首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
TME from a single source was transmitted by intracerebral injection to Chinese hamsters, producing clinical disease in all seven animals after incubation periods of over 600 days. The brain from each of the primary cases was used to establish separate intracerebral passage-lines of TME and this led to the isolation of two different strains of agent, designated 333K and 333W. These strains were easily distinguished by the incubation periods they produced (about 130 and 230 days, respectively) under standard conditions of infection, and by the characteristic profiles of vacuolation seen in different regions of the brain. Comparisons were made with a strain of scrapie passaged in Chinese hamsters, designated 34W, which could be distinguished from both strains of TME. Nevertheless the properties of the scrapie and TME strains overlapped, with one of the TME strains (333K) resembling the 34W strain of scrapie in Chinese hamsters more closely than the other TME strain (333W). These similarities strengthen the view that TME and scrapie are caused by a similar type of infectious agent. The very large 'species barrier effect' on transmitting TME to Chinese hamsters was in marked contrast to the minimal effect seen with scrapie and an explanation for this is suggested. Two interesting pathological features of the study were (a) the severe loss of pyramidal cells produced in the hippocampus by the 34W strain of scrapie, and (b) the focal, symmetrical vacuolation of the thalamus caused by 333K TME.  相似文献   

2.
Brain sections from 16 different mouse scrapie models were immunostained with antisera to scrapie-associated fibrils (SAF) from three experimental scrapie sources (hamster 263K, mouse ME7 and mouse 22L). These models involved seven strains of scrapie injected intracerebrally or intraperitoneally into a range of inbred mouse strains, producing a wide variety of neuropathological changes. The only brain structures which were positively immunostained were amyloid plaque cores in those models in which plaques could be readily identified using traditional amyloid stains. The intensity of immunostaining correlated with the density of amyloid in the cores, as detected by Congo red and thioflavine S staining. No differences in immunostaining specificity were found between antisera or between plaques in different combinations of scrapie strain and mouse genotype. There were also no differences in immunoreactivity between plaques in different parts of the brain. These results strongly suggest that SAF and histologically detectable amyloid in scrapie mice are derived from the same precursor protein. Scrapie-associated cerebrovascular amyloid and plaques in sheep and goats also gave positive immunostaining with SAF antisera, although the lesions in the natural disease could only be stained after formic acid pretreatment. Senile plaques in Alzheimer's disease and Down's syndrome, although structurally similar to scrapie amyloid plaques, were found to be completely negative for SAF, in agreement with previous biochemical and immunocytochemical findings.  相似文献   

3.
Previous epidemiological evidence suggested that in some instances a vector and/or reservoir is involved in the occurrence and spread of transmissible spongiform encephalopathies (TSEs). In a preliminary study, hay mite preparations from five Icelandic farms with a history of scrapie were injected into mice, and some of these mice became sick after long incubation periods. To confirm that the disease was scrapie, subsequent passages in mice were performed. In addition, the characteristics of the disease process in these passages were assessed and the results compared to those findings with standard scrapie strains. As expected for scrapie, subsequent passages in the same host led to shortened incubation periods compared to those in primary isolate mice, and all mice had spongiform changes in brain. Results were similar for three of four isolates with regard to clinical manifestations, the incubation periods in mice of the three scrapie incubation-period genotypes (s7s7, s7p7, p7p7), and the PrPSc Western blot (WB) pattern. The characteristics of the fourth isolate were markedly different from the other three isolates with regard to these parameters. Comparison of the characteristics of standard mouse-adapted scrapie strains and the four isolates revealed differences; these differences were particularly pronounced for the fourth isolate.  相似文献   

