首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 718 毫秒
1.
With the aim to develop and evaluate new ligands for depicting the µ‐opioid receptor with positron emission tomography, the 18F‐fluoroalkyl esters of carfentanil, 3‐carboxy‐(2‐[18F]fluoroethyl)fentanyl, (2‐[18F]fluoroethyl‐carfentanil) and 3‐carboxy‐(3‐[18F]fluoropropyl)fentanyl (3‐[18F]fluoropropyl‐carfentanil) were prepared by a two‐step radiosynthesis. Reacting carfentanil carboxylate sodium salt, added 0.96 eqv. of tetrabutyl ammonium hydroxide (TBAH), with no‐carrier‐added (n.c.a.) 2‐[18F]fluoroethyltosylate for 20 min at 150°C in dimethyl formamide (DMF) provided 2‐[18F]fluoroethyl carfentanil in an isolated radiochemical yield (RCY) of 36 ± 8%, a specific activity (SA) of 35 ± 5 TBq/mmol (n=4) within a synthesis time of ~100 min. Similarly, 3‐[18F]fluoropropyl carfentanil could be obtained by reacting the carfentanil TBA/Na salt with 3‐[18F]fluoropropyl iodide at 160°C in DMF (isolated RCY=6 ± 2%; ~100 min, SA=27 ± 5 TBq/mmol, n=4). The developed methods allow the production of the two 18F‐labeled carfentanil derivatives in amounts and specific activities necessary and relevant for a detailed preclinical evaluation of these new potential µ‐opioid receptor ligands in vitro and in animal models. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

2.
3.
[11C]MENET, a promising norepinephrine transporter imaging agent, was prepared by Suzuki cross coupling of 1 mg N‐t‐Boc pinacolborate precursor with [11C]CH3I in DMF using palladium complex generated in situ from Pd2(dba)3 and (o‐CH3C6H4)3P together with K2CO3 as the co‐catalyst, followed by deprotection with trifluoroacetic acid. This improved radiolabeling method provided [11C]MENET in high radiochemical yield at end of synthesis (EOS, 51 ± 3%, decay‐corrected from end of 11CH3I synthesis, n = 6), moderate specific activity (1.5–1.9 Ci/µmol at EOS), and high radiochemical (>98%) and chemical purity (>98%) in a synthesis time of 60 ± 5 min from the end of bombardment. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

4.
The 11C‐labelling of the taxane derivative BAY 59‐8862 ( 1 ), a potent anticancer drug, was carried out as a module‐assisted automated multi‐step synthesis procedure. The radiotracer [11C]1 was synthesized by reacting [1‐11C]acetyl chloride ( 6 ) with the lithium salt of the secondary hydroxy group of precursor 3 followed by deprotection. After HPLC purification of the final product [11C]1 , its solid‐phase extraction, formulation and sterile filtration, the decay‐corrected radiochemical yield of [11C]1 was in the range between 12 and 23% (related to [11C]CO2; n=10). The total synthesis time was about 54 min after EOB. The radiochemical purity of [11C]1 was greater than 96% and the chemical purity exceeded 80%. The specific radioactivity was 16.8±4.7 GBq/µmol (n=10) at EOS starting from 80 GBq of [11C]CO2. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

5.
(R)‐(?)‐2‐[11C]Methoxy‐Nn‐propylnorapomorphine ([11C]MNPA ([11C]2)) is an agonist radioligand of interest for imaging D2/D3 receptors in vivo. Here we sought to develop an improved radiosynthesis of this radioligand. Reference 2 was synthesized in nine steps with an overall yield of about 5%, starting from codeine. Trimethylsilyldiazomethane proved to be a practical improvement in comparison to diazomethane in the penultimate methylation step. A protected precursor for radiolabeling ((R)‐(?)‐2‐hydroxy‐10,11‐acetonide‐Nn‐propylnoraporphine, 4) was prepared from (R)‐(?)‐2‐hydroxy‐Nn‐propylnorapomorphine (1) in 30% yield. [11C]2 was prepared from 4 via a two‐step one‐pot radiosynthesis. The first step, methylation of 4 with [11C]methyl triflate, occurred in quantitative radiochemical yield. The second step, deprotection of the catechol moiety with HCl and heat, yielded 60–90% of [11C]2 giving an overall incorporation yield from [11C]methyl triflate of 60–90%. In a typical run more than 1 GBq of [11C]2, was produced from carbon‐11 generated from a 10‐min proton irradiation (16 MeV; 35 µA) of nitrogen–hydrogen target gas. The radiochemical purity of [11C]2 was > 99% and specific radioactivity at the time of injection was 901±342 GBq/µmol (n=10). The total synthesis time was 35–38 min from the end of radionuclide production. The identity of [11C]2 was confirmed by comparing its LC‐MS/MS spectrum with those of reference 2 and (R)‐(?)‐10‐methoxy‐2,11‐dihydroxy‐Nn‐propylnoraporphine. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

