首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 294 毫秒
1.
Transforming growth factor (TGF)-beta1 plays a central role in wound healing. Wounds treated with neutralizing antibody to TGF-beta1 have a lower inflammatory response, reduced early extracellular matrix deposition, and reduced later cutaneous scarring, indicating the importance of local tissue TGF-beta1. By contrast, increasing the local, tissue levels of TGF-beta1 increases the early extracellular matrix deposition but does not alter scar formation. Increased levels of plasma TGF-beta1 correlate with increased fibrogenesis in the lung, kidneys, and liver. The aim of the present study was to investigate the role of elevated systemic levels of TGF-beta1 on wound healing. We used transgenic mice that express high levels of active TGF-beta1 and have elevated plasma levels of TGF-beta1 and wild-type mice of the same strain as controls. Incisional wounds and subcutaneously implanted polyvinyl alcohol (PVA) sponges were analyzed. Surprisingly, cutaneous wounds in transgenic, TGF-beta1-overexpressing mice healed with reduced scarring accompanied by an increase in the immunostaining for TGF-beta3 and TGF-beta-receptor RII and a decrease in immunostaining for TGF-beta1 compared with wounds in control mice. By contrast, the PVA sponges showed the opposite response, with PVA sponges from transgenic mice demonstrating an enhanced rate of cellular influx and matrix deposition into the sponges accompanied by an increase in the immunostaining for all three TGF-beta isoforms and their receptors compared with PVA sponges from control mice. Together, the data demonstrate that increased circulating levels of TGF-beta1 do not always result in increased expression or activity in selected target tissues such as the skin. The two wound models, subcutaneously implanted PVA sponges and cutaneous incisional wounds, differ significantly in terms of host response patterns. Finally, the data reinforce our previous observations that the relative ratios of the three TGF-beta isoforms is critical for control of scarring.  相似文献   

2.
Recombinant platelet-derived growth factor (BB homodimer, rPDGF-BB), transforming growth factor beta 1 (rTGF-beta 1), and basic fibroblast growth factor (rbFGF) can accelerate healing of soft tissues. However, little information is available characterizing the components of wound matrix induced by these growth factors and the molecular mechanisms underlying accelerated repair and wound maturation. In this study, the composition, quantity, and rate of extracellular matrix deposition within growth factor-treated lapine ear excisional wounds were analyzed at different stages of healing using specific histochemical and immunohistochemical stains, coupled with image analysis techniques. Single application of optimal concentrations of each growth factor accelerated normal healing by 30% (P less than 0.0003); rPDGF-BB markedly augmented early glycosaminoglycan (GAG) and fibronectin deposition, but induced significantly greater levels of collagen later in the repair process, compared with untreated wounds rTGF-beta 1 treatment led to rapidly enhanced collagen synthesis and maturation, without increased GAG deposition. In contrast, rbFGF treatment induced a predominantly angiogenic response in wounds, with a marked increase in endothelia and neovessels (P less than 0.0001), and increased wound collagenolytic activity (P less than 0.03). rbFGF-treated wounds did not evolve into collagen-containing scars and continued to accumulate only provisional matrix well past wound closure. These results provide new evidence that growth factors influence wound repair via different mechanisms: 1) rPDGF-BB accelerates deposition of provisional wound matrix; 2) rTGF-beta 1 accelerates deposition and maturation of collagen; and 3) rbFGF induces a profound monocellular angiogenic response which may lead to a marked delay in wound maturation, and the possible loss of the normal signal(s) required to stop repair. These results suggest that specific growth factors may selectively regulate components of the repair response by differing mechanisms, offering the potential for targeted therapeutic intervention.  相似文献   

3.
Transforming growth factor (TGF)-beta regulates many aspects of wound repair including inflammation, chemotaxis, and deposition of extracellular matrix. We previously showed that epithelialization of incisional wounds is accelerated in mice null for Smad3, a key cytoplasmic mediator of TGF-beta signaling. Here, we investigated the effects of loss of Smad3 on healing of wounds in skin previously exposed to ionizing radiation, in which scarring fibrosis complicates healing. Cutaneous wounds made in Smad3-null mice 6 weeks after irradiation showed decreased wound widths, enhanced epithelialization, and reduced numbers of neutrophils and myofibroblasts compared to wounds in irradiated wild-type littermates. Differences in breaking strength of wild-type and Smad3-null wounds were not significant. As shown previously for neutrophils, chemotaxis of primary dermal fibroblasts to TGF-beta required Smad3, but differentiation of fibroblasts to myofibroblasts by TGF-beta was independent of Smad3. Previous irradiation-enhanced induction of connective tissue growth factor mRNA in wild-type, but not Smad3-null fibroblasts, suggested that this may contribute to the heightened scarring in irradiated wild-type skin as demonstrated by Picrosirius red staining. Overall, the data suggest that attenuation of Smad3 signaling might improve the healing of wounds in previously irradiated skin commensurate with an inhibition of fibrosis.  相似文献   

