首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 491 毫秒
1.
Influence of environmental salinity on expression of distinct corticosteroid receptor (CR) genes, glucocorticoid receptor (GR)-1 and -2, and mineralcorticoid receptor (MR), was examined in osmoregulatory and hemopoietic organs and leucocytes of steelhead trout (Oncorhynchus mykiss). There was no significant difference in plasma cortisol levels between freshwater (FW)- or seawater (SW)-acclimated trout, whereas Na+, K+-ATPase was activated in gill of SW fish. Plasma lysozyme levels also showed a significant increase after acclimation to SW. In SW-acclimated fish, mRNA levels of GR-1, GR-2, and MR were significantly higher in gill and body kidney than those in FW. Head kidney and spleen showed no significant change in these CR mRNA levels after SW-acclimation. On the other hand, leucocytes isolated from head kidney and peripheral blood showed significant decreases in mRNA levels of CR in SW-acclimated fish. These results showed differential regulation of gene expression of CR between osmoregulatory and immune systems.  相似文献   

2.
Plasma cortisol, thyroxine (T4), and triiodothyronine (T3) concentrations increased during seawater (SW) acclimation in yearling coho salmon, Oncorhynchus kisutch. Maximal concentrations of cortisol (220 ng/ml) occurred within 1.5 hr after the ambient water was changed from fresh water (FW) to SW; after 21 days in SW, cortisol levels were still slightly elevated (23 ng/ml) compared to those in FW fish (8 ng/ml). Plasma T4 concentrations peaked (14 ng/ml) at 12 and 72 hr after exposure to SW, and they were higher than those in FW fish (4 ng/ml) at all sample times. Maximal concentrations of T3 (8 ng/ml) occurred within 12 hr after exposure to SW, followed by a return to FW control levels (4 ng/ml) within 24 hr. Chronic treatment with cortisol significantly lowered plasma T3 concentrations in FW and during SW exposure, but it had no significant effect on T4 concentrations. Cortisol treatment lowered gill NaK-ATPase activity in FW fish, but it did not affect plasma osmolarity, Na, K, Ca, or Mg in fish in FW or during SW acclimation.  相似文献   

3.
We identified and investigated the changes in expression of two gill Na(+), K(+)-ATPase α-subunit isoforms (α-1a and α-1b) in relationship with salinity acclimation in a cichlid fish, Mozambique tilapia. Transfer of freshwater (FW)-acclimated fish to seawater (SW) resulted in a marked reduction in α-1a expression within 24?h and a significant increase in α-1b expression with maximum levels attained 7 days after the transfer. In contrast, transfer of SW-acclimated fish to FW induced a marked increase in α-1a expression within 2 days, while α-1b expression decreased significantly after 14 days. Hypophysectomy resulted in a virtual shutdown of α-1a mRNA expression in both FW- and SW-acclimated fish, whereas no significant effect was observed in α-1b expression. Replacement therapy by ovine prolactin (oPrl) fully restored α-1a expression in FW-acclimated fish, while cortisol had a modest, but significant, stimulatory effect on α-1a expression. In hypophysectomized fish in SW, replacement therapy with oPrl alone or in combination with cortisol resulted in a marked increase in α-1a mRNA to levels far exceeding those observed in sham-operated fish. Expression of α-1b mRNA was unaffected by hormone treatment either in FW-acclimated fish or in SW-acclimated fish. The mRNA expression of fxyd-11, a regulatory Na(+), K(+)-ATPase subunit, was transiently enhanced during both FW and SW acclimation. In hypophysectomized fish in FW, oPrl and cortisol stimulated fxyd-11 expression in a synergistic manner. The clear Prl dependence of gill α-1a expression may partially explain the importance of this hormone to hyperosmoregulation in this species.  相似文献   