6.
We synthesized 2'‐deoxy‐2'‐[18F]fluorouridine ( 7 ) as a radiotracer for positron emission tomography from a new nosylate precursor ( 6 ). This new precursor was synthesized from uridine in four steps. The overall synthetic yield was 9.4% and we have high stability of >98% purity up to 6 months at 4°C. The optimal manual [18F]fluorination conditions were 30 mg of the precursor 6 in 500 µl of acetonitrile at 145°C for 15 min with 370 MBq of [18F]fluoride. The [18F]fluorination yield was 76.5±2.7% (n = 3). After hydrolysis of protecting groups with 1 N HCl and purification by HPLC, the overall radiochemical yield and purity were 26.5±1.4% and 98.2±2.5%, respectively. The preparation time was 70.0±10.5 min (n = 3 for each result). We also developed an automated method with a radiochemical yield and purity of 24.0±2.8 and 98.0±1.5% (n = 10) using a GE TracerLab MX chemistry module. This new nosylate precursor for 2'‐deoxy‐2'‐[18F]fluorouridine synthesis showed higher radiochemical yields and reproducibility than previous methods. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

7.
Carbon‐11‐labelled (S)‐5‐methoxymethyl‐3‐[6‐(4,4,4‐trifluorobutoxy)benzo[d]isoxazol‐3‐yl]oxazolidin‐2‐[11C]‐one ([11C]SL25.1188), a promising reversibly binding radiotracer for imaging central monoamine oxidase B, was rapidly prepared via an intramolecular cyclization reaction in an automated one‐pot procedure directly from [11C]CO2, thereby precluding the use of [11C]COCl2. Formulated [11C]SL25.1188 was isolated in 12 ± 1% uncorrected radiochemical yield, based on starting [11C]CO2, with a specific activity of 37 ± 2 GBq/µmol at the end of synthesis (30 min; n = 3). Radiochemical and enantiomeric purities were both >99%. The methodology described herein offers an efficient production of [11C]SL25.1188 at ambient temperature and is suitable for human imaging studies.  相似文献   

8.
4‐[3‐[4‐(2‐Methoxyphenyl)piperazin‐1‐yl]propoxy]‐4‐aza‐tricyclo[5.2.1.02,6]dec‐8‐ene‐3,5‐dione (4), a potent and selective 5‐HT1A agonist, was labeled by 11C‐methylation of the corresponding desmethyl analogue 3 with 11C‐methyl triflate. The precursor molecule 3 was synthesized from commercially available endoN‐hydroxy‐5‐norbornene‐2,3‐dicarboximide in two steps with an overall yield of 40%. Radiosynthesis of 11C‐4 was achieved in 35 min in 20±5% yield (n=6) at the end of synthesis with a specific activity of 2600±250 Ci/mmol. In vivo positron emission tomography (PET) studies in baboon revealed rapid uptake of the tracer into the brain. However, lack of specific binding indicates that 11C‐4 is not useful as a 5‐HT1A agonist PET ligand for clinical studies. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

