首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 812 毫秒
1.
Flavin-containing monooxygenase activity in human liver microsomes   总被引:4,自引:0,他引:4  
Human liver microsomal flavin-containing monooxygenase activity has been studied using dimethylaniline N-oxidation and thiobenzamide S-oxidation. Except for one subject, the capacity of human liver microsomes to mediate these reactions were markedly increased at pH 8.4 compared to pH 7.4. The mean dimethylaniline N-oxidase activities at pH 7.4 and 8.4 in the four subjects tested were 2.49 +/- 1.13 and 6.59 +/- 4.04 nmol mg-1 min-1, respectively (mean +/- SD, N = 4). The mean thiobenzamide S-oxidase activities at pH 7.4 and 8.4 were 1.39 +/- 0.51 and 2.74 +/- 1.28 nmol mg-1 min-1, respectively. At pH 7.4, an antibody to the human liver NADPH-cytochrome P-450 reductase inhibited dimethylaniline N-oxidation between 4 and 38%. The same antibody had no effect on this reaction at pH 8.4. Except for one subject, a battery of cytochrome P-450 inhibitors also had little effect on this reaction. Further, preincubating human microsomes at 45 degrees C in the absence of NADPH for 4 min destroyed approximately 90% of the dimethylaniline N-oxidase activity. These data collectively suggested that the flavin-containing mono-oxygenase is the major enzyme mediating this reaction in human liver microsomes. In contrast to dimethylaniline N-oxidation, thiobenzamide S-oxidation was significantly inhibited by the anti-reductase at both pH 7.4 and 8.4, respectively. These data indicate that cytochromes P-450 contribute significantly to this reaction in human liver microsomes.  相似文献   

2.
The stereoselective sulfoxidation of the pharmacologically active metabolite of sulindac, sulindac sulfide, was characterized in human liver, kidney, and cDNA-expressed enzymes. Kinetic parameter estimates (pH = 7.4) for sulindac sulfoxide formation in human liver microsomes (N = 4) for R- and S-sulindac sulfoxide were V(max) = 1.5 +/- 0.50 nmol/min/mg, K(m) = 15 +/- 5.1 microM; and V(max) = 1.1 +/- 0.36 nmol/min/mg, K(m) = 16 +/- 6.1 microM, respectively. Kidney microsomes (N = 3) produced parameter estimates (pH = 7.4) of V(max) = 0.9 +/- 0.29 nmol/min/mg, K(m) = 15 +/- 2.9 microM; V(max) = 0.5 +/- 0.21 nmol/min/mg, K(m) = 22 +/- 1.9 microM for R- and S-sulindac sulfoxide, respectively. In human liver and flavin-containing monooxygenase 3 (FMO3) the V(max) for R-sulindac sulfoxide increased 60-70% at pH = 8.5, but for S-sulindac sulfoxide was unchanged. In fourteen liver microsomal preparations, significant correlations occurred between R-sulindac sulfoxide formation and either immunoquantified FMO or nicotine N-oxidation (r = 0.88 and 0.83; P < 0.01). The R- and S-sulindac sulfoxide formation rate also correlated significantly (r = 0.85 and 0.75; P < 0.01) with immunoquantified FMO in thirteen kidney microsomal samples. Mild heat deactivation of microsomes reduced activity by 30-60%, and a loss in stereoselectivity was observed. Methimazole was a potent and nonstereoselective inhibitor of sulfoxidation in liver and kidney microsomes. n-Octylamine and membrane solubilization with lubrol were potent and selective inhibitors of S-sulindac sulfoxide formation. cDNA-expressed CYPs failed to appreciably sulfoxidate sulindac sulfide, and CYP inhibitors were ineffective in suppressing catalytic activity. Purified mini-pig liver FMO1, rabbit lung FMO2, and human cDNA-expressed FMO3 efficiently oxidized sulindac sulfide with a high degree of stereoselectivity towards the R-isomer, but FMO5 lacked catalytic activity. The biotransformation of the sulfide to the sulfoxide is catalyzed predominately by FMOs and may prove to be useful in characterizing FMO activity.  相似文献   