4.
The present study compares developmental changes in plasma levels of growth hormone (GH), insulin-like growth factor I (IGF-I) and cortisol, and mRNA levels of their receptors and the prolactin receptor (PRLR) in the gill of anadromous and landlocked Atlantic salmon during the spring parr-smolt transformation (smoltification) period and following four days and one month seawater (SW) acclimation. Plasma GH and gill GH receptor (GHR) mRNA levels increased continuously during the spring smoltification period in the anadromous, but not in landlocked salmon. There were no differences in plasma IGF-I levels between strains, or any increase during smoltification. Gill IGF-I and IGF-I receptor (IGF-IR) mRNA levels increased in anadromous salmon during smoltification, with no changes observed in landlocked fish. Gill PRLR mRNA levels remained stable in both strains during spring. Plasma cortisol levels in anadromous salmon increased 5-fold in May and June, but not in landlocked salmon. Gill glucocorticoid receptor (GR) mRNA levels were elevated in both strains at the time of peak smoltification in anadromous salmon, while mineralocorticoid receptor (MR) mRNA levels remained stable. Only anadromous salmon showed an increase of gill 11beta-hydroxysteroid dehydrogenase type-2 (11beta-HSD2) mRNA levels in May. GH and gill GHR mRNA levels increased in both strains following four days of SW exposure in mid-May, whereas only the anadromous salmon displayed elevated plasma GH and GHR mRNA after one month in SW. Plasma IGF-I increased after four days in SW in both strains, decreasing in both strains after one month in SW. Gill IGF-I mRNA levels were only increased in landlocked salmon after 4days in SW. Gill IGF-IR mRNA levels in SW did not differ from FW levels in either strain. Gill PRLR mRNA did not change after four days of SW exposure, and decreased in both strains after one month in SW. Plasma cortisol levels did not change following SW exposure in either strain. Gill GR, 11beta-HSD2 and MR mRNA levels increased after four days in SW in both strains, whereas only the anadromous strain maintained elevated gill GR and 11beta-HSD2 mRNA levels after one month in SW. The results indicate that hormones and receptors of the GH and cortisol axes are present at significantly lower levels during spring development and SW acclimation in landlocked relative to anadromous salmon. These findings suggest that attenuation of GH and cortisol axes may, at least partially, result in reduced preparatory upregulation of key gill ion-secretory proteins, possibly a result of reduced selection pressure for marine adaptations in landlocked salmon.  相似文献   

5.
We have previously shown that esophageal epithelium of a euryhaline goby displays elevated cell proliferation in freshwater (FW) fish, but undergo apoptosis during seawater (SW) acclimation. Prolactin (PRL) injection into the goby induced the cell proliferation, whereas cortisol treatment stimulated the cell proliferation and apoptosis [Takahashi, H., Sakamoto, T., Narita, K., 2006a. Cell proliferation and apoptosis in the anterior intestine of an amphibious, euryhaline mudskipper (Periophthalmus modestus). J. Comp. Physiol. B 176, 463-468, 2006). In the euryhaline tilapia (Oreochromis mossambicus), the dynamics of changes in cortisol-glucocorticoid receptors (GR) during acclimation to different salinities also suggests a role for glucocorticoid signaling in the esophageal cell turnover, but the mode of PRL action remains largely unclear. In the present study, we report on effects in the tilapia esophagus that result from changes in environmental salinity. Specifically, we assessed: (1) mRNA expression of PRL receptor (PRLR) using quantitative real-time RT-PCR; (2) esophageal cell proliferation and apoptosis, using immunohistochemistry of proliferating cells nuclear antigen (PCNA) and in situ nick end-labeling of genomic DNA (TUNEL); (3) the possible localization of immunoreactive PRLR on proliferating/apoptotic cells. Plasma PRL increased after FW acclimation; PRLR mRNA levels in the esophagus of FW fish were significantly higher than those in SW-acclimated fish. Cell proliferation was induced randomly throughout the esophageal epithelium after FW acclimation, while cell division and increased apoptosis were concentrated at the tips of esophageal epithelial folds in SW-acclimated fish. Immunoreactive PRLR appeared to be localized at proliferating cells and at certain apoptotic cells, whereas immunoreactive GR was observed over the whole epithelium including the apoptotic/proliferating cells. Thus, PRL appears to affect cell turnover directly in the esophageal epithelium of the euryhaline tilapia.  相似文献   