9.
Positron emission tomography has increased the demand for new carbon‐11 radiolabeled tracers and building blocks. A promising radiolabeling synthon is [11C]benzyl iodide ([11C]BnI), because the benzyl group is a widely present functionality in biologically active compounds. Unfortunately, synthesis of [11C]BnI has received little attention, resulting in limited application. Therefore, we investigated the synthesis in order to significantly improve, automate, and apply it for labeling of the dopamine D2 antagonist [11C]clebopride as a proof of concept. [11C]BnI was synthesized from [11C]CO2 via a Grignard reaction and purified prior the reaction with desbenzyl clebopride. According to a one‐pot procedure, [11C]BnI was synthesized in 11 min from [11C]CO2 with high yield, purity, and specific activity, 52 ± 3% (end of the cyclotron bombardment), 95 ± 3%, and 123 ± 17 GBq/µmol (end of the synthesis), respectively. Changes in the [11C]BnI synthesis are reduced amounts of reagents, a lower temperature in the Grignard reaction, and the introduction of a solid‐phase intermediate purification. [11C]Clebopride was synthesized within 28 min from [11C]CO2 in an isolated decay‐corrected yield of 11 ± 3% (end of the cyclotron bombardment) with a purity of >98% and specific activity (SA) of 54 ± 4 GBq/µmol (n = 3) at the end of the synthesis. Conversion of [11C]BnI to product was 82 ± 11%. The reliable synthesis of [11C]BnI allows the broad application of this synthon in positron emission tomography radiopharmaceutical development. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

10.
A fast, clean and reproducible method for the manufacture of the radiotracer L‐[methyl‐11C]methionine is reported. The reaction at room temperature of the non‐radioactive precursor L‐homocysteine (1 mg solution in ethanol/water 50/50) with [11C]CH3I in an HPLC loop led to the formation of the desired radiotracer with a high radiochemical yield (38.4±4.1% end of synthesis) in a short production time (12 min). Radiochemical purity of the final radiotracer was 99.9±0.05%. Specific activities in the range 11–45 GBq/µmol were obtained. The presence of the undesired enantiomer (D‐[methyl‐11C]methionine) was not detected in any of the cases. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

11.
1,1′‐Methylene‐di‐(2‐naphthol) (ST1859), a candidate drug for the treatment of Alzheimer's disease, was radiolabelled with carbon‐11 with the aim to perform PET microdosing studies in humans. The radiosynthesis was automated in a commercial synthesis module (Nuclear Interface PET tracer synthesizer) and proceeded via reaction of [11C]formaldehyde with 2‐naphthol. [11C]formaldehyde was prepared by catalytic dehydrogenation of [11C]methanol (conversion yield: 48±11% (n = 19)) employing a recently developed silver‐containing ceramic catalyst. Starting from 69±3 GBq of [11C]carbon dioxide (n = 19), 4±1 GBq of [11C]ST1859 (decay‐corrected to the end of bombardment), readily formulated for intravenous administration, could be obtained in an average synthesis time of 38 min. The specific radioactivity of [11C]ST1859 at the end of synthesis exceeded 32 GBq/µmol. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

12.
In the present study, 2‐methoxyestradiol‐3,17β‐O,O‐bissulfamate (1), a known angiogenesis inhibitor, was prepared in a radiolabeled form by 11C‐methylation of 2‐hydroxyestradiol‐3,17β‐O,O‐bis(N‐trityl)sulfamate (6) followed by detritylation. Synthesis of precursor 6 required a rather long step because of the presence of two sulfamoyl groups. The decay‐corrected radiochemical yield of [11C]1 was 19 ± 2% based on [11C]CH3I, and the specific activity was 34–39 GBq/µmol. Although 1 is known to significantly inhibit the proliferation of human umbilical vascular endothelial cells (HUVECs), its radiolabeled form, [11C]1 was not avidly taken up by HUVECs, and the uptake increased slightly in a time‐dependent manner (156% at 60 min relative to a value of 100% at 5 min). These results suggest that further studies are warranted to determine the molecular target for [11C]1. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

13.
2‐(4‐Methoxyphenyl)‐N‐(4‐methylbenzyl)‐N‐(1‐methylpiperidin‐4‐yl)acetamide (AC90179, 4 ), a highly potent and selective competitive 5‐HT2A antagonist, was labeled by [11C]‐methylation of the corresponding desmethyl analogue 5 with [11C]methyl triflate. The precursor molecule 5 for radiolabeling was synthesized from p‐tolylmethylamine in three steps with 46% overall yield. [11C]AC90179 was synthesized in 30 min (30 ± 5% yield, EOS) with a specific activity of 4500 ± 500 Ci/mmol and >99% chemical and radiochemical purities. Positron emission tomography studies in anesthetized baboon revealed that [11C] 4 Penetrates the blood–brain barrier (BBB) with a rapid influx and efflux of the tracer in all brain regions. Due to lack of tracer retention or specific binding, [11C] 4 cannot be used as PET ligand for imaging 5‐HT2A receptors. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