4.
TGF-beta modulates events of normal wound healing through multiple pathways that influence cell infiltration, proliferation, angiogenesis, extracellular matrix synthesis and remodeling. The effects of topically applied TGF-beta 1 on wound healing in two models of healing were evaluated when the healing response was impaired by the administration of methylprednisolone to rats or rabbits. TGF-beta 1 increased the healing of linear incision wounds on rats, as measured by breaking strength, to that of normal rats. Full thickness open wounds were also created on the inner ears of rabbits to simulate a non-contracting wound with limited blood supply. Healing was further impaired by the administration of methylprednisolone. The single application of TGF-beta 1 improved the healing of open wounds. TGF-beta 1 stimulated increased granulation tissue formation, as well as reepithelialization. The amount of granulation tissue and epithelialization were similar to wounds from normal-healing control rabbits. The delayed healing caused by methylprednisolone permitted the evaluation of multiple applications of TGF-beta 1 to wounds. Two applications of TGF-beta 1 spaced 7 days apart further improved the healing response when compared to a single application. Thus, single or multiple topical applications of TGF-beta 1 reversed impaired healing conditions secondary to methylprednisolone when used on incisional or open wounds. These observations support the hypothesis that growth factors, such as TGF-beta 1, may be useful as accelerators of wound repair in patients with impaired healing conditions.  相似文献   

5.
Transforming growth factor-beta 1 (TGF-beta 1 and recombinant platelet-derived growth factor-BB (rPDGF-BB) promoted an extensive, dose-dependent development of fibrous connective tissue when continuously delivered for 8 days by mini-osmotic pumps implanted subcutaneously in adult guinea pigs. Biochemical analyses demonstrated that TGF-beta 1 and rPDGF-BB stimulated dose-dependent increases in the dry weight, and protein, DNA, collagen, and glycosaminoglycan (GAG) contents of the fibrous connective tissue capsule that enveloped the pumps. The GAG/DNA mass ratio was markedly elevated by TGF-beta 1, but the collagen/DNA, protein/DNA, and collagen/protein ratios were not significantly increased. In contrast, rPDGF-BB generally decreased these mass ratios. Histological analyses suggested that this was due to the fact that rPDGF-BB induced a very cellular response with a marked influx of neutrophils and fibroblasts. TGF-beta 1 induced significantly less cellular response, which consisted primarily fibroblasts and macrophages. These results indicated that rPDGF-BB and TGF-beta 1 induced connective tissue deposition in vivo in a dose-dependent fashion, although the cellular nature of the responses as well as the structural composition of the extracellular matrices were clearly distinguishable between the two growth factors.  相似文献   

6.
Conditioned medium from adipose-derived stem cells (ADSCs) stimulates both collagen synthesis and migration of dermal fibroblasts. However, it is still unknown whether conditioned media from tumor growth factor (TGF)-β1-treated ADSCs (TGF-β1-treated ADSCs-CM) induces increased expression of type I collagen, matrix metalloproteinase-1 (MMP-1), and migration as well as cell cycle regulatory proteins in fibroblasts, compared to non-treated ADSCs-CM. Our data showed that TGF-β1-treated ADSCs-CM promoted effectively the proliferation and migration of human skin fibroblasts, compared to non-treated ADSCs-CM. In addition the expression of MMP-1 were markedly increased by treatment of TGF-β1-treated ADSCs-CM in fibroblasts, compared to non-treated ADSCs-CM. Expression of type I collagen protein were slightly increased by treatment of TGF-β1-treated ADSCs-CM in fibroblasts. The expression of cell cycle regulators of G1/S phase transition were not markedly altered by treatment of TGF-β1-treated ADSCs-CM. Finally, artificial wounds were made using a 4-mm punch biopsy in hairless mice and TGF-β1-treated ADSCs-CM were injected into the wound area. The injection of TGF-β1-treated ADSCs-CM promoted the wound healing process in hairless mice. Taken together, our data indicated that TGF-β1-treated ADSCs-CM induced up-regulation of type I collagen and MMP-1, promoted the migration of skin fibroblasts, and thereby promoted the wound healing process in vivo. Our data indicate that TGF-β1-treated ADSCs-CM will be a component for a wound healing accelerating agent.  相似文献   