6.
Plasma concentrations of Na+, K+, triiodothyronine (T3), and thyroxine (T4) and muscle water content were measured in yearling coho salmon. Oncorhynchus kisutch, after injection of cortisol in April, May, and June in fresh water (FW) and during acclimation to seawater (SW). Cortisol (17-21 micrograms/g), injected intraperitoneally in a melted cocoa butter suspension, suppressed the rise of plasma Na+ during SW acclimation in April but not in May or June. Muscle water content increased during SW acclimation in cortisol-treated fish in April and June. These observations suggest a hypoosmoregulatory function for cortisol during SW acclimation. Cortisol treatment also induced elevations of plasma K+ in FW (April only) and SW (April and May only). Cortisol treatment increased plasma T3 during SW acclimation in June and T4 in FW in May. The results suggest that cortisol may modify osmoregulatory processes and thyroid hormone activity during smoltification and acclimation to SW in yearling coho salmon.  相似文献   

7.
The role of growth hormone (GH) and cortisol in the development of hypoosmoregulatory mechanisms in sea trout parr, Salmo trutta trutta, was investigated by injecting freshwater (FW) yearlings every second day with saline, ovine growth hormone (oGH, 2.0 micrograms/g), cortisol (hydrocortisone hemisuccinate, 8.0 micrograms/g), or oGH + cortisol for a maximum of 14 days. Subgroups of the treated fish were transferred to three-fourths seawater (SW) after 7 or 15 days of treatment and the effects on plasma Na+, Cl-, muscle water content, gill Na+/K(+)-ATPase activity, and gill interlamellar chloride cell density were examined. In FW, gill Na+/K(+)-ATPase chloride cell density, and chloride cell apical to basal length increased by all hormone treatments, most significant by oGH + cortisol treatment. Plasma ions and muscle water content were unaffected in FW. Both SW transfers resulted in considerable mortality (50%) in control fish, whereas few cortisol-treated and no GH-treated or GH + cortisol-treated fish died. Plasma Na+ and Cl- levels increased dramatically (greater than 50%) in control fish and muscle water content decreased (8%) on Day 2 after both transfers. All hormone-treated groups regulated plasma ions and muscle water significantly better than controls in SW, indicating the physiological significance of the treatment. Notably, the oGH + cortisol-treated fish showed only insignificant changes in ion-osmotic homeostasis after SW transfer, suggesting a synergistic effect of the two hormones. It is concluded that treatment with the two hormones increases the salinity tolerance of sea trout parr at a developmental stage where FW life is obligatory.  相似文献   

8.
We have examined whether two recently isolated forms of tilapia (Oreochromis mossambicus) prolactin exert similar effects on osmoregulatory physiology. The effects of salinity, hypophysectomy, and replacement therapy with tilapia prolactins on whole-animal transepithelial potential (TEP), gill Na+, K+-ATPase activity, and plasma ions were determined. When intact fish adapted to 25% seawater (SW) were transferred to different salinities, TEP reached a steady state after 10 hr; TEP increased with increasing salinity from fresh water (FW) to 75% SW but was stable from 75 to 125% SW. Plasma osmolality, [Na+], and [Cl-] of these fish 24 hr after salinity change showed that fish in 100 and 125% SW had greater osmotic perturbation than those transferred to lower salinities. Following a 5-day recovery period in 25% SW, hypophysectomized fish transferred to FW for 10 hr had significantly lower TEP and plasma ion levels than either sham-operated fish or intact fish under the same conditions. Injection of hypophysectomized fish with "small" prolactin (tPRL177), "large" prolactin (tPRL188), or a combination of both (0.5 micrograms/g body weight) 22 hr and again 20 min prior to transfer from 25% SW to FW, restored TEP and plasma ion levels to those of sham-operated fish. Neither prolactin affected the TEP or plasma ions of sham-operated (intact) fish. Hypophysectomized fish had lower gill Na+,K+-ATPase activity than sham-operated fish in FW, but prolactin injections as described above did not affect gill Na+,K+-ATPase activity in either hypophysectomized or sham-operated fish. Our results indicate that the two forms of prolactin are indistinguishable with regard to several aspects of tilapia osmoregulation.  相似文献   