3.
1. Moclobemide underdergoes morpholine ring N-oxidation to form a major metabolite in plasma Rol2-5637. 2. The kinetics of moclobemide N-oxidation in human liver microsomes (HLM) (n = 6) have been investigated and the mixed-function oxidase enzymes catalysing this reaction have been identified using inhibition, enzyme correlation, altered pH and heat pretreatment experiments. 3. N-oxidation followed single enzyme Michealis-Menten kinetics (0.02-4.0 mm). Km app and Vmax ranged from 0.48 to 1.35 mM (mean +/- SD) 0.77 +/- 0.34 mM) and 0.22 to 2.15 nmol mg(-1) min(-1) (1.39 +/- 0.80 nmol mg(-1) respectively. 4. The N-oxidation of moclobemide strongly correlated with benzydamine N-oxidation a probe reaction for flavin-containing monoxygenase (FMO) activity (0.1 mM moclobemide, rs = 0.81, p < 0.005; 4 mM moclobemide, rs = 0.94, p = 0.0001). Correlations were observed between moclobemide N-oxidation and specific cytochromre P450 (CYP) activities at both moclobemide concentrations (0.1 mM moclobemide, CYP2C19 0.66, p < 0.05; 4 mM moclobemide, CYP2E1 rs = 0.56, p < 0.05). 5. The general P450 inhibitor, N-benzylimidazole, did not affect the rate of Rol2-5637 formation (0% inhibition versus control) (at 1.3 mM moclobemide. Furthermore, the rate of Ro12-5637 formation in HLM was unaffected by inhibitors Or substrates of specific P450s (< 10% inhibition versus control). 6. Heat pretreatment of HLM in the absence of NADPH (inactivating FMOs) resulted in 97% inhibition of Ro12-5637 formation. N-oxidation activity was greatest when incubated at pH 8.5. These results ilre consistent with the reaction being FMO medialtetd . 7. In conclusion, moclobemide N-oxidation activity has been observed in HLM in vitro and the reaction is predominantly catalysed by FMOs with a potentially small contribution from cytochrome P450 isoforms.  相似文献   

4.
1. The cytotoxicity of metabolites generated from phenytoin, sorbinil and mianserin by human and mouse liver microsomes was assessed by co-incubation with human mononuclear leucocytes as target cells. Cytotoxicity was determined by trypan blue dye exclusion. 2. Phenytoin and sorbinil were metabolised by NADPH-dependent murine microsomal enzymes to cytotoxic metabolites. Cytotoxicity produced by both drugs was significantly enhanced by the epoxide hydrolase inhibitor trichloropropane oxide (TCPO). No significant cytotoxicity was observed in the presence of human liver microsomes. 3. Mianserin was metabolised by both human and mouse liver microsomes to a cytotoxin. Cytotoxicity was greater in the presence of human liver microsomes (13.7 +/- 2.2%; mean +/- s.d. for four livers, compared with 6.0 +/- 2.4%, mean +/- s.d., n = 4, with mouse liver microsomes), and was unaffected by pretreatment with TCPO. 4. Stable metabolites were quantified by radiometric high performance liquid chromatography. Phenytoin and sorbinil were metabolised to 5-(p-hydroxyphenyl)-5-phenyl-hydantoin (0.3-0.5% of incubated radioactivity) and 2-hydroxysorbinil (0.4-2.7% of incubated radioactivity), respectively, by both human and mouse liver microsomes. 5. Mianserin was metabolised to 8-hydroxymianserin and desmethylmianserin by both human and mouse liver microsomes. Desmethylmianserin was the major product in incubations with human liver microsomes (32.3 +/- 12%, mean +/- s.d. for four livers), whereas 8-hydroxymianserin was the predominant metabolite generated by mouse liver microsomes (25.9 +/- 1.5%, mean +/- s.d., n = 4). 6. Generation of electrophilic metabolites was assessed by determination of the amount of radiolabelled material which became irreversibly bound to protein. Only mouse liver microsomes activated phenytoin to a chemically reactive metabolite, whereas both mouse and human liver microsomes generated reactive metabolites from sorbinil and mianserin. 7. These studies show that drug cytotoxicity can be mediated by low concentrations (circa microM) of metabolites generated by NADPH-dependent hepatic microsomal enzymes; however demonstration of cytotoxicity in vitro has not been established as a means of predicting in vivo toxicity.  相似文献   