4.
Summary In mice experimentally infected with most strains of scrapie, vacuolar degeneration almost always shows a bilaterally symmetrical distribution in the brain. However, asymmetrical foci of vacuolation are frequently seen with a group of six mouse-passaged isolates from diverse natural sheep sources (designated 31A, 51C, 87A, 125A, 138A and 153A). As these isolates are similar in other respects they may be independent isolations of the same strain of scrapie. The distribution of focal vacuolar lesions in C57BL mice affected with 87A scrapie was found to depend on route of infection. In mice injected intracerebrally into the left or right hemisphere, all focal asymmetrical lesions occurred on the side of injection, in some cases intense vacuolation being associated with the needle scar. following midline intracerebral injection, focal lesions were evenly distributed between the two sides and were most frequent in the medial areas of the thalamus. In one mouse injected intraocularly, intense unilateral lesions were seen contralaterally in the major retinal projection regions. Asymmetrical lesions also occurred following infection by intraperitoneal, intravenous and subcutaneous routes, but were less frequent than after intracerebral infection. The most likely explanation is that focal asymmetrical lesions result from focal replication of scrapie infectivity in the brain. As all the scrapie strains which frequently produce asymmetrical vacuolation are also those that generate mutants, it is possible that focal lesions represent foci of the new mutant strain, replicating preferentially in areas with a low background level of the parent strain.  相似文献   

5.
A few cases of transmissible spongiform encephalopathies in sheep have been described in France in which the protease-resistant prion protein (PrP(res)) exhibited some features in Western blot of experimental bovine spongiform encephalopathy in sheep. Their molecular characteristics were indistinguishable from those produced in the CH1641 experimental scrapie isolate. Four of these CH1641-like isolates were inoculated intracerebrally into wild-type C57Bl/6 mice. In striking contrast to previous results in ovine transgenic mice, CH1641 transmission in wild-type mice was efficient. Several components of the strain signature, that is, PrP(res) profile, brain distribution, and morphology of the deposits of the disease-associated prion protein, had some similarities with "classical" scrapie and clearly differed from both bovine spongiform encephalopathy in sheep and CH1641 transmission in ovine transgenic mice. These results on CH1641-like isolates in wild-type mice may be consistent with the presence in these isolates of mixed conformers with different abilities to propagate and mediate specific disease phenotypes in different species.  相似文献   

6.
The authors report spongy degeneration in experimental scrapie (second passage) in mice. The scrapie agent was originally isolated from Suffolk sheep imported from Canada and diagnosed histopathologically to be infected with scrapie by intracerebral inoculation into JCL/ICR mice. Ten female SIc/ICR mice, 4 weeks of age, were injected intracerebrally in the right frontal lobus with 20 microliter of 10(-1) or 10(-4) dilution of JCR/ICR mice brain homogenate involving scrapie agent. All animals showed signs of the advanced stages of the disease, clinically manifested by lassitude, arched backs, lethargy and paresis of hind quarters. They were sacrificed five to six months post inoculation, and sections of the brain and spinal cord were examined by light and electron microscopy. Focal symmetrical spongiform lesions were seen light microscopically in the cerebral mantle, thalamus, hypothalamus, midbrain, medulla oblongata, cerebellum and cervical mark. There was evidence that these lesions tended to be more intense in the mice inoculated a higher concentration of scrapie agent. Astrocytic proliferation was present in the deep layer of cerebral gray matter, white matter, corpus callosum, dorsal part of hippocampus and thalamus. No leukocytic infiltration was observed. Electron microscopically, the spongiform lesions were shown to be caused by vacuolation or swelling within the neuropil, and vacuolation and focal swelling in the neuronal perikaryon. The changes in the neuronal perikaryon were caused by enlargement of endoplasmic reticulum and cisterns of the Golgi apparatus, accompanied by spherical swelling of a part of the cytoplasm. The vacuolation near or within the neuron produced deformation of the cell contours and displacement of the nucleus.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

