首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 640 毫秒
1.
A new approach for 11C–C bond formation via a Sonogashira‐like cross‐coupling reaction of terminal alkynes with [11C]methyl iodide was exemplified by the synthesis of 17α‐(3′‐[11C]prop‐1‐yn‐1‐yl)‐3‐methoxy‐3,17β‐estradiol. The LC‐purified title compound was obtained in decay‐corrected radiochemical yields of 27–47% (n=8) based on [11C]methyl iodide within 21–27 min after EOB. In a typical synthesis starting from 9.6 GBq [11C]methyl iodide, 1.87 GBq of 17α‐(3′‐[11C]prop‐1‐yn‐1‐yl)‐3‐methoxy‐3,17β‐estradiol was synthesized in radiochemical purity >99%. The specific radioactivity ranged between 10 and 19 GBq/µmol, and the labeling position was verified by 13C‐NMR analysis of the corresponding 13C‐labeled compound. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

2.
The multitude of biologically active compounds requires the availability of a broad spectrum of radiolabeled synthons for the development of positron emission tomography (PET) tracers. The aim of this study was to synthesize 1‐iodo‐2‐[11C]methylpropane and 2‐methyl‐1‐[11C]propanol and investigate the use of these reagents in further radiosynthesis reactions. 2‐Methyl‐1‐[11C]propanol was obtained with an average radiochemical yield of 46 ± 6% d.c. and used with fluorobenzene as starting material. High conversion rates of 85 ± 4% d.c. could be observed with HPLC, but large precursor amounts (32 mg, 333 μmol) were needed. 1‐Iodo‐2‐[11C]methylpropane was synthesized with a radiochemical yield of 25 ± 7% d.c. and with a radiochemical purity of 78 ± 7% d.c. The labelling agent 1‐iodo‐2‐[11C]methylpropane was coupled to thiophenol, phenol and phenylmagnesium bromide. Average radiochemical conversions of 83% d.c. for thiophenol, 40% d.c. for phenol, and 60% d.c. for phenylmagnesium bromide were obtained. In addition, [11C]2‐methyl‐1‐propyl phenyl sulphide was isolated with a radiochemical yield of 5 ± 1% d.c. and a molar activity of 346 ± 113 GBq/μmol at the end of synthesis. Altogether, the syntheses of 1‐iodo‐2‐[11C]methylpropane and 2‐methyl‐1‐[11C]propanol were achieved and applied as proof of their applicability.  相似文献   

3.
A method and an apparatus for preparing [11C]methyl iodide from [11C]methane and iodine in a single pass through a non‐thermal plasma reactor has been developed. The plasma was created by applying high voltage (400 V/31 kHz) to electrodes in a stream of helium gas at reduced pressure. The [11C]methane used in the experiments was produced from [11C]carbon dioxide via reduction with hydrogen over nickel. [11C]methyl iodide was obtained with a specific radioactivity of 412 ± 32 GBq/µmol within 6 min from approximately 24 GBq of [11C]carbon dioxide. The decay corrected radiochemical yield was 13 ± 3% based on [11C]carbon dioxide at start of synthesis. [11C]Flumazenil was synthesized via a N‐alkylation with the prepared [11C]methyl iodide. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

4.
[11C]Paraquat was synthesized by the reaction of [11C]methyl triflate with the mono‐triflate salt of 1‐methyl‐[4,4′]bipyridinyl. The product was selectively separated from the precursor by a microcolumn of Chelex 100 ion exchange resin. The method was applied to the synthesis of a variety of [N‐methyl‐11C]bisquaternary ammonium compounds. This is the first reported use of a chelating cation exchange resin for the selective purification of organic dications. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

