首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Patterns of dystrophin and beta-galactosidase expression were examined in mdx mice after i.m. injections of synthetic microspheres (MF-2) loaded with full-length (pHSADy) or mini-dystrophin gene (pSG5dys) cDNA plasmid constructs or with LacZ marker gene (pCMV-LacZ). A single injection of 25 microg pHSADy into quadriceps femoris muscle resulted in 6.8% of dystrophin positive myofibers (DPM) in a given muscle; 8.4% of DPM in glutaeus muscle and 4.3% of DPM in quadriceps femoris muscle of contralateral limb on day 21 after exposure compared with only 0.6% DPM in intact (non-injected) mdx mice. A high proportion of DPM (17.6% and 10.8%, respectively) was registered in both injected and contralateral muscles after mini- gene cDNA administration. MF-2/dystrophin cDNA particles were detected by FISH analysis in about 60-70% of myofiber nuclei in muscles of injected and contralateral limbs 7 days after application. The presence of human dystrophin cDNA and its products in all skeletal muscles and in different internal organs was proven by PCR and RT-PCR analysis. Patches of beta-galactosidase expression were abundant in injected muscle, and frequent in the contralateral and other skeletal muscles as well as in diaphragm, heart and lungs. High levels of dystrophin cDNA expression, and an efficient distant transfection effect with preferential intranuclei inclusion of MF-2 vehicle, are very encouraging for the development of a new constructive strategy in gene therapy trials of DMD.  相似文献   

2.
The absence of dystrophin in Duchenne muscular dystrophy (DMD) leads to sarcolemmal instability and enhances the susceptibility of muscle fibers to contraction-induced injury. Various viral vectors have been used to deliver mini- and microdystrophin expression cassettes to muscles of dystrophin-deficient mdx mice, significantly increasing both the morphological and the functional properties of the muscles. However, dystrophin delivery to adult mdx mice has not yielded a complete rescue of the dystrophic phenotype. Here we investigated a novel strategy involving dual gene transfer of recombinant adeno-associated viral vectors expressing either microdystrophin (rAAV-muDys) or a muscle-specific isoform of Igf-1 (rAAV-mIgf-1). Injection of mdx muscles with rAAV-muDys reduced myofiber degeneration and turnover and increased their resistance to mechanical injury, but did not increase muscle mass or force generation. Injection of mdx muscles with rAAV-mIgf-1 led to increased muscle mass, but did not provide protection against mechanical injury or halt myofiber degeneration, leading to loss of the vector over time. In contrast, co-injection of the rAAV-muDys and rAAV-mIgf-1 vectors resulted in increased muscle mass and strength, reduced myofiber degeneration, and increased protection against contraction-induced injury. These results suggest that a dual-gene, combinatorial strategy could enhance the efficacy of gene therapy of DMD.  相似文献   

3.
Duchenne's muscular dystrophy (DMD) is a lethal muscle disease caused by a lack of dystrophin expression at the sarcolemma of muscle fibers. We investigated retroviral vector delivery of dystrophin in dystrophin-deficient DMD(mdx) (hereafter referred to as mdx) mice via an ex vivo approach using mdx muscle-derived stem cells (MDSCs). We generated a retrovirus carrying a functional human mini-dystrophin (RetroDys3999) and used it to stably transduce mdx MDSCs obtained by the preplate technique (MD3999). These MD3999 cells expressed dystrophin and continued to express stem cell markers, including CD34 and Sca-1. MD3999 cells injected into mdx mouse skeletal muscle were able to deliver dystrophin. Though a relatively low number of dystrophin-positive myofibers was generated within the gastrocnemius muscle, these fibers persisted for up to 24 weeks postinjection. The injection of cells from additional MDSC/Dys3999 clones into mdx skeletal muscle resulted in varying numbers of dystrophin-positive myofibers, suggesting a differential regenerating capacity among the clones. At 2 and 4 weeks postinjection, the infiltration of CD4- and CD8-positive lymphocytes and a variety of cytokines was detected within the injected site. These data suggest that the transplantation of retrovirally transduced mdx MDSCs can enable persistent dystrophin restoration in mdx skeletal muscle; however, the differential regenerating capacity observed among the MDSC/Dys3999 clones and the postinjection immune response are potential challenges facing this technology.  相似文献   