7.
Gingival overgrowth is characterized by excess extracellular matrix accumulation and elevated levels of cytokines, including transforming growth factor-beta1 (TGF-beta1). The functional relationships between altered cytokine levels and extracellular matrix accumulation have not been extensively investigated in gingival cells and tissues. Lysyl oxidase catalyzes the final known enzymatic step required for cross-linking collagen and elastin in the synthesis of a functional extracellular matrix. This study investigated the regulation by TGF-beta1 of lysyl oxidase and its collagen and elastin substrates in early passage human gingival fibroblasts. In addition, TGF-beta1 regulation of connective tissue growth factor (CTGF) was assessed in human gingival cells and tissues. The results show that TGF-beta1 increases lysyl oxidase enzyme activity and mRNA levels for lysyl oxidase and alpha-1-type I collagen, but not elastin, in a dose- and time-dependent manner. Maximal stimulation of lysyl oxidase activity and mRNA levels for both lysyl oxidase and collagen occurs after 48 hours of treatment of gingival fibroblastic cells with 400 pM of TGF-beta1. This study shows for the first time that CTGF mRNA and protein are strongly and rapidly induced by TGF-beta1 in human gingival fibroblasts. Exogenous addition of 1 to 50 ng/ml CTGF to gingival fibroblasts stimulates production of lysyl oxidase enzyme activity up to 1.5-fold after 48 hours, and 50 ng/ml CTGF stimulated insoluble collagen accumulation 1.5- to 2.0-fold after 4, 11, and 18 days of treatment. It is interesting to note that the addition of CTGF-blocking antibodies in the presence of TGF-beta did not block TGF-beta stimulation of collagen mRNA levels. Thus, although CTGF itself contributes to increased insoluble collagenous extracellular matrix accumulation, CTGF does not mediate all of the effects of TGF-beta1 on stimulation of collagen mRNA levels in human gingival fibroblasts. Immunohistochemistry studies of gingival overgrowth tissue samples indicate for the first time detectable levels of CTGF protein in Dilantin-induced hyperplasia tissues also positive for TGF-beta1. CTGF was not found in TGF-beta1-negative samples. In addition, extracellular lysyl oxidase protein was detected in vivo. Taken together, these studies support mostly independent roles for TGF-beta1 and CTGF in stimulating collagenous extracellular matrix accumulation in human gingival fibroblasts and tissues.  相似文献   

8.
Adverse effects of wound healing, such as excessive scar tissue formation, wound contraction, or nonhealing wounds represent a major clinical issue in today's healthcare. Transforming growth factor (TGF)-beta3 has specifically been implicated in wound healing. Our hypothesis was that local administration of TGF-beta3 to excisional dermal wounds would diminish wound contraction and scar formation. Microtextured wound covers, containing different concentrations of TGF-beta3, were placed onto full-thickness excisional skin wounds in guinea pigs. Tattooed reference marks were used to quantify wound contraction. Sixty-four male guinea pigs in four study groups (5 ng TGF-beta3, 50 ng TGF-beta3, no growth factor, sham wound) were followed for up to 6 weeks. We analyzed 19 different parameters of wound healing. Results showed that, in some instances, the 50-ng TGF-beta3 group gave less contraction, whereas the 5-ng TGF-beta3 group gave more contraction. These differences confirm that TGF-beta3 has an optimum working concentration, and suggest this concentration to be closer to 50 ng than to 5 ng TGF-beta3. However, only very few significant differences occurred, and thus we conclude that the clinical relevance of our findings is negligible. Earlier studies, reporting clinically improved wound healing by TGF-beta3, could therefore not be confirmed by this study.  相似文献   