5.
1‐(2′‐deoxy‐2′‐fluoro‐β‐D‐arabinofuranosyl)‐[methyl11C]thymine ([11C]FMAU) [11C]‐ 1 was synthesised via a palladium‐mediated Stille coupling reaction of 1‐(2′‐deoxy‐2′‐fluoro‐β‐D‐arabinofuranosyl)‐5‐(trimethylstannyl)uracil 2 with [11C]methyl iodide in a one‐pot procedure. The reaction conditions were optimized by screening various catalysts and solvents, and by altering concentrations and reaction temperatures. The highest yield was obtained using Pd2(dba)3 and P(o‐tolyl)3 in DMF at 130°C for 5 min. Under these conditions the title compound [11C]‐ 1 was obtained in 28±5% decay‐corrected radiochemical yield calculated from [11C]methyl iodide (number of experiments=7). The radiochemical purity was >99% and the specific radioactivity was 0.1 GBq/μmol at 25 min after end of bombardment. In a typical experiment 700–800 MBq of [11C]FMAU [11C]‐ 1 was obtained starting from 6–7 GBq of [11C]methyl iodide. A mixed 11C/13C synthesis to yield [11C]‐ 1 /(13C)‐ 1 followed by 13C‐NMR analysis was used to confirm the labelling position. The labelling procedure was found to be suitable for automation. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

6.
A method is presented for preparing [1‐11C]ethyl iodide from [11C]carbon monoxide. The method utilizes methyl iodide and [11C]carbon monoxide in a palladium‐mediated carbonylation reaction to form a mixture of [1‐11C]acetic acid and [1‐11C]methyl acetate. The acetates are reduced to [1‐11C]ethanol and subsequently converted to [1‐11C]ethyl iodide. The synthesis time was 20 min and the decay‐corrected radiochemical yield of [1‐11C]ethyl iodide was 55 ± 5%. The position of the label was confirmed by 13C‐labelling and 13C‐NMR analysis. [1‐11C]Ethyl iodide was used in two model reactions, an O‐alkylation and an N‐alkylation. Starting with approximately 2.5 GBq of [11C]carbon monoxide, the isolated decay‐corrected radiochemical yields for the ester and the amine derivatives were 45 ± 0.5% and 25 ± 2%, respectively, based on [11C]carbon monoxide. Starting with 10 GBq of [11C]carbon monoxide, 0.55 GBq of the labelled ester was isolated within 40 min with a specific radioactivity of 36 GBq/µmol. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

7.
N‐(2,5‐Dimethoxybenzyl)‐N‐(5‐fluoro‐2‐phenoxyphenyl)acetamide (DAA1106), a potent and selective ligand for peripheral benzodiazepine receptor, and eight structurally related analogues were labelled with 11C at the carbonyl position using a low concentration of [11C]carbon monoxide and the micro‐autoclave technique. A combinatorial approach was applied to synthesize the analogues using similar reaction conditions. Palladium‐mediated carbonylation using tetrakis(triphenylphosphine)palladium, various amines and methyl iodide or iodobenzene was employed in the synthesis. The 11C‐labelled products were obtained with 10–55% decay‐corrected radiochemical yields and the final product was more than 97% pure in all cases. Specific radioactivity was determined for the compound [carbonyl11C]DAA1106 using a single experiment and a 10‐µA h bombardment. The specific radioactivity, measured 36 min after end of bombardment, was 455 GBq/µmol. Synthetic routes to the precursors and reference compounds were also developed. The presented approach is a novel method for the synthesis of [carbonyl11C]DAA1106 and its analogues, and allows the formation of a library of 11C‐labelled DAA1106 analogues which can be used to optimize the performance as a potential positron emission tomography tracer. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