7.
Creutzfeldt-Jakob disease   总被引:6,自引:0,他引:6  
The historical aspects of spongiform encephalopathies, Creutzfeldt-Jakob disease (CJD) and kuru of man, as well as scrapie and transmissible mink encephalopathy, are outlined. Transmissions of these diseases to animal hosts are presented, with emphasis on CJD transmissions to guinea pigs, hamsters, and mice. The relationship of CJD to scrapie with reference to the pathological findings is discussed. In CJD the incubation period is cut in half in guinea pigs and hamsters in the second passage. The spongiform changes occurring in the neuropil are reviewed. These changes are related to the type of inoculum, e.g., there is more vacuolization after inoculation with brain, and less after inoculation with spleen. Spongiform changes are also dependent upon the route of inoculation; these are more severe in intracerebral inoculation compared to intraperitoneal inoculation. Viremia is present. Maternal transmission and lateral transmission are absent. No virus-like particles are detected, and no other organisms are visible by electron microscopy. Isolations of the causative agent and strains of the agent in spongiform encephalopathies remain elusive. The hypotheses concerning the nature of the agent are critically reviewed. Novel data on the production of tumors derived from CJD brains are presented. Tissue culture cells arising from such brains become permanent lines and are similar to neoplastic lines. When such CJD lines are injected subcutaneously into nude mice, malignant neoplasms are formed. No evidence of an infectious etiology in Alzheimer's disease exists. Reported similarities between this disease and CJD are reviewed. Animal models of CJD are useful for the investigation of dementias.  相似文献   

8.
RETINOPATHY IN MICE WITH EXPERIMENTAL SCRAPIE   总被引:2,自引:0,他引:2  
Scrapie is a naturally occurring neurological disease of adult sheep and goats with an incubation period of several years. Some strains of the causal agent can infect laboratory mice in which the incubation period, as well as the severity and distribution of vacuolar degeneration in the brain, varies according to the strain of the agent and the genotype of the mouse. Retinopathy, involving the partial or complete loss of the photoreceptor layer, was observed in a number of murine scrapie models but was absent in others. The severity of retinopathy depended on both the strain of scrapie and the genotype of mouse used. Some scrapie strains (22C, 87A and 87V) produced minimal or no retinal pathology, others (ME7, 22A and 22L) produced changes in the retinae of only certain mouse genotypes, while the strains 79A and 139A produced degeneration of the photoreceptor layer in every mouse genotype investigated. The severity of retinopathy in the various models did not correlate with the overall intensity of vacuolar degeneration in the brain, with the severity of vacuolation in the centres in the brain controlling pupillary constriction, or with the incubation period.  相似文献   

9.
A panel of ruminant brain tissues were subjected to a Western immunoblotting technique using two monoclonal antibodies (mAbs). The resultant prion protein (PrP) glycoforms showed that three distinctions can be made between natural ovine scrapie cases and sheep experimentally inoculated with bovine spongiform encephalopathy (BSE). Differentiation between BSE-infected cattle and natural cases of sheep scrapie was also possible using these two antibodies. There were subtle differences in the molecular weight positions of the di-glycosylated, mono-glycosylated and unglycosylated forms of the abnormal PrP (PrP(Sc)) associated with these ruminant transmissible spongiform encephalopathies. In particular, a distinct difference for the unglycosylated protein band was observed. For ovine scrapie samples, this band was noticeably of a higher molecular weight than that found for brain samples from the Romney and Cheviot breed sheep infected with BSE and, to a lesser degree, higher than that observed for bovine BSE samples. Using the comparison of glycoform ratios, the technique provided a distinction between the sheep experimentally infected with BSE and natural cases of sheep scrapie but did not provide a distinction between natural cases of bovine BSE and ovine scrapie. The sheep-passaged CH1641 scrapie strain gave molecular weights similar to, but not identical to BSE, and a glycoform ratio similar to ovine scrapie cases. The SSBP1 experimental scrapie strain gave molecular weights that were akin to natural scrapie cases but the glycoform ratio was different to that found for all the other samples. When mAb P4 was substituted for mAb 6H4 in the technique, only the natural scrapie samples and SSBP1 gave strong signals. BSE in sheep and the CH1641 strain gave weak reactions and PrP(Sc) from BSE-infected cattle could not be detected at all. The results suggest that this combination of molecular weight and glycoform ratio analyses, and differentiation with two specific antibodies could be used to provide a possible screening test for BSE in the UK sheep flock, if confirmed as accurate by bioassay and lesion profile analysis in mice inoculated with brain tissue from suspect field cases.  相似文献   

