneous (SC) administration. This property was shared by the benzodiazepine anxiolytic chlordiazepoxide (5 mg/kg SC). However, the selective 5-HT2A receptor antagonists ketanserin (0.2–1 mg/kg SC) and altanserin (0.5, 1 mg/kg SC) had little effect. The 5-HT1A, 5-HT1B and-adrenergic receptor antagonists pindolol and cyanopindolol (6 mg/kg SC) did not affect punished responding either, nor did the 5-HT1D receptor partial agonist and 2 adrenergic receptor antagonist yohimbine (2.5 mg/kg SC) or the histamine H1 receptor antagonist mepyramine (1 mg/kg SC). Unpunished responding was also modestly increased after some doses of the 5-HT2C/5-HT2A receptor antagonists. However, this effect was inconsistent and was also seen after chlordiazepoxide. Furthermore, it was not associated with the increase in punished responding observed in rats orally treated with mianserin (10, 20 mg/kg), 1-NP (10, 20 mg/kg) or ICI 169,369 (50 mg/kg). The action of the 5-HT2C/5-HT2A receptor antagonists tested is therefore consistent with anxiolysis. The results also strongly suggest that this effect is mediated by blockade of the 5-HT2C receptor, although the possibility of 5-HT2B receptor mediation is discussed.  相似文献   

16.
This study deals with the characterization of 5-hydroxytryptamine (5-HT, serotonin) receptors positively linked to adenylyl cyclase in membranes from pig brain caudate. 5-HT and related agonists induced a concentration-dependent stimulation of adenylyl cyclase activity in pig caudate membranes, with the following rank order of potency (mean pEC50 values): 5-HT (7.1) 5-methoxytryptamine (6.9) > 5-carboxamidotryptamine (5.6) > sumatriptan (<5). Maximal stimulation by 5-HT averaged 35 pmol cyclic AMP/min/mg protein over a basal activity of 159 pmol cyclic AMP/min/mg protein. 5-Methoxytryptamine and 5-carboxamidotryptamine had similar efficacies to that of 5-HT, whereas sumatriptan was about half efficacious. Other compounds known as agonists at some 5-HT receptors were weakly potent (mean pEC50 values <5). They include the 5-HT1A receptor agonist, 8-hydroxy-2-(di-n-propylamino)tetralin hydrobromide (8-OH-DPAT), the 5-HT4 receptor agonist, renzapride and the 5-HT2 receptor agonist, (1-(2,5-dimethoxy-4-iodophenyl)-2 aminopropane) (DOI). In antagonist studies, methiothepin (0.1 and 1 mol/l) shifted the 5-HT curve to the right with no depression of the Emax, yielding pKB values of 7.4–8.0. Clozapine (1 mol/l) also produced surmountable antagonism of 5-HT-induced effects (pKB 6.9). Ketanserin (10 mol/l) weakly antagonized 5-HT (pKB 5.0). The 5-HT4 receptor antagonists, tropisetron (ICS 205–930) and SDZ 205–557 (2-methoxy-4-amino-5-chloro-benzoic acid 2-(diethylamino) ethyl ester), each at 1 mol/l, did not significantly alter the concentration-response curve of 5-HT. The present receptor shares some characteristics of the recently cloned 5-HT6 receptor (Monsma et al. (1993) Mol Pharmacol 43:320–327): similar pharmacological profile, location (striatum) and ability to stimulate adenylyl cyclase. It may thus represent the functional 5-HT6 receptor in its natural environment. Correspondence to: P. Schoeffter at the above address  相似文献   