8.
The nucleosides zidovudine (AZT), stavudine (d4T), and telbivudine (LdT) are approved for use in the treatment of human immunodeficiency virus (HIV) and hepatitis B virus (HBV) infections. To promote positron emission tomography (PET) imaging studies on their pharmacokinetics, pharmacodynamics, and applications in cancer diagnosis, a convenient one‐pot method for Pd(0)–Cu(I) co‐mediated rapid C–C coupling of [11C]methyl iodide with stannyl precursor was successfully established and applied to synthesize the PET tracers [11C]zidovudine, [11C]stavudine, and [11C]telbivudine. After HPLC purification and radiopharmaceutical formulation, the desired PET tracers were obtained with high radioactivity (6.4–7.0 GBq) and specific radioactivity (74–147 GBq/µmol) and with high chemical (>99%) and radiochemical (>99.5%) purities. This one‐pot Pd(0)–Cu(I) co‐mediated rapid C‐[11C]methylation also worked well for syntheses of [methyl‐11C]thymidine and [methyl‐11C]4′‐thiothymidine, resulting twice the radioactivity of those prepared by a previous two‐pot method. The mechanism of one‐pot Pd(0)–Cu(I) co‐mediated rapid C‐[11C]methylation was also discussed.  相似文献   

9.
Precise staging of neuroendocrine tumors (NET) using positron emission tomography (PET) tracers visualizing their specific metabolic activity is of interest. Besides [18F]FDOPA, staging NET with carbon‐11 labeled 5‐hydroxytryptophan (5‐HTP) is reported in recent literature. We implemented the multi‐enzymatic synthesis of enantiomerically pure [11C]‐L‐5‐HTP on a Zymark robotic system to compare both tracers in patient studies. [11C]‐5‐HTP can be synthesized in up to 24% radiochemical yields (EOB). Average specific activity is 44 000 GBq/mmol in ca. 50 min from [11C]methyl iodide in radiochemical purities >99 %. The synthesis of 5‐HTP is difficult due to its multi‐enzymatic reaction steps but typical yields can be achieved of ca. 400 MBq. [11C]‐5‐HTP is now reliably used in ongoing studies for staging NET. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

10.
[11C]labeled (±)‐methyl jasmonate was synthesized using a C18 Sep Pak? at ~100°C to sustain a solid‐supported 11C‐methylation reaction of sodium (±)‐jasmonate using [11C]methyl iodide. After reaction, the Sep Pak was rinsed with acetone to elute the labeled product, and the solvent evaporated rendering [11C]‐(±)‐methyl jasmonate at 96% radiochemical purity. The substrate, (±)‐jasmonic acid, was retained on the Sep Pak so further chromatography was unnecessary. Total synthesis time was 25 min from the end of bombardment (EOB) which included 15 min to generate [11C]methyl iodide using the GE Medical Systems PET Trace MeI system, 5 min for reaction and extraction from the cartridge, and 5 min to reformulate the product for plant administration. An overall radiochemical yield (at EOB) of 17±4.3% was obtained by this process, typically producing 10 mCi of purified radiotracer. A specific activity of 0.5 Ci/µmol was achieved using a short 3 min cyclotron beam to produce the starting 11C. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

11.
The development of a labeling method for secondary amines with [2‐11C]acetone is described since the R2N‐isopropyl moiety is present in many biologically active compounds. The influence of a variety of parameters (e.g. reagents, solvents, temperature, and time) on the reaction outcome is discussed. Under the optimal reaction conditions, [11C]1‐isopropyl‐4‐phenylpiperazine ([11C]iPPP) was synthesized from [2‐11C]acetone and 1‐phenylpiperazine in a decay‐corrected radiochemical yield of 72%. The overall synthesis time, from EOB to HPLC analysis of [11C]iPPP, was 20 min. Specific activity was 142–208 GBq/μmol at the end of synthesis. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

12.
2‐(4‐Methylaminostyryl)‐6‐(2‐[18F]fluoroethoxy)benzoxazole ([18F]BF‐168) was prepared and found to be a potential probe for imaging amyloid‐β. The precursor, a 6‐(2‐tosyloxyethoxy)benzoxazole derivative, was fluorinated with [18F]KF and Kryptofix 222 in acetonitrile, and the crude product purified by semi‐preparative HPLC to give [18F]BF‐168. The radiochemical purity was >95% and the maximum specific activity was 106 TBq/mmol at the end of synthesis. The synthesis time was 110 min from the end of bombardment. 2‐(4‐[N‐methyl‐11C]methylaminostyryl)‐5‐fluorobenzoxazole ([11C]BF‐145) was also prepared from 2‐(4‐aminostyryl)‐5‐fluorobenzoxazole, [11C]MeI and 5 N NaOH in DMSO, and purified by semi‐preparative HPLC. The radiochemical purity was >95% and the specific activity was 40–70 TBq/mmol at the end of synthesis. The synthesis time was 45 min from the end of bombardment. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