5.
S-Methyl N,N-diethyldithiocarbamate (MeDDC), a metabolite of the alcohol deterrent disulfiram, is converted to MeDDC sulfine and then S-methyl N,N-diethylthiocarbamate sulfoxide, the proposed active metabolite in vivo. Several isoforms of CYP450 and to a lesser extent flavin monooxygenase (FMO) metabolize MeDDC in the liver. The human kidney contains FMO1 and several isoforms of CYP450, including members of the CYP3A, CYP4A, CYP2B, and CYP4F subfamilies. In this study the metabolism of MeDDC by the human kidney was examined, and the enzymes responsible for this metabolism were determined. MeDDC was incubated with human renal microsomes from five donors or with insect microsomes containing human FMO1, CYP4A11, CYP3A4, CYP3A5, or CYP2B6. MeDDC sulfine was formed at 5 microM MeDDC by renal microsomes at a rate of 210 +/- 50 pmol/min/mg of microsomal protein (mean +/- S.D., n = 5) and by FMO1 at 7.6 +/- 0.2 nmol/min/nmol (n = 3). Oxidation of 5 microM MeDDC was negligible by all CYP450 tested (< or =0.03 nmol/min/nmol). Inhibition of FMO by methimazole or heat diminished MeDDC sulfine formation 75 to 89% in renal microsomes. Inhibition of CYP450 in renal microsomes by N-benzylimidazole or antibody to the CYP450 NADPH reductase had no effect on MeDDC sulfine production. Benzydamine N-oxidation, a probe for FMO activity, correlated with MeDDC sulfine formation in renal microsomes (r = 0.951, p = 0.013). The K(M) values for MeDDC sulfine formation by renal microsomes and recombinant human FMO1 were 11 and 15 microM, respectively. These results demonstrate a role for the kidney and FMO1 in the metabolism of MeDDC in humans.  相似文献   

6.
Involvement of cytochrome P450 (P450 or CYP) 2C19, 2C9, and 3A4 in N-oxidation of voriconazole, a new triazole antifungal agent, has been demonstrated using human liver microsomes. To confirm the precise roles of P450 isoforms in voriconazole clearance in individuals, we investigated the oxidative metabolism of voriconazole catalyzed by recombinant P450s as well as human liver microsomes genotyped for the CYP2C19 gene. Among recombinant P450 isoforms using Escherichia coli expression systems, CYP2C19 and CYP3A4 had voriconazole N-oxidation activities, but not CYP2C9. Apparent K(m) and V(max) values of CYP2C19 and CYP3A4 for voriconazole N-oxidation were 14+/-6 microM and 0.22+/-0.02 nmol/min/nmol CYP2C19 and 16+/-10 microM and 0.05+/-0.01 nmol/min/nmol CYP3A4, respectively (mean+/-S.E.). CYP3A4 produced a new methyl hydroxylated metabolite from voriconazole, detected by LC/UV and LC/MS/MS and confirmed by 1H and 13C NMR analyses, with K(m) and V(max) values of 11+/-3 microM and 0.10+/-0.01 nmol/min/nmol CYP3A4. The voriconazole 4-hydroxylation to N-oxidation metabolic ratios in liver microsomes from the wild-type CYP2C19*1/*1 individuals (0.07) were lower than those observed in other genotypes (0.20-0.27) at a substrate concentration of 25 microM based on the reported clinical plasma level. These results suggest that the CYP2C19 genotype, but not CYP2C9 genotype, would be evaluated as a key factor in the pharmacokinetics of voriconazole and that 4-hydroxyvoriconazole formation may become an important pathway for voriconazole metabolism in individuals with poor CYP2C19 catalytic function.  相似文献   

7.
1. Benzydamine (BZ), a non-steroidal anti-inflammatory drug used in human and veterinary medicine, is not licensed for use in food-producing species. Biotransformation of BZ in cattle has not been reported previously and is investigated here using liver microsomes and precision-cut liver slices. 2. BZ was metabolized by cattle liver microsomes to benzydamine N-oxide (BZ-NO) and monodesmethyl-BZ (Nor-BZ). Both reactions followed Michaelis-Menten kinetics (Km = 76.4 +/- 16.0 and 58.9 +/- 0.4 microM Vmax = 6.5 +/- 0.8 and 7.4 +/- 0.5 nmolmg(-1) min(-1) respectively); sensitivity to heat and pH suggested that the N-oxidation is catalysed by the flavin-containing monooxygenases. 3. BZ-NO and Nor-BZ were the most abundant products derived from liver slice incubations, and nine other BZ metabolites were found and tentatively identified by LC-MS. Desbenzylated and hydroxylated BZ-NO analogues and a hydroxylated product of BZ were detected, which have been reported in other species. Product ion mass spectra of other metabolites, which are described here for the first time, indicated the formation of a BZ N- -glucuronide and five hydroxylated and N+-glucuronidated derivatives of BZ, BZ-NO and Nor-BZ. 4. The results indicate that BZ is extensively metabolized in cattle. Clearly, differences in metabolism compared with, for example, rat and human, will need to be considered in the event of submission for marketing authorization for use in food animals.  相似文献   