9.
10.
11.
To determine the importance of glucocorticoids in the salt water adaptation of European yellow eel we have evaluated the concentration, affinity and physical properties of glucocorticoid receptors (GR) in gill from both sea water- (SW) and freshwater-adapted (FW) animals. Using ligand binding techniques we demonstrated that high affinity GR were present in both cytosolic and nuclear fractions obtained from whole gill. Isoelectric focusing (IEF) of branchial GR indicated the presence of two distinct species, with pI values of 6.1 and 6.7. The form at pI 6.7 sedimented with a Svedberg constant of 4S on glycerol density gradients while the pI 6. 1 sedimented in fractions corresponding to 9S. Treatment of the pI 6. 1 form with urea (4 M) resulted in generation of the form with pI 6. 7. The evidence thus suggested that the oligomeric urea-sensitive form (pI 6.1) contained a form of GR which, as a monomer, focused at pI 6.7. IEF revealed the same concentrations of the pI 6.7 form in both SW and FW. However, there was significantly more (3-fold) pI 6. 1 isoform in FW than in SW, and this form decreased gradually during the course of seawater transfer. A transient increase of the nuclear-bound GR was also observed during SW adaptation. The balance between these forms could represent a dynamic parameter with important implications regarding GR function and gill responses to cortisol in salt water adaptation in teleosts.  相似文献   

12.
The metabolic clearance rate of corticosteroids determined after a single injection of [3H]cortisol was higher in fish acclimated to seawater (SW) than in those acclimated to fresh water (FW). Uptake and retention of corticosteroids in liver, gill filaments, and gall bladder bile were greater in SW than in FW fish. The stress of long-term (5 days), but not short-term (12 hr), continuous confinement apparently increased the clearance rate of corticosteroids in both FW and SW fish. Chronic, but not acute, administration of exogenous cortisol, yielding cortisol titers close to the physiological range, appeared to increase the clearance rate of corticosteroids in FW fish.  相似文献   

13.
Prolactin (PRL) plays a central role in freshwater (FW) adaptation in teleost fish. Evidence now suggests that growth hormone (GH) acts in the seawater (SW) adaptation in at least some euryhaline fish. Reflecting its important role in FW adaptation, plasma levels of PRL(188) and PRL(177) are higher in tilapia (Oreochromis mossambicus) adapted to FW than in those adapted to SW. A transient but significant increase in plasma GH was observed 6h after transfer from FW to SW. Elevated plasma PRL levels were seen in association with reductions in plasma osmolality after blood withdrawal in FW fish whereas no significant change was seen in plasma GH levels. When pituitaries from FW tilapia were incubated for 7 days, secretion of both PRLs was significantly greater in hyposmotic medium than in hyperosmotic medium for the first 24h. Secretion of GH from the same pituitary was relatively low during this period compared with PRL secretion. No consistent effect of medium osmolality on GH release was seen for the first day, but its cumulative release was increased significantly in hyperosmotic medium after 2 days and thereafter. On the other hand, ACTH release was extremely low compared with the secretion of PRLs and GH and there was no consistent effect of medium osmolality. These results indicate that PRL release from the tilapia pituitary is stimulated both in vivo and in vitro as extracellular osmolality is reduced, whereas the secretion of GH increases temporarily when osmolality is increased. ACTH seems to be relatively insensitive to the changes in environmental osmolality.  相似文献   