4.
Our previous studies have demonstrated that the intraarterial delivery of naked plasmid DNA leads to high levels of foreign gene expression throughout the muscles of the targeted limb. Although the procedure was first developed in rats and then extended to nonhuman primates, the present study has successfully implemented the procedure in normal mice and the mdx mouse model for Duchenne muscular dystrophy. After intraarterial delivery of plasmid DNA expressing the normal, full-length mouse dystrophin from either the cytomegalovirus promoter or a muscle-specific human desmin gene control region, mdx mouse muscle stably expressed dystrophin in 1-5% of the myofibers of the injected hind limb for at least 6 months. This expression generated an antibody response but no apparent cellular response.  相似文献   

5.
6.
7.
Adenoviral (Ad) vector-mediated gene delivery of normal, full-length dystrophin to skeletal muscle provides a promising strategy for the treatment of Duchenne muscular dystrophy (DMD), an X-linked recessive, dystrophin-deficient muscle disease. Studies in animal models suggest that successful DMD gene therapy by Ad vector-mediated gene transfer would be precluded by cellular and humoral immune responses induced by vector capsid and transgene proteins. To address the immunity induced by Ad vector-mediated dystrophin gene delivery to dystrophic muscle, we developed high-capacity adenoviral (HC-Ad) vectors expressing mouse dystrophin driven by the muscle creatine kinase promoter (AdmDys) and mCTLA4Ig (AdmCTLA4Ig) individually, or together from one vector (AdmCTLA4Ig/mDys). We found stable expression of dystrophin protein in the tibialis anterior muscles of mdx mice, coinjected with AdmCTLA4Ig and AdmDys, or injected alone with AdmCTLA4Ig/mDys, whereas the expression of dystrophin protein in the control group coinjected with AdmDys and an empty vector decreased by at least 50% between 2 and 8 weeks after administration. Additionally, we observed reductions in Ad vector-induced Th1 and Th2 cytokines, Ad vector-specific cytotoxic T lymphocyte activation and neutralizing anti-Ad antibodies in both experimental groups that received a mCTLA4Ig-expressing vector as compared to the control group. This study demonstrates that the coexpression of mCTLA4Ig and dystrophin in skeletal muscle provided by HC-Ad vector-mediated gene transfer can provide stable expression of dystrophin in immunocompetent, adult mdx mouse muscle and applies a potentially powerful strategy to overcome adaptive immunity induced by Ad vector-mediated dystrophin gene delivery toward the ultimate goal of treatment for DMD.  相似文献   

8.
Duchenne muscular dystrophy (DMD) is a severe progressive muscle-wasting disorder caused by mutations in the dystrophin gene. Studies have shown that bone marrow cells transplanted into lethally irradiated mdx mice, the mouse model of DMD, can become part of skeletal muscle myofibers. Whether human marrow cells also have this ability is unknown. Here we report the analysis of muscle biopsies from a DMD patient (DMD-BMT1) who received bone marrow transplantation at age 1 year for X-linked severe combined immune deficiency and who was diagnosed with DMD at age 12 years. Analysis of muscle biopsies from DMD-BMT1 revealed the presence of donor nuclei within a small number of muscle myofibers (0.5-0.9%). The majority of the myofibers produce a truncated, in-frame isoform of dystrophin lacking exons 44 and 45 (not wild-type). The presence of bone marrow-derived donor nuclei in the muscle of this patient documents the ability of exogenous human bone marrow cells to fuse into skeletal muscle and persist up to 13 years after transplantation.  相似文献   

9.
Qiao C  Li J  Jiang J  Zhu X  Wang B  Li J  Xiao X 《Human gene therapy》2008,19(3):241-254
Myostatin has been extensively documented as a negative regulator of muscle growth. Myostatin inhibition is therefore considered an attractive strategy for the treatment of muscle-wasting diseases such as muscular dystrophies. To investigate whether systemic gene delivery of myostatin propeptide (MRPO), a natural inhibitor of myostatin, could enhance body-wide skeletal muscle growth, we used adeno-associated virus serotype 8 (AAV8) vectors to deliver the MRPO gene into either normal mice or mdx mice, a murine model of Duchenne muscular dystrophy (DMD). In normal mice, a significant increase in skeletal muscle mass was observed after either an intraperitoneal injection of AAV-MPRO into neonates, or an intravenous injection of AAV-MPRO76AFc (a modified MPRO fused with IgG Fc) into adults. Enhanced muscle growth occurred because of myofiber hypertrophy, not hyperplasia. In mdx mice, a significant increase in skeletal muscle mass was also observed after AAV-MPRO76AFc injection. The treated mdx mice showed larger and more uniform myofibers, fewer infiltrating mononuclear cells, less fibrosis, and lower serum creatine kinase levels. In addition, a grip force test and an in vitro tetanic contractile force test showed improved muscle strength. A treadmill test, however, showed reduced endurance of the treated mdx mice compared with their untreated counterparts. Importantly, no cardiac hypertrophy was observed in either normal or mdx mice after myostatin inhibition by gene delivery. These results clearly demonstrate the efficacy of AAV8-mediated myostatin propeptide gene delivery in a rodent model of DMD, and warrant further investigation in large animal models and eventually in human patients.  相似文献   