8.
The metabolism of zidovudine (3'-azido-3'-deoxythymidine; AZT) has been studied in human renal, gut and hepatic microsomes. Metabolism of AZT to the ether glucuronide (3'azido-3'-deoxy-5'-beta-D-glucopyranosyl thymidine; GAZT) occurred in the kidney with Km and Vmax values of 1.50 +/- 0.49 mM and 14.5 +/- 2.6 nmol h-1 mg-1 respectively (mean +/- s.d.; n = 3 batches of microsomes from a single kidney). Comparative values obtained in liver were 2.19 +/- 0.6 mM and 43.0 +/- 9.5 nmol h-1 mg-1, respectively. Morphine caused inhibition of AZT conjugation in kidney microsomes. Metabolism of AZT by the kidney could contribute significantly to the overall elimination of AZT. In contrast to the kidney findings, AZT was not metabolised to GAZT by either non-activated (Brij-58) or activated gut microsomes.  相似文献   

9.
Investigation of human UDP-glucuronosyltransferase (UGT) isoforms has been limited by a lack of specific substrate probes. In this study serotonin was evaluated for use as a probe substrate for human UGT1A6 using recombinant human UGTs and tissue microsomes. Of the 10 commercially available recombinant UGT isoforms, only UGT1A6 catalyzed serotonin glucuronidation. Serotonin-UGT activity at 40 mM serotonin concentration varied more than 40-fold among human livers (n = 54), ranging from 0.77 to 32.9 nmol/min/mg of protein with a median activity of 7.1 nmol/min/mg of protein. Serotonin-UGT activity kinetics of representative human liver microsomes (n = 7) and pooled human kidney, intestinal and lung microsomes and recombinant human UGT1A6 typically followed one enzyme Michaelis-Menten kinetics. Serotonin glucuronidation activity in these human liver microsomes had widely varying V(max) values ranging from 0.62 to 51.3 nmol/min/mg of protein but very similar apparent K(m) values ranging from 5.2 to 8.8 mM. Pooled human kidney, intestine, and lung microsomes had V(max) values (mean +/- standard error of the estimates) of 8.8 +/- 0.4, 0.22 +/- 0.00, and 0.03 +/- 0.00 nmol/min/mg of protein (respectively) and apparent K(m) values of 6.5 +/- 0.9, 12.4 +/- 2.0, and 4.9 +/- 3.3 mM (respectively). In comparison, recombinant UGT1A6 had a V(max) of 4.5 +/- 0.1 nmol/min/mg of protein and an apparent K(m) of 5.0 +/- 0.4 mM. A highly significant correlation was found between immunoreactive UGT1A6 protein content and serotonin-UGT activity measured at 4 mM serotonin concentration in human liver microsomes (R(s) = 0.769; P < 0.001) (n = 52). In conclusion, these results indicate that serotonin is a highly selective in vitro probe substrate for human UGT1A6.  相似文献   

10.
The metabolism of diallyl disulfide (DADS), a garlic sulfur compound, was investigated in human liver microsomes. Diallyl thiosulfinate (allicin) was the only metabolite observed and its formation followed Michaelis-Menten kinetics with a Km = 0.61 +/- 0.2 mM and a Vmax = 18.5 +/- 4.2 nmol/min/mg protein, respectively (mean +/- S.E. M., n = 4). Both flavin-containing monooxygenase and the cytochrome P-450 monooxygenases (CYP) were involved in DADS oxidation, but the contribution of CYP was predominant. The cytochrome P-450 isoforms involved in this metabolism were investigated using selective chemical inhibitors, microsomes from cells expressing recombinant CYP isoenzymes, and studying the correlation of the rate of DADS oxidation with specific monooxygenase activities of human liver microsomes. Diethyldithiocarbamate and tranylcypromine inhibited allicin formation, whereas other specific inhibitors had low or no effect. Most of the different human microsomes from cells expressing CYP were able to catalyze this reaction, but CYP2E1 showed the highest affinity with a substantial activity. Furthermore, allicin formation by human liver microsomes was correlated with p-nitrophenol hydroxylase activity, a marker of CYP2E1, and tolbutamide hydroxylase activity, a marker of CYP2C9. Among these approaches only CYP2E1 was identified in each case, which suggested that DADS is preferentially metabolized to allicin by CYP2E1 in human liver. However the minor participation of other CYP forms and flavin-containing monooxygenases is likely.  相似文献   