14.
15.
This study examined the effect of transfer to increased environmental salinity on the circulating levels of angiotensin II (ANG II), C-type natriuretic peptide (CNP), and arginine vasotocin (AVT) in the euryhaline elasmobranch, Carcharhinus leucas. Plasma levels of ANG II and CNP were significantly increased in C. leucas chronically acclimated to seawater (SW) in comparison to freshwater (FW) acclimated fish. There was no difference in plasma AVT levels. Acute transfer of FW fish to 75% SW induced an increase in plasma ANG II levels within 12 h, and subsequent transfer from 75 to 100% SW further increased plasma ANG II levels at both 24 and 72 h. No change in plasma CNP was observed during acute transfer to increased salinity. However, a significant increase in plasma AVT levels was observed following 96 h in 75% SW and 24 h in 100% SW. In chronically SW acclimated C. leucas plasma osmolality, sodium, chloride, and urea were all significantly higher than FW acclimated fish but there was no difference in haematocrit. Acute transfer of C. leucas to 75% SW induced a significant increase in plasma osmolality, sodium and urea concentrations within 96 h of transfer. Subsequent transfer from 75 to 100% SW induced a further increase in these variables within 24 h in addition to a significant increase in plasma chloride above control levels. Haematocrit did not differ between the experimental and control groups throughout the acute study. Circulating levels of ANG II were significantly correlated to plasma, sodium, chloride, and urea concentrations during acclimation to SW. Conversely, circulating levels of CNP and AVT did not correlate to plasma osmolytes, however, CNP was significantly correlated to haematocrit during acclimation to seawater.  相似文献   

16.
In order to examine the dynamics of ion regulation, osmoregulation, and plasma calcitonin during the parr-smolt transformation (smoltification), blood and gill tissue were collected from yearling coho salmon, Oncorhynchus kisutch, from February to October. Fish were kept in fresh water (FW) throughout this period. In addition, fish were exposed to seawater (SW) at the peak of smoltification in mid-April, and samples from these fish were collected until July. Plasma osmolality, gill Na+,K+-ATPase activity, plasma levels of calcitonin, and free and total calcium and magnesium were measured. SW adaptability of FW fish was assessed throughout the study by measurements of plasma osmolality following a 24-hr exposure to seawater. The greatest hypoosmoregulatory ability occurred in April-May, although SW-adapted fish had higher plasma osmolality than FW-adapted fish at all times. Gill Na+,K+-ATPase activity in FW-adapted fish increased from April to June and increased rapidly following exposure of fish to SW, and remained elevated in SW-adapted fish. Free plasma calcium and magnesium levels increased following SW exposure, but returned to prior levels within 1 week. Netting and confinement stress during sampling caused an increase in plasma osmolality and free calcium and magnesium levels in both FW- and SW-adapted fish. Changes in hypoosmoregulatory ability during smoltification and SW adaptation were correlated with changes in gill Na+,K+-ATPase activity. A sharp transitory peak in plasma calcitonin levels occurred early in smoltification (March) and in SW-adapted fish in June. Plasma calcitonin levels gradually increased in FW-adapted fish during the period of desmoltification. However, no change in plasma calcitonin levels occurred during SW-induced hypercalcemia, suggesting that the hormone does not play a major role in short-term plasma calcium regulation in coho salmon.  相似文献   

17.
In most teleost fishes, prolactin (PRL) plays a key role in freshwater (FW) adaptation, whereas growth hormone (GH) is involved in seawater (SW) adaptation in salmonids and certain euryhaline species including the tilapia, Oreochromis mossambicus. Consistent with its osmoregulatory activity, PRL release increases in response to physiologically relevant reductions in extracellular osmolality. When dispersed PRL and GH cells from FW-acclimatized fish were incubated in media of varying osmolalities, PRL release increased significantly in response to a 12% reduction in medium osmolality during 1 and 4h of exposure. By contrast, cells from SW-acclimatized fish responded only to a 24% reduction in osmolality. Growth hormone release on the other hand increased whether medium osmolality was reduced or raised. Cell volume increased together with PRL release during the perifusion of dispersed PRL cells in direct proportion to the reduction in medium osmolality. Growth hormone release increased whether GH cell volume increased or decreased. In in vivo studies, circulating PRL levels increased as early as 1h after the transfer of fish from SW to FW, whereas GH levels remained unchanged during 24h of acclimatization. These results indicate that while PRL and GH cells are osmosensitive, the PRL cells respond to reductions in extracellular osmolality in a manner that is consistent with PRL's physiological role in the tilapia. While the rise in GH release following the reduction in osmolality is of uncertain physiological significance, the rise in GH release with the elevation of medium osmolality may be connected to its role in SW adaptation.  相似文献   