9.
Culturing cells in 3-dimensional (3D) systems is important in tissue engineering and in fundamental studies of cellular mechanisms that are sensitive or specific to the 3D environment. To guide the engineering of artificial vocal fold lamina propria tissue, we developed 3D cultures containing human vocal fold fibroblasts (hVFFs) dispersed in a synthetic peptide hydrogel matrix. Growth factors were added to the culture to examine their influence on extracellular matrix (ECM) synthesis, cell proliferation, and matrix contraction. The hVFF-hydrogel constructs were treated with transforming growth factor-beta 1 (TGF-beta1), basic fibroblast growth factor (bFGF), or hepatocyte growth factor (HGF), and the culture was maintained for 21 days. TGF-beta1 induced matrix contraction and enhanced collagen and sulfated glycosaminoglycan production, bFGF effectively increased cell proliferation, and HGF stimulated synthesis of hyaluronic acid and elastin with less collagen accumulation than other conditions. Of the growth factors tested, HGF appears to be most useful for stimulating essential tissue components for restoring vocal fold pliability. The results also suggest that multiple growth factors might be employed sequentially or in combination to program the makeup of cell-hydrogel constructs for vocal fold tissue repair.  相似文献   

10.
The pathology of chronic dermal ulcers is characterized by excessive proteolytic activity which degrades extracellular matrix. The transforming growth factor-beta (TGF-beta) has been identified as an important component of wound healing. Recent developments in molecular therapy offer exciting prospects for the modulation of wound healing, specifically those targeting TGF-beta. We investigated the effect of TGF-beta antisense oligonucleotides on the mRNA expression of matrix metalloproteinases in cultured human keratinocytes, fibroblasts and endothelial cells using multiplex RT-PCR. The treatment of keratinocytes and fibroblasts with TGF-beta antisense oligonucleotides resulted in a significant decrease of expression of mRNA of MMP-1 and MMP-9 compared to controls. Accordingly, a decreased expression of MMP-1 mRNA in endothelial cells was detectable. Other MMPs were not affected. Affecting all dermal wound-healing-related cell types, TGF-beta antisense oligonucleotide technology may be a potential therapeutic option for the inhibition of proteolytic tissue destruction in chronic wounds. Pharmaceutical intervention in this area ultimately may help clinicians to proactively intervene in an effort to prevent normal wounds from becoming chronic.  相似文献   

11.
The aim of this investigation was to determine the effect of growth factor treatment on ovine meniscal chondrocyte (OMC) proliferation in vitro and on the production of matrix proteins by OMCs grown within a polyglycolic acid (PGA) scaffold. Analysis of 72-h monolayer cultures using the mean transit time (MTT) assay revealed a greater increase in OMC numbers in the presence of platelet-derived growth factor (PDGF)-AB, PDGF-BB, insulin-like growth factor (IGF)-I, transforming growth factor-beta1 (TGF-beta1) and basic fibroblast growth factor (bFGF) than in untreated controls. In contrast, IGF-II and bone morphogenetic protein-2 had no effect on OMC proliferation at the concentrations tested. The growth factors that elicited the greatest proliferative response (PDGF-AB, PDGF-BB, TGF-beta1, and IGF-I) were subsequently tested for their ability to enhance OMC proliferation and differentiation within PGA scaffolds. Biochemical analysis revealed less glycosaminoglycan (GAG) production in the presence of all growth factors tested compared to untreated control samples. In contrast, all of the growth factors increased collagen type I production by OMCs within the scaffolds at day 20, and all except PDGF-BB resulted in an increase at day 39, when compared to appropriate control samples. With the exception of IGF-I, none of the growth factors tested had any significant effect on collagen type II production. Histological staining of sections from OMC-PGA scaffolds did not reveal any difference in GAG or collagen production between the treatment groups. However, immunohistochemical analysis demonstrated an increase in collagen type I expression and a decrease in collagen type II at day 39 in all growth factortreated constructs, concomitant with a high infiltration of cells. This suggests that PDGF-AB, PDGF-BB, TGF-beta1, and IGF-1 may be useful in future tissue engineering studies for promoting meniscal cell proliferation and differentiation within scaffolds.  相似文献   