13.
The synthesis of a 11C‐labelled methyl stannane, (5‐[11C]methyl‐1‐aza‐5‐stanna‐bicyclo[3.3.3]undecane ( 2 )), and its use in palladium‐mediated Stille reactions to form [11C]C–C bonds are described. Stannane 2 was synthesized from iodo[11C]methane, 5‐chloro‐1‐aza‐5‐stanna‐bicyclo[3.3.3]undecane 1 and butyl lithium in 20–90% decay‐corrected radiochemical yield starting from iodo[11C]methane. Subsequent reaction with a series of substituted aryl and vinyl halides produced the corresponding [11C]methylated products 3–5 in up to 90% decay‐corrected radiochemical yield from the crude 2 . The total synthesis time, including purification, was 25–30 min from end of radionuclide production. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

14.
In this paper is reported a novel reaction scheme for the no‐carrier‐added submicromolar scale radiosynthesis of [S‐methyl‐14C]‐florfenicol that has been newly designed, developed and employed by us successfully. The [14C]‐product was obtained in an overall radiochemical yield of 30% based on [14C]‐methyl iodide taken for the reaction with a radiochemical purity of more than 96%. The specific activity of the product was ~50 mCi (1.85 GBq)/mmol. Chlorosulfonation of compound I was followed by sodium salt formation in situ and it was succeeded by the introduction of [14C]‐methyl group by coupling with [14C]‐CH3I. Subsequently, the oxazolidin‐2‐one protecting group was opened up by a reaction with sulfuric acid in dioxane and later, the amino group was dichloroacetylated with methyl‐2,2‐dichloroacetate in triethylamine to obtain [S‐methyl‐14C]‐florfenicol.  相似文献   

15.
The synthesis of N′4‐[11C]methyl‐ciprofloxacin for pharmacological studies using positron emission tomography is described. The starting material was treated with [11C]methyl iodide at 120°C in DMF for 5 min. After HPLC separation on a C18‐column with water/ethanol as mobile phase, the [11C]methyl labelled compound was produced with a radiochemical yield of at least 25% (end of synthesis from [11C]CO2). Activities from 1.48 to 2.22 GBq (40 to 60 mCi) were obtained 1 h after the irradiation, ready for intravenous injection. The carrier ranged between 0.05 and 0.08 μmol (0.010–0.016 μmol/ml). Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

16.
The 11C‐labelling of the taxane derivative BAY 59‐8862 ( 1 ), a potent anticancer drug, was carried out as a module‐assisted automated multi‐step synthesis procedure. The radiotracer [11C]1 was synthesized by reacting [1‐11C]acetyl chloride ( 6 ) with the lithium salt of the secondary hydroxy group of precursor 3 followed by deprotection. After HPLC purification of the final product [11C]1 , its solid‐phase extraction, formulation and sterile filtration, the decay‐corrected radiochemical yield of [11C]1 was in the range between 12 and 23% (related to [11C]CO2; n=10). The total synthesis time was about 54 min after EOB. The radiochemical purity of [11C]1 was greater than 96% and the chemical purity exceeded 80%. The specific radioactivity was 16.8±4.7 GBq/µmol (n=10) at EOS starting from 80 GBq of [11C]CO2. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