10.
Cerebrovascular amyloidosis (CA) was found in the cerebral and cerebellar cortices in 11 of 20 sheep, of six different breeds, with naturally-occurring scrapie. The occurrence of the lesion did not appear to be influenced by the age of the sheep. This was not seen in 20 brains from age- and breed-matched sheep with other conditions. Furthermore, it was not found in 20 sheep experimentally infected with scrapie by sub-cutaneous inoculation, or in 22 sheep with natural scrapie in a closed breeding group, but it was present at low frequency in a production flock, closed apart from the introduction of rams. It is concluded that this lesion is strongly associated with sheep scrapie disease, but that its occurrence varies between different groups of scrapie sheep. A major source of this variation is likely to be the strain of the agent, though other factors may be involved as has been shown for cerebral amyloidosis in experimental mouse scrapie.  相似文献   

11.
The effects of the scrapie agent on the levels of monoamines and their metabolites, and on choline acetyltransferase (CAT) activity have been investigated in discrete brain areas in the rat. Two strains of scrapie (8745 from sheep brain and C506 M3 from mice brain) were inoculated. Scrapie-infected rats showed a reduction in the levels of serotonin (prefrontal cortex, hippocampus, striatum) and dopamine (striatum) and an elevation of 5-HIAA levels (cerebral cortex, striatum, thalamus). Noradrenaline levels were decreased only in the cerebral cortex and cerebellum of rats infected with the scrapie strain C506 M3. CAT activity remained unchanged. These data suggest that the scrapie agent causes a derangement of noradrenergic, serotonergic and dopaminergic systems in the rat brain.  相似文献   

12.
The effects of the scrapie agent on the levels of monoamines and their metabolites, and on choline acetyltransferase (CAT) activity have been investigated in discrete brain areas in the rat. Two strains of scrapie (8745 from sheep brain and C506 M3 from mice brain) were inoculated. Scrapie-infected rats showed a reduction in the levels of serotonin (prefrontal cortex, hippocampus, straitum) and dopamine (striatum) and an elevation of 5-HIAA levels (cerebral cortex, striatum, thalamus). Noradrenaline levels were decreased only in the cerebral cortex and cerebellum of rats infected with the scrapie strain C506M3. CAT activity ramained unchanged. These data suggest that the scrapie agent causes a derangement of noradrenergic, serotogenic and dopaminergic systems in the rat brain.  相似文献   

13.
Prion strains yield specific neuropathological features including spongiform degeneration and deposition patterns of pathological prion protein. Their invariant regional distribution, following variations in the infection route, has led to the proposal that prions replicate preferentially in defined neuro-anatomical areas. The molecular mechanisms underlying this apparent strain-specific neuronal tropism are currently unknown. However, a possible explanation may be that prion replication is relatively innocuous, resulting in long-term propagation, thus masking initial regional distribution variations linked to different infection routes. This “low neurotoxicity” may be imputable either to the rodent model used or the prion strain(s) inoculated. To investigate this possibility, we studied prion pathogenesis in a prototypal short-incubation disease model consisting of 127S scrapie strain propagated in tg338 transgenic mice expressing the VRQ allele of ovine PrP. This prion strain derives from a natural sheep scrapie isolate that was serially transmitted to tg338 mice without any obvious transmission barrier and biologically cloned by limiting dilution. We compared the pathology induced by the peripheral or intracerebral inoculation of 127S strain. Surprisingly, we found that the disease greatly differed in clinical signs, abnormal prion protein levels, and neuropathology among the routes of infection. Secondary transmission performed with brain material from mice inoculated either intracranially or intraperitoneally produced similar neuropathological features. These results therefore indicate that the route of infection can strongly influence the apparent phenotype of a scrapie strain.  相似文献   