11.
Safrole is a natural plant constituent, found in sassafras oil and certain other essential oils. The carcinogenicity of safrole is mediated through 1'-hydroxysafrole formation, followed by sulfonation to an unstable sulfate that reacts to form DNA adducts. To identify the main cytochrome P450 (P450) involved in human hepatic safrole 1'-hydroxylation (SOH), we determined the SOH activities of human liver microsomes and Escherichia coli membranes expressing bicistronic human P450s. Human liver (n = 18) microsomal SOH activities were in the range of 3.5-16.9 nmol/min/mg protein with a mean value of 8.7 +/- 0.7 nmol/min/mg protein. In human liver (n = 3) microsomes, the mean K(m) and V(max) values of SOH were 5.7 +/- 1.2 mM and 0.14 +/- 0.03 micromol/min/nmol P450, respectively. The mean intrinsic clearance (V(max)/K(m)) was 25.3 +/- 2.3 microL/min/nmol P450. SOH was sensitive to the inhibition by a CYP2C9 inhibitor, sulfaphenazole, and CYP2E1 inhibitors, 4-methylpyrazole and diethyldithiocarbamate. The liver microsomal SOH activity showed significant correlations with tolbutamide hydroxylation (r = 0.569) and chlorzoxazone hydroxylation (r = 0.770) activities, which were the model reactions catalyzed by CYP2C9 and CYP2E1, respectively. Human CYP2C9 and CYP2E1 showed SOH activities at least 2-fold higher than the other P450s. CYP2E1 showed an intrinsic clearance 3-fold greater than CYP2C9. These results demonstrated that CYP2C9 and CYP2E1 were the main P450s involved in human hepatic SOH.  相似文献   

12.
In the current study, we investigated interindividual variability of the 2-hydroxylation, 3-glucuronidation, and 3-sulfation of ethynylestradiol (EE2) using human liver microsomes and cytosol. Km values for the 2-hydroxylation and 3-glucuronidation in pooled liver microsomes and for the 3-sulfation in pooled liver cytosol were 3.34, 23.3, and 2.85 microM, respectively. Vmax/Km (ml/min/g liver) was highest for the 3-sulfation, followed by 2-hydroxylation, suggesting that 3-sulfation is the major metabolic pathway of EE2 in human liver. All further studies were performed at a substrate concentration of 0.1 microM. Microsomal 2-hydroxylation and 3-glucuronidation activities ranged from 0.21 to 5.02 (2.04+/-1.34, mean+/-S.D., n=35) and 0.20 to 4.84 (1.20+/-1.00, n=35) pmol/min/mg protein, respectively. Cytosolic 3-sulfation activity ranged from 4.2 to 24.3 (11.8+/-4.4, n=21) pmol/min/mg protein. All the measured enzyme activities were neither gender-related nor age-dependent, except that 2-hydroxylation was significantly higher in females than in males (p<0.05). The relative contribution of CYP3A to the 2-hydroxylation in liver microsomes was estimated from the degree of inhibition by 1 microM ketoconazole. The degrees of inhibition were between 17.8 and 78.0% (51.6+/-16.0%, n=27). These results indicate that there are large interindividual differences in the enzyme activities towards the respective metabolic pathways of EE2 and the relative contribution of CYP3A to the 2-hydroxylation of EE2 in human liver.  相似文献   