14.
We have synthesized N‐(3‐chloro‐4‐fluorophenyl)‐7‐[11C]methoxy‐6‐[3‐(morpholin‐4‐yl)propoxy]quinazolin‐4‐amine, [11C]gefitinib ([11C]Iressa), a high affinity (IC50 = 2 nM) inhibitor of the epidermal growth factor receptor tyrosine kinase (EGFR‐TK), in solution and in a semi‐automated stainless loop methylation system using [11C]methyl triflate. The trapping efficiency for [11C]methyl triflate in solution was higher than in the solvent film generated in the loop system, thus the overall radiochemical yield was considerably higher for the synthesis in solution. The average radiochemical yield for the solution chemistry was 15% with an average specific radioactivity of approximately 9000 mCi/µmole at EOS in one step from its corresponding desmethyl phenol precursor. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

15.
(E)‐3‐(Pyridin‐2‐yl ethynyl)cyclohex‐2‐enone O‐(3‐(2‐[18F]‐fluoroethoxy)propyl) oxime ([18F]‐(E)‐PSS232, [18F] 2a ) is a recently developed radiotracer that can be used to visualize metabotropic glutamate receptor subtype 5 (mGlu5) in vivo. The mGlu5 has become an attractive therapeutic and diagnostic target owing to its role in many neuropsychiatric disorders. Several carbon‐11‐labeled and fluorine‐18‐labeled radiotracers have been developed to measure mGlu5 receptor occupancy in the human brain. The radiotracer [18F] 2a , which is used as an analogue for [11C]ABP688 ([11C] 1 ) and has a longer physical half‐life, is a selective radiotracer that exhibits high binding affinity for mGlu5. Herein, we report the fully automated radiosynthesis of [18F] 2a using a commercial GE TRACERlab? FX‐FN synthesizer for routine production and distribution to nearby satellite clinics. Nucleophilic substitution of the corresponding mesylate precursor with cyclotron‐produced [18F]fluoride ion at 100°C in dimethyl sulfoxide (DMSO), followed by high‐performance liquid chromatography (HPLC) purification and formulation, readily provided [18F] 2a with a radiochemical yield of 40 ± 2% (decay corrected, n = 5) at the end of synthesis. Radiochemical purity for the [18F]‐(E)‐conformer was greater than 95%. Molar activity was determined to be 63.6 ± 9.6 GBq/μmol (n = 5), and the overall synthesis time was 70 minutes.  相似文献   

16.
(±) 3‐(6‐Nitro‐2‐quinolinyl)‐[9‐methyl‐11C]‐3,9‐diazabicyclo‐[4.2.1]‐nonane ([11C‐methyl]NS 4194), a selective serotonin reuptake inhibitor (SSRI), was synthesised within 35 min after end of bombardment with a radiochemical purity >98%. It had a decay‐corrected radiochemical yield of 7% after preparative HPLC, and a specific radioactivity around 37 GBq/μmol (EOS). A typical production starting with 40 GBq [11C]CO2 yielded 800 MBq of radiolabelled [11C‐methyl]NS 4194 in a formulated solution. The synthesis of the precursor to [11C‐methyl]NS 4194, (±) 9‐H‐3‐[6‐nitro‐(2‐quinolinyl)]‐3,9‐diazabicyclo‐[4.2.1]‐nonane, as well as the unlabelled analogue (±) 9‐methyl 3‐[6‐nitro‐(2‐quinolinyl)]‐3,9‐diazabicyclo‐[4.2.1]‐nonane (NS 4194), are also described. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