14.
Prion protein (PrP) is a cell surface, host coded, sialoglycoprotein which accumulates in excess in scrapie, Creutzfeldt‐Jakob disease, bovine spongiform encephalopathy and other transmissible spongiform encephalopathies. Infection of mice with the 87 V or ME7 scrapie strains results in distinctive and very different light microscopical patterns of vacuolation and disease specific PrP accumulation. In both of these scrapie strains immunogold electron microscopy was used to locate PrP to the plasmalemma of neurons from where it was released into the neuropil. Initial PrP accumulation around neurons and in early plaques lacking amyloid fibrils was generally not associated with morphological changes either of the neuron or dendrite releasing the PrP or in the adjacent neuropil in which excess PrP accumulated. However, accumulation of pre‐amyloid PrP in some brain areas was associated with specific degeneration of dendritic spines and axon terminals. Initial PrP aggregation into fibrils was also associated with tissue damage with both ME7 and 87 V plaques and diffuse accumulations. Tissue damage associated with fibrillogenesis was localized and would not be expected to have clinical significance. We conclude that pre‐amyloid PrP release and accumulation is not invariably toxic, either to the neuron releasing PrP or to the neuropil into which it is released. However, axon terminal degeneration and dendritic spine loss in some neuroanatomical areas may be indicative of specific PrP toxicity and may be the main cause of neurological dysfunction in murine scrapie.  相似文献   

15.
16.
The mechanisms involved in the spread of scrapie within the brain remain unclear. To examine this issue the 22L scrapie strain was injected in one side of the cerebellum of mice in which the cerebellum had been bisected prior to injection. Another group of animals received the same injection into intact cerebella, i.e. without prior bisection. We found that bisection of the cerebella delayed the spread of scrapie agent from the injection site to the contralateral side of the cerebellum and that the occurrence of vacuolization was not as extensive and was markedly delayed in the uninjected side compared to its occurrence after injection in the intact cerebellum. Replication of agent in an area preceded the development of vacuolization in that area by several weeks. There was marked loss of Purkinje cells on the injected side of bisected cerebella, with no loss seen on the uninjected side. The incubation period of scrapie disease in mice injected after cerebellar bisection was significantly longer than after the injection of intact cerebella. The results in this study suggest that the scrapie agent spreads along intact nerve cell tracts, probably by axonal transport.  相似文献   

17.
Altered plasma membranes in experimental scrapie   总被引:1,自引:0,他引:1  
Summary The status spongiosus in the cerebral cortex of mice affected with two different strains of scrapie virus corresponded to focally swollen perikaryal cytoplasm of nerve cells and astrocytes, to swollen neuronal and astrocytic processes and to membrane-bounded vacuoles within pre- and postsynaptic neuronal terminals. The swollen cytoplasm contained uniformly dispersed, finely granulo-filamentous material. A few enlarged dendrites were filled with fragments of membranes or 350 Å wide vesicular and tubular structures suggestive of virus particles. Ruptured plasma membranes and curled fragments of membranes were seen around cleared cytoplasmic regions and within membrane-bounded vacuoles. Neurons or astrocytes that lined affected cells or processes frequently showed similar changes. Confluence of swollen cells or processes occurred after dissolution of their adjacent plasma membranes. Astrocytes reacted to the injury by proliferation whereas nerve cells degenerated. The findings are compared to those seen in other subacute spongiform virus encephalopathies, i. e., mink encephalopathy, Kuru and Creutzfeldt-Jakob disease. The characteristic vacuolar degeneration of nerve cells in these diseases which is associated with fragmentation and accumulation of plasma membranes is discussed with reference to the peculiar properties of the scrapie virus.This investigation was supported in part by United States Public Health Research Grant NS-09053 from the National Institute of Neurological Diseases and Stroke, National Institutes of Health, Bethesda, Maryland.  相似文献   