10.
Duchenne muscular dystrophy (DMD) is a lethal disorder of skeletal muscle caused by mutations in the dystrophin gene. Adeno-associated virus (AAV) vector-mediated gene therapy is a promising approach to the disease. Although a rod-truncated microdystrophin gene has been proven to ameliorate dystrophic phenotypes, the level of microdystrophin expression required for effective gene therapy by an AAV vector has not been determined yet. Here, we constructed a recombinant AAV type 2 vector, AAV2-MCKDeltaCS1, expressing microdystrophin (DeltaCS1) under the control of a muscle-specific MCK promoter and injected it into TA muscles of 10-day-old and 5-week-old mdx mice. AAV2-MCKDeltaCS1-mediated gene transfer into 5-week-old mdx muscle resulted in extensive and long-term expression of microdystrophin and significantly improved force generation. Interestingly, 10-day-old injected muscle expressed microdystrophin in a limited number of myofibers but showed hypertrophy of microdystrophin-positive muscle fibers and considerable recovery of contractile force. Thus, we concluded that AAV2-MCKDeltaCS1 could be a powerful tool for gene therapy of DMD.  相似文献   

11.
Liang KW  Nishikawa M  Liu F  Sun B  Ye Q  Huang L 《Gene therapy》2004,11(11):901-908
Duchenne muscular dystrophy (DMD) is a lethal, X-linked, recessive disease caused by a defect in the dystrophin gene. No effective therapy is available. Dystrophin gene transfer to skeletal muscle has been proposed as a treatment for DMD. However, successful treatment for DMD requires restoration of dystrophin in the affected muscle fibers to at least 20% of the normal level. Current gene transfer methods such as intramuscular injection of viral vector or naked DNA can only transfect a small area of muscle, and therefore is of little clinical utility. We have developed a semisystemic method for gene transfer into skeletal muscle of mdx mice, an animal model for DMD. Naked DNA was injected through the tail artery or vein of mice, in which the aorta and the vena cava were clamped at the location just below the kidneys. The DNA solution was thus forced into the blood vessels of both legs. Luciferase gene expression was detected in all muscle groups in both legs. The effects of injection speed, injection volume, and ischemia time on gene expression were also optimized. LacZ staining was used to check the spread of gene expression in muscle. Although the percentage of transfected fibers was modest (approximately 10%), beta-galactosidase was found in all muscle groups of both legs. Finally, plasmid DNA encoding full-length dystrophin gene was injected into mdx mice and widespread restoration of dystrophin protein was observed in all muscles of both hind limbs. In conclusion, these results demonstrate that the semisystemic delivery of naked DNA is a potential approach towards the long-term goal of gene therapy for DMD.  相似文献   

12.
Duchenne muscular dystrophy (DMD) is the most common inherited lethal muscle degenerative disease. Currently there is no cure. Highly abbreviated microdystrophin cDNAs were developed recently for adeno-associated virus (AAV)-mediated DMD gene therapy. Among these, a C-terminal-truncated DeltaR4-R23/DeltaC microgene (DeltaR4/DeltaC) has been considered as a very promising therapeutic candidate gene. In this study, we packaged a CMV.DeltaR4/DeltaC cassette in AAV-5 and evaluated the transduction and muscle contractile profiles in the extensor digitorum longus muscles of young (7-week-old) and adult (9-month-old) mdx mice. At approximately 3 months post-gene transfer, 50-60% of the total myofibers were transduced in young mdx muscle and the percentage of centrally nucleated myofibers was reduced from approximately 70% in untreated mdx muscle to approximately 22% in microdystrophin-treated muscle. Importantly, this level of transduction protected mdx muscle from eccentric contraction-induced damage. In contrast, adult mdx muscle was more resistant to AAV-5 transduction, as only approximately 30% of the myofibers were transduced at 3 months postinfection. This transduction yielded marginal protection against eccentric contraction-induced injury. The extent of central nucleation was also more difficult to reverse in adult mdx muscle (from approximately 83% in untreated to approximately 58% in treated). Finally, we determined that the DeltaR4/DeltaC microdystrophin did not significantly alter the expression pattern of the endogenous full-length dystrophin in normal muscle. Neither did it have any adverse effects on normal muscle morphology or contractility. Taken together, our results suggest that AAV-mediated DeltaR4/DeltaC microdystrophin expression represents a promising approach to rescue muscular dystrophy in young mdx skeletal muscle.  相似文献   