13.
1. Histamine N-methyl transferase activity was measured in samples of human liver, brain, kidney, lung and intestinal mucosa. The mean (+/- s.d.) rate (nmol min-1 mg-1 protein) of histamine N-methylation was 1.78 +/- 0.59 (liver, n = 60), 1.15 +/- 0.38 (renal cortex, n = 8), 0.79 +/- 0.14 (renal medulla, n = 8), 0.35 +/- 0.08 (lung, n = 20), 0.47 +/- 0.18 (human intestine, n = 30) and 0.29 +/- 0.14 (brain, n = 13). 2. Inhibition of histamine N-methyl transferase by 15 drugs was investigated in human liver. The IC50 for the various drugs ranged over three orders of magnitude; chloroquine was the most potent inhibitor. 3. The average IC50 values for chloroquine were 12.6, 22.0, 19.0, 21.6 microM in liver, renal cortex, brain and colon, respectively. These values are lower than the Michaelis-Menten constant for histamine N-methyltransferase in liver (43.8 microM) and kidney (45.5 microM). Chloroquine carried a mixed non-competitive inhibition of hepatic histamine N-methyl transferase. Some side-effects of chloroquine may be explained by inhibition of histamine N-methyl transferase.  相似文献   

14.
1. Although multiple cytochrome P450s (CYP) contribute to hepatic phase I metabolism, CYP3A is the principal subfamily present in human and mouse small intestine. 2. Differences in phase I metabolism were investigated using midazolam (MDZ) hydroxylation in mouse liver and intestinal microsomes. The net MDZ metabolite formation rate in intestinal microsomes was approximately 30% that of liver microsomes (at 250 micro M MDZ). 3. Quantitative Western blotting with anti-CYP3A1 antibody detected two bands of immunoreactive protein in both liver and intestinal samples, 2.24 +/- 0.27 (mean +/- SD, n = 3) and 0.64 +/- 0.08 pmol mg(-1) protein, respectively. Qualitative Western blotting with anti-CYP2C11 antibody detected a single band of immunoreactive protein in liver microsomes and no signal in intestinal samples (1 micro g sample). 4. Ketoconazole potently inhibited formation of both alpha- and 4-OH-MDZ metabolites in intestinal microsomes (IC(50)' of 0.126 +/- 0.010 and 0.0955 +/- 0.014 micro M, respectively) and of 4-OH-MDZ formation in mouse liver microsomes (IC(50) of 0.041 +/- 0.003 micro M). However, ketoconazole (5 micro M) did not produce 50% inhibition of alpha-OH-MDZ formation in mouse liver microsomes. Inhibition by ritonavir (5 micro M) produced similar results. 5. MDZ hydroxylation is predominately CYP3A dependent in mouse intestine (compared with mouse liver) since CYP2C is not expressed in the intestine. The importance of CYP3A in the mouse intestine appears to mirror that in humans.  相似文献   

15.
1. Mexiletine is extensively metabolized in man by C- and N-oxidation and the aim of the present study was to characterize major cytochrome P450 enzyme(s) involved in the formation of N -hydroxymexiletine. 2. Incubations with genetically engineered microsomes indicated that the formation rate of N -hydroxymexiletine was highest in the presence of microsomes expressing high levels of either CYP1A2 or CYP2E1 and the formation of N -hydroxymexiletine by human liver microsomes was inhibited about 40% by antibodies directed against CYP1A1/1A2 or CYP2E1. Additional incubations demonstrated that formation of N -hydroxymexiletine was decreased 47 and 51% by furafylline, 40 µm and 120 µm, respectively, and decreased 55 and 67% by α -naphthoflavone, 1 µm and 3 µm, respectively (all p < 0.05 versus control). 3. The formation rate of N -hydroxymexiletine in human liver microsomes was highly correlated with CYP2B6 (RS -mexiletine, r = 0.7827; R - (?) -enantiomer, r = 0.7034; S -(+)-enantiomer, r = 0.7495), CYP2E1 (S -(+)-enantiomer, r = 0.7057) and CYP1A2 (RS -mexiletine, r = 0.5334; S -(+)-enantiomer, r = 0.6035). 4. In conclusion, we have demonstrated that CYP1A2 is a major human cytochrome P450 enzyme involved in the formation of N -hydroxymexiletine. However, other cytochrome P450 enzymes (CYP2E1 and CYP2B6) also appear to play a role in the N-oxidation of this drug.  相似文献   