18.
In previous studies we showed that C57BL mice injected stereotactically in the cerebellum with the 22L scrapie strain had a significantly shorter incubation period than those injected with the same agent in other brain regions. In mice injected in the cerebellum, vacuolization was limited to the cerebellum, medulla and mesencephalon, whereas injection into forebrain regions resulted in vacuolization in all brain regions. The studies suggested that the cerebellum had a selective vulnerability for 22L. In this study we examined the interaction between host genotype and selective vulnerability of specific brain regions. The mouse gene that has the most profound effect on pathogenesis, particularly incubation period, is termed Sinc (scrapie incubation). Groups of mice with three genotypes of Sinc (s7s7, p7p7 and their F1 cross, s7p7) were injected with 22L into the cerebral cortex, thalamus or cerebellum. Analysis of incubation periods showed that, regardless of the host genotype, the cerebellum injection group had a significantly shorter incubation period than groups injected in other regions. After cerebellum injection vacuolization was limited to the cerebellum, medulla and mesencephalon in all three host genotypes. The location of vacuoles within the cerebellum differed depending upon the host strain. Vacuolization developed almost exclusively in grey matter in s7s7 mice, mainly in white matter in p7p7 mice, and in both grey and white matter in F1 mice. These results demonstrate that the selective vulnerability of the cerebellum to induction of clinical disease by 22L does not depend on host genotype, but host genotype does affect lesion distribution within the cerebellum.  相似文献   

19.
S. Sisó, L. González, R. Blanco, F. Chianini, H. W. Reid, M. Jeffrey and I. Ferrer (2011) Neuropathology and Applied Neurobiology 37, 484–499 Neuropathological changes correlate temporally but not spatially with selected neuromodulatory responses in natural scrapie Aim: Neuropathological changes classically associated with sheep scrapie do not always correlate with clinical disease. We aimed to determine if selected neuromodulatory responses were altered during the course of the infection as it has been described in Creutzfeldt–Jakob disease and experimental bovine spongiform encephalopathy. Methods: Hemi‐brains from healthy sheep and natural scrapie cases at two stages of infection were examined for biochemical alterations related to the expression of type I metabotropic glutamatergic receptors (mGluR1) and type I adenosine receptors I (A1R), and of selected downstream intermediate signalling targets. Immunohistochemistry for different scrapie‐related neuropathological changes was performed in the contralateral hemi‐brains. Results: PrPd deposition, spongiform change, astrocytosis and parvalbumin expression were significantly altered in brains from clinically affected sheep compared with preclinical cases and negative controls; the latter also showed significantly higher immunoreactivity for synaptophysin than clinical cases. Between clinically affected and healthy sheep, no differences were found in the protein levels of mGluR1, while phospholipase Cβ1 expression in terminally ill sheep was increased in some brain areas but decreased in others. Adenyl cyclase 1 and A1R levels were significantly lower in various brain areas of affected sheep. No abnormal biochemical expression levels of these markers were found in preclinically infected sheep. Conclusions: These findings point towards an involvement of mGluR1 and A1R downstream pathways in natural scrapie. While classical prion disease lesions and neuromodulatory responses converge in some affected regions, they do not do so in others suggesting that there are independent regulatory factors for distinct degenerative and neuroprotective responses.  相似文献   

20.
Summary We have isolated and characterized a population of brain macrophages from normal and scrapieinfected mice. The cells are phagocytic, possess Fc-IgG receptors, Mac-1 surface antigen and proliferate in the presence of macrophage colony stimulating factor. They resemble microglia in that they have a plasmalemmal distribution of the enzyme nucleoside diphosphatase, a property that is characteristic of microglia in situ. In two of the three combinations of scrapie agent and mouse strain examined, the number of brain macrophages was several fold higher than in normal control mice. The increase was not observed in mice infected intraperitoneally or in control mice inoculated with normal brain homogenate. The increase is detectable as early as 3–5 weeks postinoculation. The agent/host combination that failed to show an increase in brain macrophages is one that develops large numbers of amyloid plaques. These observations suggest that these cells are closely associated with the scrapie pathogenic process in the CNS. The failure of these cells to increase in the plaque forming model of scrapie disease also suggests that they play a role in the control of CNS amyloidogenesis.Dedicated to Prof. F. Seitelberger on the occasion of his seventieth birthdaySupported by National Institute on Aging grant no. AG04220  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号