17.
We have developed an efficient synthesis method for the rapid and high‐yield automated synthesis of 4‐(2′‐methoxyphenyl)‐1‐[2′‐(N‐2″‐pyridinyl)‐p‐[18F]fluorobenzamido]ethylpiperazine (p‐[18F]MPPF). No‐carrier‐added [18F]F? was trapped on a small QMA cartridge and eluted with 70% MeCN(aq) (0.4 mL) containing Kryptofix 222 (2.3 mg) and K2CO3 (0.7 mg). The nucleophilic [18F]fluorination was performed with 3 mg of the nitro‐precursor in DMSO (0.4 mL) at 190 °C for 20 min, followed by the preparative HPLC purification (column: COSMOSIL Cholester, Nacalai Tesque, Kyoto, Japan; mobile phase: MeCN/25 mm AcONH4/AcOH = 200/300/0.15; flow rate: 6.0 mL/min) to afford p‐[18F]MPPF (retention time = 9.5 min). p‐[18F]MPPF was obtained automatically with a radiochemical yield of 38.6 ± 5.0% (decay corrected, n = 5), a specific activity of 214.3 ± 21.1 GBq/µmol, and a radiochemical purity of >99% within a total synthesis time of about 55 min. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

18.
[11C]Hydroxyurea has been successfully labelled using [11C]carbon monoxide at low concentration. The decay‐corrected radiochemical yield was 38±3%, and the trapping efficiency of [11C]carbon monoxide in the order of 90±5%. This synthesis was performed by a rhodium‐mediated carbonylation reaction starting with azidotrimethylsilane and the rhodium complex being made in situ by chloro(1,5‐cyclooctadiene)rhodium(I) dimer ([Rh(cod)Cl]2) and 1,2‐bis(diphenylphosphino)ethane (dppe). (13C)Hydroxyurea was synthesized using this method and the position of the labelling was confirmed by 13C‐NMR. In order to perform accurate LC–MS identification, the derivative 1‐hydroxy‐3‐phenyl[11C]urea was synthesized in a 35±4% decay‐corrected radiochemical yield. After 13 µA h bombardment and 21 min synthesis, 1.6 GBq of pure 1‐hydroxy‐3‐phenyl[11C]urea was collected starting from 6.75 GBq of [11C]carbon monoxide and the specific radioactivity of this compound was in the order of 686 GBq/µmol (3.47 nmol total mass). [11C]Hydroxyurea could be used in conjunction with PET to evaluate the uptake of this anticancer agent into tumour tissue in individual patients. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

19.
We demonstrated the synthesis of carbon‐11 labeled 17‐α‐hydroxy‐11‐β‐/4‐/[methyl]‐[1‐methylethyl]‐aminophenyl/‐17α‐[prop‐1‐ynyl]esta‐4‐9‐diene‐3‐one (RU40555), a selective glucocorticoid receptor (GR) antagonist, and examined the in vivo profile of [11C]RU40555. [11C]RU40555 was synthesized by direct N‐methylation with [11C]CH3OTf at 60°C for 5 min and an injectable solution of [11C]RU40555 was obtained in 31 min at the end of bombardment. The decay‐corrected radiochemical yield was 19%, the specific radioactivity was 57.5±14.0 GBq/µmol, and the radiochemical purity was more than 99% as determined by HPLC. In rat experiments, the effects of adrenalectomy (ADX) on brain accumulation of [11C]RU40555 were examined. ADX significantly decreased plasma corticosterone levels, and significantly increased brain accumulation of [11C]RU40555. We succeeded in developing a rapid automated synthesis method for [11C]RU40555, a GR antagonist, and showed [11C]RU40555 had a potential as a PET tracer for mapping GR. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

20.
N‐hydroxyamidines (amidoximes) may be used in prodrug technology in improving oral bioavailability of drugs containing amidino functional groups. In the body, amidoximes are reduced quickly to amidines by enzymes that are present in several organs. Ximelagatran is a benzamidoxime and ethyl ester prodrug of melagatran, which is a thrombin inhibitor. Our aim was to develop a fast and efficient labeling route for the synthesis of [11C]ximelagatran ([11C]3) with a label in a metabolically stable position. [11C]3 was synthesized via a two‐step synthesis sequence, starting from palladium catalyzed [11C]cyanation of its corresponding bromide precursor (2‐[2‐(4‐bromo‐benzylcarbamoyl)‐azetidin‐1‐yl]‐1‐cyclohexyl‐2‐oxo‐ethyl amino‐acetic acid ethyl ester) (1), followed by a reaction with hydroxylamine. [11C]3 was synthesized with 27±17% total overall decay corrected yield (specific radioactivity of 2360±165 Ci/mmol at EOS), with a total synthesis time of 45 min. A fast and efficient labeling route for the synthesis of [11C]3 was developed. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号