17.
The effects of 2-(4-(4-(2-pyrimidinyl)-1-piperazinyl)-butyl)-1,2-benzoisothiazol-3(2H)one-1,1-dioxide hydrochloride (isapirone, TVX Q 7821), a putative 5-HT1 receptor antagonist, has been studied on various models of 5-HT receptor sub-type function. In mice TVX Q 7821 produced a dose-dependent inhibition of the hypothermia induced by 8-hydroxy-2-(di-n-propylamino)tetralin (8-OH-DPAT) with an ED50 of 5.3 mg/kg suggesting that TVX Q 7821 was an antagonist of the presynaptic (possibly somato-dendritic) 5-HT1A receptor. TVX Q 7821 did not alter the locomotor response to the suggested 5-HT1B agonist RU 24969. The rate of mouse brain 5-HT synthesis was accelerated by TVX Q 7821 (10 mg/kg). 5-HT2 receptor-mediated head twitch behaviour induced by precursor loading with 5-HTP was unaffected by TVX Q 7821 (10 mg/kg) pretreatment 75 min earlier, but the head-twitch induced by the agonist 5-methoxy-N,N-dimethyltryptamine was enhanced by prior treatment with TVX Q 7821.In rats the hypothermia induced by 8-OH-DPAT was partially antagonised by TVX Q 7821 while the behavioural serotonin syndrome induced by 8-OH-DPAT (a possible post-synaptic 5-HT1B-mediated effect) was unaffected by TVX Q 7821 as was the locomotion induced by RU 24969.The data suggest that TVX Q 7821 is a good presynaptic 5-HT1A antagonist in mice, as indicated by the 8-OH-DPAT-induced hypothermia and 5-HT synthesis rate studies. It did not antagonise 5-HT1B-mediated behaviour in mice or rats and appeared to have an antagonist action at pre- but not post-synaptic 5-HT1A receptors in rats. Offprint requests to: G.M. Goodwin  相似文献   

18.
We previously reported that the investigational multimodal antidepressant, vortioxetine, reversed 5-HT depletion-induced memory deficits while escitalopram and duloxetine did not. The present report studied the effects of vortioxetine and the potential impact of its 5-HT1A receptor agonist and 5-HT3 receptor antagonist properties on 5-HT depletion-induced memory deficits. Recognition and spatial working memory were assessed in the object recognition (OR) and Y-maze spontaneous alternation (SA) tests, respectively. 5-HT depletion was induced in female Long-Evans rats using 4-cholro-DL-phenylalanine methyl ester HCl (PCPA) and receptor occupancies were determined by ex vivo autoradiography. Rats were acutely dosed with vortioxetine, ondansetron (5-HT3 receptor antagonist) or flesinoxan (5-HT1A receptor agonist). The effects of chronic vortioxetine administration on 5-HT depletion-induced memory deficits were also assessed. 5-HT depletion reliably impaired memory performance in both the tests. Vortioxetine reversed PCPA-induced memory deficits dose-dependently with a minimal effective dose (MED) ≤0.1 mg/kg (∼80% 5-HT3 receptor occupancy; OR) and ≤3.0 mg/kg (5-HT1A, 5-HT1B, 5-HT3 receptor occupancy: ∼15%, 60%, 95%) in SA. Ondansetron exhibited a MED ≤3.0 μg/kg (∼25% 5-HT3 receptor occupancy; OR), but was inactive in the SA test. Flesinoxan had a MED ≤1.0 mg/kg (∼25% 5-HT1A receptor occupancy; SA); only 1.0 mg/kg ameliorated deficits in the NOR. Chronic p.o. vortioxetine administration significantly improved memory performance in OR and occupied 95%, 66%, and 9.5% of 5-HT3, 5-HT1B, and 5-HT1A receptors, respectively. Vortioxetine′s effects on SA performance may involve 5-HT1A receptor agonism, but not 5-HT3 receptor antagonism, whereas the effects on OR performance may involve 5-HT3 receptor antagonism and 5-HT1A receptor agonism.  相似文献   