17.
Rhodium‐mediated carbonylation reaction was applied to synthesize diethyl [carbonyl11C]malonate using [11C]carbon monoxide at low concentration. The synthesis was performed starting with ethyl diazoacetate, ethanol and the rhodium complex being made in situ by chloro(1,5‐cyclooctadiene)rhodium(I) dimer ([Rh(cod)Cl]2) and 1,2‐bis(diphenylphosphino)ethane (dppe), and the reaction is assumed to proceed via a ketene intermediate. The isolated radiochemical yield was 20% (75% analytical radiochemical yield) and the trapping efficiency of [11C]carbon monoxide in the order of 85%. The specific radioactivity of this compound was measured at 127 GBq/µmol (7.28 nmol total mass) after 8 µAh bombardment and 35 min synthesis. The corresponding 13C‐labelled compound was synthesized using (13C)carbon monoxide to confirm the position of the carbonyl‐labelled atom by 13C‐NMR. Diethyl [carbonyl11C]malonate was further used in subsequent alkylation step using ethyl iodide and tetrabutylammonium fluoride to obtain diethyl diethyl [carbonyl11C]malonate in 50% analytical radiochemical yield. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

18.
To produce the radioligand [Nmethyl11C]flumazenil at very high specific radioactivity for our small animal imaging studies we have developed procedures for its rapid synthesis, purification and analysis. We have developed ‘micro‐reactor’ apparatus which are assembled from analytical HPLC guard columns packed with stainless steel powder for performing the carbon‐11 methylation reactions. These highly efficient reaction columns enable high radiochemical yields to be obtained with very small amounts of precursor (20–40 µg). The very small amount of reactants used enables the use of small analytical‐sized HPLC columns for the rapid purification of the radioligand. Combining these techniques has enabled us to consistently prepare [Nmethyl11C]flumazenil from [11C]iodomethane with radiochemical yields of 80% (decay corrected). This results in 8–10 GBq of [Nmethyl11C]flumazenil at very high specific radioactivities of 520–600 GBq/µmol at the end‐of‐synthesis. The total preparation time from end‐of‐bombardment of cyclotron‐produced [11C]carbon dioxide to end‐of‐synthesis is 20 min. A quality control method based on very rapid HPLC analysis (completed within 2 min) on a micro‐analytical HPLC column has also being developed to reduce the time from the end‐of‐synthesis to injection for imaging. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

19.
Two positron‐emitting analogues of tyrosine, O‐[11C]methyl‐L ‐tyrosine and O‐[18F]fluoromethyl‐L ‐tyrosine were prepared as new tumor imaging agents. The alkylating agent, [11C]methyl triflate or [18F]fluoromethyl triflate, was simply bubbled through a dimethylsulfoxide solution of L ‐tyrosine disodium salt at room temperature. After subsequent HPLC purification the labeled L ‐tyrosine analogues were obtained in decay‐corrected radiochemical yields of over 50%, based on their corresponding labeling agent, with radiochemical purities always higher than 98%. The quite straightforward preparation, together with the high radiochemical yields achieved, make both these syntheses suitable for routine production. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

20.
[11C]Hydroxyurea has been successfully labelled using [11C]carbon monoxide at low concentration. The decay‐corrected radiochemical yield was 38±3%, and the trapping efficiency of [11C]carbon monoxide in the order of 90±5%. This synthesis was performed by a rhodium‐mediated carbonylation reaction starting with azidotrimethylsilane and the rhodium complex being made in situ by chloro(1,5‐cyclooctadiene)rhodium(I) dimer ([Rh(cod)Cl]2) and 1,2‐bis(diphenylphosphino)ethane (dppe). (13C)Hydroxyurea was synthesized using this method and the position of the labelling was confirmed by 13C‐NMR. In order to perform accurate LC–MS identification, the derivative 1‐hydroxy‐3‐phenyl[11C]urea was synthesized in a 35±4% decay‐corrected radiochemical yield. After 13 µA h bombardment and 21 min synthesis, 1.6 GBq of pure 1‐hydroxy‐3‐phenyl[11C]urea was collected starting from 6.75 GBq of [11C]carbon monoxide and the specific radioactivity of this compound was in the order of 686 GBq/µmol (3.47 nmol total mass). [11C]Hydroxyurea could be used in conjunction with PET to evaluate the uptake of this anticancer agent into tumour tissue in individual patients. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号