首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到2条相似文献,搜索用时 0 毫秒
1.
Summary: Two metallocene EPDMs with the same weight fraction of ethylene but differing in diene content were crosslinked, either by dicumyl peroxide (DCP) or β‐radiation. The effect of different diene and propylene content on the molecular structure and the mechanical properties once the materials were crosslinked was studied. The final gel content was very high due to the large level of unsaturations. The crosslinking process was monitored by FTIR spectroscopy by following the decay of unsaturations and the variation of the carbonyl groups that are related to the oxidation grade. It was found that β‐radiation crosslinked samples exhibited a lower oxidation grade than those crosslinked by DCP. An oscillant disc rheometer was employed to follow the evolution of the rheological properties, the scorch time, and the time corresponding to full cure during the crosslinking reaction with DCP. In addition, in order to characterize the state of cure we have studied the rheological properties in shear employing a dynamic parallel plate geometry. These results were correlated with those obtained from the molecular characterization of the soluble fraction by size exclusion chromatography. The experiments indicate that, at low irradiation doses, there is a high rate of chain scission reactions that cause an important decrease in storage modulus. Whereas, at high irradiation doses the rate of chain scission reactions diminishes, thus the storage modulus increases but it still remains at lower levels than those corresponding to the original terpolymers. The tensile properties, hardness (Shore A) and compression set tests also suggest the presence of chain scission reactions.

Storage modulus (G′) versus frequency for a β‐irradiated sample.  相似文献   


2.
A variety of differently structured PEG‐based polymers can form physically cross‐linked PEG hydrogels with α‐cyclodextrin. The polymer structures strongly influence the properties of the hydrogel and its formation. Four different copolymers of methoxy PEG methacrylate and methacrylic acid are used together with α‐cyclodextrin to study hydrogel formation speed and gel strength. The hydrogels are formed within 1–25 min, and the formation process is examined in situ by dynamic light scattering. The gel formation time is pH dependent due to the methacrylic acid present in the polymers. The gel strength examined by texture analyzer also depends on the composition and pH. With prior mechanical destruction, all hydrogels are dissolvable in an excess of water, being a useful feature for an in vivo usage. By analyzing the structures of the hydrogels with confocal light microscopy (laser scanning confocal microscopy) and scanning electron microscope (SEM) after freeze etching, the different hydrogel structures can be observed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号