16.
1. Mexiletine is extensively metabolized in man by C- and N-oxidation and the aim of the present study was to characterize major cytochrome P450 enzyme(s) involved in the formation of N-hydroxymexiletine. 2. Incubations with genetically engineered microsomes indicated that the formation rate of N-hydroxymexiletine was highest in the presence of microsomes expressing high levels of either CYP1A2 or CYP2E1 and the formation of N-hydroxymexiletine by human liver microsomes was inhibited about 40% by antibodies directed against CYP1A1/1A2 or CYP2E1. Additional incubations demonstrated that formation of N-hydroxymexiletine was decreased 47 and 51% by furafylline, 40 microm and 120 microm, respectively, and decreased 55 and 67% by alpha-naphthoflavone, 1 microm and 3 microm, respectively (all p < 0.05 versus control). 3. The formation rate of N-hydroxymexiletine in human liver microsomes was highly correlated with CYP2B6 (RS-mexiletine, r = 0.7827; R-(-)-enantiomer, r = 0.7034; S-(+)-enantiomer, r = 0.7495), CYP2E1 (S-(+)-enantiomer, r = 0.7057) and CYP1A2 (RS-mexiletine, r = 0.5334; S-(+)-enantiomer, r = 0.6035). 4. In conclusion, we have demonstrated that CYP1A2 is a major human cytochrome P450 enzyme involved in the formation of N-hydroxymexiletine. However, other cytochrome P450 enzymes (CYP2E1 and CYP2B6) also appear to play a role in the N-oxidation of this drug.  相似文献   

17.
We have examined the in-vitro distribution of 7-hydroxymethotrexate (7-OH-MTX), a cytotoxic metabolite of methotrexate (MTX), in human blood, and its protein binding in serum. The distribution of 7-OH-MTX (10(-6) M) in fresh samples of whole blood was studied at 37 degrees C and pH 7.51 +/- 0.05 (mean +/- s.d.), and its protein binding was assessed by equilibrium dialysis of serum against Krebs Ringer phosphate buffer at 37 degrees C and pH 7.41 +/- 0.07 (mean +/- s.d.). 7-OH-MTX had a mean cell/plasma concentration ratio of 0.03 (range 0-0.27, n = 18). It was extensively bound in human serum, with a bound fraction of 90.4 +/- 3.3% (mean +/- s.d.) in healthy volunteers (n = 11), and significantly lower, 82.3 +/- 4.0% (mean +/- s.d.), in hypoalbuminaemic surgical patients (n = 7). The binding of 7-OH-MTX was correlated with serum albumin (HSA) concentrations (r = 0.72, P less than 0.0007, n = 18). Blood distribution data support the contention that 7-OH-MTX has a small volume of distribution, and HSA appears to be mainly responsible for the high degree of its protein binding in serum.  相似文献   

18.
1. Quercetin is one of the most abundant flavonoids in edible vegetables, fruit and wine. The aim was to study the type of inhibition of SULT1A1 by quercetin in the human adult and foetal livers. 2. The activity of SULT1A1 was measured with 4 microM 4-nitrophenol and 0.4 microM 3'-phosphoadenosine-5'-phosphosulphate-[(35)S], and its mean (+/-SD) and median were 769 +/- 311 and 740 pmol min(-1) mg(-1), respectively (adult liver, n = 10), and 185 +/- 98 and 201 pmol min(-1) mg(-1), respectively (foetal liver, n = 8, p < 0.0001). 3. In non-inhibited samples, K(m) for SULT1A1 (mean +/- SD) was 0.31 +/- 0.14 microM (adult liver) and 0.49 +/- 0.17 microM (foetal liver, n.s.). V(max) for SULT1A1 (mean +/- SD) was 885 +/- 135 pmol min(-1) mg(-1) (adult liver) and 267 +/- 93 pmol min(-1) mg(-1) (foetal liver, p = 0.007). 4. The IC(50) of quercetin for SULT1A1 was measured in three samples of adult and foetal livers and was 13 +/- 2.1 and 12 +/- 1.4 nM, respectively. 5. The type of inhibition was mixed non-competitive in adult and foetal livers and K(i) was 4.7 +/- 2.5 nM (adult liver) and 4.8 +/- 1.6 nM (foetal liver). 6. In the adult liver, the intrinsic clearance (mean +/- SD) was 3.3 +/- 1.5 ml min(-1) mg(-1) (non-inhibited samples), 0.9 +/- 0.4 ml min(-1) mg(-1) (12.5 nM quercetin) and 0.5 +/- 0.06 ml min(-1) mg(-1) (25 nM quercetin). In the foetal liver, the intrinsic clearance (mean +/- SD) was 0.5 +/- 0.2 ml min(-1) mg(-1) (non-inhibited samples), 0.12 +/- 0.01 ml min(-1) mg(-1) (12.5 nM quercetin) and 0.2 +/- 0.09 ml min(-1) mg(-1) (25 nM quercetin). 7. In conclusion, quercetin is a potent inhibitor of human adult and foetal liver SULT1A1. It reduces the sulphation rate and intrinsic clearance of 4-nitrophenol in both human adult and foetal livers. This suggests that quercetin may inhibit the sulfation rate of those drugs sulphated by SULT1A1. The inhibition of SULT1A1 is complex and not due solely to competition at the catalytic site of SULT1A1.  相似文献   