19.
Previous studies showed that 5-HT1A and 5-HT2 receptors play an important role in controlling the extrapyramidal motor disorders. However, the functions of other 5-HT receptor subtypes remain elusive. To elucidate the role of 5-HT receptors, specifically of 5-HT3~5-HT7 subtypes, in modifying antipsychotic- induced extrapyramidal side effects (EPS), we studied the effects of the 5-HT stimulant 5-hydroxytryptophan (5-HTP) and various 5-HT receptor antagonists on haloperidol (HAL)-induced bradykinesia and catalepsy in mice and rats. Pretreatment of mice with 5-HTP (25–100 mg/kg, i.p.) dose-dependently enhanced HAL (0.3 mg/kg, i.p.)-induced bradykinesia and catalepsy. The potentiation of HAL-induced EPS by 5-HTP (50 mg/kg, i.p.) was significantly inhibited by ritanserin (5-HT2 antagonist, 0.3-3 mg/kg, i.p.), ondansetron (5-HT3 antagonist, 0.1–1 mg/kg, i.p.), or SB-258585 (5-HT6 antagonist, 1–10 mg/kg, i.p.) in a dose-dependent manner. However, neither WAY-100135 (5-HT1A antagonist, 1–10 mg/kg, i.p.), GR-125487 (5-HT4 antagonist, 1–10 mg/kg, i.p.), SB-699551 (5-HT5A antagonist, 1–10 mg/kg, i.p.) nor SB-269970 (5-HT7 antagonist, 1–10 mg/kg, i.p.) reduced the 5-HTP and HAL-induced bradykinesia or catalepsy. In addition, both ondansetron (0.1–1 mg/kg, i.p.) and SB-258585 (3 and 10 mg/kg, i.p.) also alleviated bradykinesia and catalepsy induced by HAL (0.5 mg/kg, i.p.) alone in mice. Furthermore, bilateral microinjection of ondansetron (5 μg (13.7 nmol) per side) or SB-258585 (5 μg (8.92 nmol) per side) into the dorsolateral striatum (dlST) attenuated haloperidol-induced catalepsy in rats. These results suggest that serotonergic stimulation augments extrapyramidal motor disorders by activating the striatal 5-HT3 and 5-HT6 receptors and the antagonism of these receptors effectively alleviates antipsychotic-induced EPS.  相似文献   

20.
Effects of indeloxazine hydrochloride, an inhibitor of serotonin (5-HT) and norepinephrine (NE) reuptake with a facilitatory effect on 5-HT release, on acetylcholine (ACh) output in frontal cortex of conscious rats were characterized using an in vivo microdialysis technique. Systemic administration of indeloxazine (3 and 10 mg/kg, i.p.) increased ACh and 5-HT output in a dose-dependent manner. Depletion of endogenous monoamines by reserpine and of 5-HT by p-chlorophenylalanine, but not that of catecholamines by α-methyl-p-tyrosine, significantly attenuated the facilitatory effect of indeloxazine on ACh release. When applied locally by reverse dialysis, indeloxazine (10 and 30 μM) and the selective 5-HT reuptake inhibitor citalopram (10 μM), but not the NE reuptake inhibitor maprotiline (30 μM), increased cortical ACh output. Indeloxazine (10 mg/kg)-induced increase in ACh release was significantly inhibited by local application of the 5-HT4 receptor antagonists RS23597 (50 μM) and GR113803 (1 μM), while the 5-HT1A antagonist WAY-100135 (100 μM), 5-HT1A/1B/β-adrenoceptor antagonist (–)propranolol (150 μM), 5-HT2A/2C antagonist ritanserin (10 μM) and 5-HT3 antagonist ondansetron (10 μM) failed to significantly modify this effect. Neither depletion of monoamines nor treatment with serotonergic antagonists significantly changed the basal ACh level, indicating that endogenous monoamines do not tonically activate ACh release. These results suggest that indeloxazine-induced facilitation of ACh release in rat frontal cortex is mediated by endogenous 5-HT and involves at least in part cortical 5-HT4 receptors. Received: 22 May 1997 / Accepted: 26 August 1997  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号