18.
Prolactin (PRL) is an important hormone for freshwater adaptation in many teleost species. In some euryhaline fishes, growth hormone (GH) and cortisol are involved in seawater adaptation by stimulating ion extrusion. When channel catfish (Ictalurus punctatus) were transferred from fresh water to dilute seawater (300-400 mOsm), their plasma osmolality was always higher than the environmental salinity. In correlation with the increase in plasma osmolality, significant increases in plasma cortisol were observed. However, no effect of ovine GH or cortisol was seen in plasma osmolality or gill Na, K-ATPase activity when the hormones were given during the course of acclimation to dilute seawater. When catfish in fresh water were hypophysectomized, plasma osmolality was significantly decreased by 24 h, reaching a minimum level after 2 days. When they were transferred to dilute seawater, the plasma osmolality of the sham-operated fish was consistently higher than that of environmental water, whereas the osmolality of the hypophysectomized fish was equivalent to the environmental salinity. Ovine PRL restored the plasma osmolality of the hypophysectomized fish in fresh water to the level of sham-operated fish. Cortisol was also effective, but the effect was less pronounced than the effect of PRL. Injection of PRL in combination with cortisol resulted in a marked additive increase in plasma osmolality to a level even above that of the sham-operated fish. Ovine GH was without effect. These treatments in hypophysectomized fish transferred to dilute seawater produced essentially the same results as those in fish in fresh water. Plasma osmolality was also increased after PRL treatment of the intact fish in fresh water. There was a synergistic effect between PRL and cortisol in hypophysectomized fish in dilute seawater as well as in intact fish in fresh water. PRL did not stimulate cortisol secretion either in hypophysectomized fish or in intact fish. In the stenohaline catfish, both PRL and cortisol seem to be involved importantly in ion uptake from the environment not only in fresh water but also in brackish water.  相似文献   

19.
Effects of salinity and hormones on cystic fibrosis transmembrane conductance regulator (CFTR) and alpha-subunit Na(+),K(+) -ATPase (alpha-NKA) mRNA (analysed by semi-quantitative PCR) and protein expression (analysed by western blotting and immunocytochemistry) were investigated in gills of striped bass. Freshwater (FW) to seawater (SW) transfer induced a disturbance in serum [Na(+)]. Gill CFTR protein, mRNA level and Na(+),K(+) -ATPase activity were unaffected by SW transfer, whereas alpha-NKA mRNA increased after transfer. CFTR immunoreactivity was observed in large cells in FW and SW gill filaments at equal intensity. Cortisol decreased serum [Na(+)] in FW fish, but had no effect on gill Na(+),K(+) -ATPase activity, alpha-NKA and CFTR mRNA levels. Incubation of gill tissue with cortisol (24 h, >0.01 micro g/ml) and epidermal growth factor (EGF 10 micro g/ml) decreased CFTR mRNA levels relative to pre-incubation and control levels. CFTR expression was unaffected by IGF-I (10 micro g/ml). alpha-NKA mRNA levels decreased by 50% after 24 h control incubation; it was slightly stimulated by cortisol and unaffected by IGF-I and EGF. In isolated gill cells, phosphorylation of extracellular-regulated kinase (ERK) 1/2 was stimulated by EGF but not affected by IGF-I. This study is the first to report a branchial EGF response and to demonstrate a functional ERK 1/2 pathway in the teleost gill. In conclusion, CFTR and Na(+),K(+) -ATPase are differentially regulated by salinity and hormones in gills of striped bass, despite the putative involvement of both in salt excretion.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号