19.
1. Quantitative species differences and human liver enzymes involved in the metabolism of L-775,606, a potent and selective 5-HT1D receptor agonist developed for the acute treatment of migraine headache, have been investigated in vitro. 2. In human, monkey, dog and rat liver microsomes, formation of the hydroxylated M1 and the N-dealkylated M2 was mediated by enzyme(s) of high-affinity (apparent Km approximately 1-6 microM), and that of the two N-oxide isomers (M3) was catalysed by those of low affinity (apparent Km approximately 50-110 microM). In dog, M3 constituted a major pathway (approximately 40%), whereas in all other species it was a minor metabolite (< 5%). 3. In human liver microsomes, a marked inhibition (> or =80%) of M1 and M2 formation was observed by SKF525-A, troleandomycin, ketoconazole and anti-CYP3A antibodies, whereas the inhibition was modest (approximately 20-40%) with quercetin. Of seven cDNA-expressed human P450 tested, only CYP3A4 and CYP2C8 were capable of oxidizing L-775,606, resulting primarily in M1 and M2. However, CYP3A4 possessed much higher affinity (> or = 20-fold) and much higher intrinsic activity (> 100-fold) than CYP2C8. 4. In contrast, N-oxidation was not inhibited by any inhibitors of P450 tested, but rather was reduced significantly by heat treatment and methimazole, and was increased substantially with an incubation pH>7.4. Human flavin-containing monooxygenase form 3 (FMO3) catalysed exclusively the N-oxidation to M3, with apparent Km and optimum pH comparable with those observed in human liver microsomes. 5. These results demonstrated quantitative interspecies differences in the metabolism of L-775,606. In human, metabolism of L-775,606 to the principal metabolites, M1 and M2, was mediated primarily by CYP3A4 with minimal contribution from CYP2C8, whereas the minor N-oxidative pathway was catalysed mainly by FMO3.  相似文献   

20.
1. Bupivacaine-induced cardiotoxicity increases in hypoxic and acidotic conditions. We have analysed the effects of R(+)bupivacaine on hKv1.5 channels stably expressed in Ltk(-) cells using the whole-cell patch-clamp technique, at three different extracellular pH (pH(o)), 6.5, 7.4 and 10.0. 2. Acidification of the pH(o) from 7.4 to 6.5 decreased 4 fold the potency of R(+)bupivacaine to block hKv1.5 channels. At pH(o) 10.0, the potency of the drug increased approximately 2.5 fold. 3. Block induced by R(+)bupivacaine at pH(o) 6.5, 7.4 and 10.0, was voltage- and time-dependent in a manner consistent with an open state block of hKv1.5 channels. 4. At pH(o) 6.5, but not at pH(o) 7.4 or 10.0, R(+)bupivacaine increased by 95+/-3 % (n=6; P<0.05) the hKv1.5 current recorded at -10 mV, likely due to a drug-induced shift of the midpoint of activation (DeltaV=-8.5+/-1.4 mV; n=7). 5. R(+)bupivacaine development of block exhibited an 'instantaneous' component of block at the beginning of the depolarizing pulse, which averaged 12.5+/-1.8% (n=5) and 4.6+/-1.6% (n=6), at pH(o) 6.5 and 7.4, respectively, and that was not observed at pH(o) 10.0. 6. It is concluded that: (a) alkalinization of the pH(o) increases the potency of block of R(+)bupivacaine, and (b) at pH(o) 6.5, R(+)bupivacaine induces an 'agonist effect' of hKv1.5 current when recorded at negative membrane potentials.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号