13.
Duchenne muscular dystrophy (DMD) is an X-linked, lethal muscular disorder caused by a defect in the DMD gene. AAV vector-mediated micro-dystrophin cDNA transfer is an attractive approach to treatment of DMD. To establish effective gene transfer into skeletal muscle, we examined the transduction efficiency of an AAV vector in skeletal muscles of dystrophin-deficient mdx mice. When an AAV vector encoding the LacZ gene driven by a CMV promoter (AAV-CMVLacZ) was introduced, beta-galactosidase expression markedly decreased in mdx muscle 4 weeks after injection due to immune responses against the transgene product. We also injected AAV-CMVLacZ into skeletal muscles of mini-dystrophin-transgenic mdx mice (CVBA3'), which show ameliorated phenotypes without overt signs of muscle degeneration. AAV vector administration, however, evoked substantial immune responses in CVBA3' muscle. Importantly, AAV vector using muscle-specific MCK promoter also elicited responses in mdx muscle, but at a considerably later period. These results suggested that neo-antigens introduced by AAV vectors could evoke immune reactions in mdx muscle, since increased permeability allowed a leakage of neo-antigens from the dystrophin-deficient sarcolemma of muscle fibers. However, resident antigen-presenting cells, such as myoblasts, myotubes and regenerating immature myofibers, might also play a role in the immune response.  相似文献   

14.
Necrosis of dystrophic myofibers in Duchenne muscular dystrophy and mdx mice results from defects in the subsarcolemmal protein dystrophin that cause membrane fragility and tears in the sarcolemma, and these lead to the destruction of the myofibers. The present study specifically tests whether overexpression of mIGF-1 in mdx/mIGF-1 transgenic mice reduces myofiber breakdown during the acute onset phase of dystrophy (at 21 days). The extent of muscle damage and Evans blue dye (EBD) staining of myofibers was quantitated histologically for mdx/mIGF-1 and their mdx littermates from 15 to 30 days of age. Overexpression of mIGF-1 strikingly reduced the extent of myofiber damage (histology and EBD staining) by up to 97% in tibialis anterior and quadriceps muscles at 21-22 days after birth. In the mdx diaphragm, the onset of muscle breakdown was earlier (by 15 days after birth) but no significant protective effect of IGF-1 was apparent within the first month of age in mdx/IGF-1 mice. These novel observations show that increased mIGF-1 within mdx myofibers specifically reduces the breakdown of dystrophic muscle during the acute onset of muscle degeneration. This mechanism of action can account for the long-term reduced severity of the dystropathology in mdx mice that overexpress mIGF-1 and provides promising opportunities for therapeutic strategies.  相似文献   

15.
16.
The upregulation of endogenous utrophin in skeletal muscle may lead to a new approach to the treatment of Duchenne muscular dystrophy (DMD). We found that injection of an E1, E3-deleted adenovirus vector expressing beta-galactosidase (beta-Gal) or green fluorescent protein (GFP) into the skeletal muscle of neonatal dystrophin-deficient mdx mice alleviated dystrophic pathology. In the adenovirus-infected muscles, an evaluation of sarcolemma stability showed low permeability and immunohistochemistry revealed utrophin upregulation at the extrasynaptic sarcolemma of mature muscle fibers. This utrophin upregulation was concomitant with endomysial cellular infiltration from a host immune reaction. There was no evidence of active muscle regeneration. In normal C57BL/10 mice, utrophin was also upregulated in adenovirus-injected skeletal muscles, where upregulated utrophin often coexisted with dystrophin. FK506 and anti-CD4 antibody administration decreased utrophin expression in adenovirus-injected mdx muscles and prevented the dystrophic phenotype from being mitigated, suggesting that an immune reaction is involved in utrophin upregulation. This is the first report demonstrating the improvement of the dystrophic phenotype as a result of the acquired overexpression of endogenous utrophin. Our findings provide an important clue to understanding the mechanism of utrophin expression and the development of an effective treatment for DMD.  相似文献   

17.
Duchenne muscular dystrophy (DMD) is an X-linked, lethal disease caused by mutations of the dystrophin gene. No effective therapy is available, but dystrophin gene transfer to skeletal muscle has been proposed as a treatment for DMD. We have developed a strategy for efficient in vivo gene transfer of dystrophin cDNA into regenerating skeletal muscle. Retroviral producer cells, which release a vector carrying the therapeutically active dystrophin minigene, were mitotically inactivated and transplanted in adult nude/mdx mice. Transplantation of 3 x 10(6) producer cells in a single site of the tibialis anterior muscle resulted in the transduction of between 5.5 and 18% total muscle fibers. The same procedure proved also feasible in immunocompetent mdx mice under short-term pharmacological immunosuppression. Minidystrophin expression was stable for up to 6 mo and led to alpha-sarcoglycan reexpression. Muscle stem cells could be transduced in vivo using this procedure. Transduced dystrophic skeletal muscle showed evidence of active remodeling reminiscent of the genetic normalization process which takes place in female DMD carriers. Overall, these results demonstrate that retroviral-mediated dystrophin gene transfer via transplantation of producer cells is a valid approach towards the long-term goal of gene therapy of DMD.  相似文献   

18.
We reported that amphiphilic block copolymers hold promise as nonviral vectors for the delivery of plasmid DNA, ranging from 4.7 to 6.2 kb, to healthy muscle for the production of local or secreted proteins. To evaluate the efficiency of these vectors to deliver large plasmid DNA molecules to pathological muscles, plasmid DNAs of various lengths were complexed with Lutrol or poloxamine 304 and injected intramuscularly into dystrophic muscles. Lutrol-DNA and poloxamine 304-DNA complexes promoted gene transfer into muscles of the naturally occurring mouse model for DMD (mdx) in a dose- and plasmid DNA size-dependent manner. For small plasmid DNAs encoding reporter genes, this improvement over naked DNA was smaller in mdx than in the wild-type control strain. By contrast, Lutrol enabled us to deliver the large plasmid (16.1 kb) encoding the rod-deleted dystrophin in mdx mouse muscle, whereas the same amount of naked DNA did not lead to dystrophin expression, under the same experimental conditions. Lutrol-treated mdx mice showed the production of dystrophin in large numbers of muscle fibers. More importantly, we also found that expressing dystrophin with Lutrol led to restoration of the dystrophin-associated protein complex. Thus, we conclude that block copolymers constitute a novel class of vectors for the delivery of large plasmid DNA not only to healthy muscles but also to pathological muscle tissues.  相似文献   

19.
Antisense oligonucleotides (AO) can facilitate dystrophin expression via targeted exon skipping in cultured cells of Duchenne muscular dystrophy (DMD) patients and in the mouse model of DMD (mdx mice). However, the lack of effective means to deliver AO to myonuclei remains the foremost limitation to their usefulness in DMD gene therapy. In this study we show that copolymers of cationic poly(ethylene imine) (PEI) and poly(ethylene glycol) (PEG) facilitated efficient cellular uptake and nuclear delivery of AO in mature skeletal muscle fibers isolated from mdx mice. Confocal analysis of dual fluorescently tagged PEG-PEI-AO polyplexes, 24 hr after transfection, showed that the copolymer and AO were colocalized within punctate membrane- associated structures. Importantly, AO was efficiently translocated into myonuclei, whereas the copolymer was mostly excluded. The morphology of all transfected myofibers was perfectly maintained with no indication of damage or cytotoxicity. Quantitative fluorescence analysis showed that transfection with PEG-PEI-AO resulted in a 6-fold higher uptake of AO into myonuclei compared with transfections of AO alone. Interestingly, transfections with rhodamine-labeled PEG-PEI copolymers yielded an approximately 2- fold higher uptake of AO into myonuclei compared with transfections of unlabeled copolymers. Attempts to further increase AO delivery by addition of insulin-transferrin-selenium (ITS) to the medium showed no further improvement in AO delivery. Dose-response analysis indicated saturation of endocytotic uptake of the polyplex. Overall, we conclude that PEG-PEI copolymers represent high-capacity, nontoxic carriers for efficient delivery of AO to nuclei of mature myofibers.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号