12.
Wound healing and tumor stroma generation share several important properties, including hyperpermeable blood vessels, extravasation of fibrinogen, and extravascular clotting. In both, the deposits of fibrin gel serve initially as provisional stroma and later are replaced by granulation tissue. Proteoglycans (PG) are also important constituents of the extracellular matrix, but their composition and role in healing wounds and tumor stroma generation are poorly understood. The authors used immunohistochemical and biochemical methods to investigate the dermatan sulfate proteoglycan (DSPG) and chondroitin sulfate proteoglycan (CSPG) composition of healing skin wounds and solid tumors. By immunohistochemistry, the great majority of normal guinea pig and human dermis stained weakly for CSPG and strongly for decorin. In contrast, the granulation tissue of healing skin wounds and scars stained intensely for CSPG and weakly or not at all for decorin; however decorin staining was restored to normal intensity after digestion with chondroitin ABC lyase, suggesting that decorin antigenic sites had been masked by glycosaminoglycan (GAG) chains. Like wounds, the stroma of several carcinomas (line 1 guinea pig, human breast, colon, basal cell, and squamous) stained strongly for CSPG and weakly or not at all for decorin, but decorin staining developed after chondroitin ABC lyase digestion. Thus healing wounds and tumor stroma express a common pattern of altered PG staining, adding another to the properties these pathologic entities share. Proteoglycans extracted from healing wounds after in situ labelling with [35S] Na sulfate contained more CSPG than normal dermis with significantly longer GAG chains. Granulation tissue also synthesized more DSPG than normal skin, with greater heterogeneity and longer GAG chains. These alterations in PG synthesis correlate with the cell proliferation, migration, and collagen synthesis that accompany wound healing and may provide clues to the mechanisms responsible for both wound healing and tumor stroma generation.  相似文献   

13.
We examined effects of recombinant hepatocyte growth factor (HGF) on cutaneous wound healing, using a full-thickness cutaneous excision model in diabetic mice. Topical administration of HGF, as well as basic fibroblast growth factor (bFGF), promoted the rate of wound closure and re-epithelialization. Both HGF and bFGF enhanced expansion of the granulation tissue and stimulated neovascularization on day 7 postwounding, wherein the increase in microvessel density in HGF-treated wounds was higher than that in bFGF-treated wounds. Matrix metalloproteinases (MMP-2 and MMP-9) activities involved in cell migration, angiogenesis, and extracellular matrix (ECM) remodeling, were enhanced by HGF-treatment on day 7. On day 28 postwounding (later stages of wound healing), granulation tissue in bFGF-treated wounds remained to a greater extent than that seen in saline- and HGF-treated wounds. Likewise, bFGF- but not HGF-treatment stimulated DNA synthesis of fibroblasts in granulation tissue, suggesting that HGF stimulates wound healing with lesser degree of susceptibility to cutaneous scarring. We propose that supplement of HGF may be a potential therapeutic approach for treatment of cutaneous ulcer.  相似文献   

14.
BACKGROUND: Nerve growth factor (NGF) and nerve growth factor receptor (NGFR) expressions have been found to be increased in sub-conjunctival scarring. OBJECTIVE: The aim of this study was to investigate the in vitro effects of NGF on some pro-fibrogenic properties of human conjunctival fibroblasts. METHODS: Expression of NGF, trkA(NGFR) and p75NTR on human fibroblasts grown from conjunctival biopsies and incubated for 2 or 6 days with NGF were evaluated by immunofluorescence, RT-PCR, flow cytometry and ELISA. The fibrogenic effect of NGF on conjunctival fibroblasts was investigated by evaluating their migration (wound model), proliferation ([3H]-thymidine incorporation), collagen production (3H]-proline incorporation), expression of alpha-smooth muscle actin (alpha-SMA) (cell surface ELISA) and contraction of 3D collagen gels. RESULTS: NGF induced the expression of p75NTR in the fibroblasts that constitutively expressed only trkA(NGF) and increased the migration of wounded fibroblasts, but not their proliferation and collagen production. NGF induced the conversion of fibroblasts into myofibroblasts expressing alpha-SMA, and enhanced their contraction of a collagen matrix. Interestingly, chronic NGF treatment induced transforming growth factor-beta1 (TGF-beta1) production by fibroblasts, and following specific TGF-beta neutralization, all the NGF-induced effects were completely abrogated. CONCLUSION: Our findings indicate that NGF, via TGF-beta induction, is likely to be involved in the healing or fibrotic processes occurring in conjunctiva during some pathological conditions.  相似文献   

15.
The objective of this research is to develop a dual growth factor-releasing nanoparticle-in-nanofiber system for wound healing applications. In order to mimic and promote the natural healing procedure, chitosan and poly(ethylene oxide) were electrospun into nanofibrous meshes as mimics of extracellular matrix. Vascular endothelial growth factor (VEGF) was loaded within nanofibers to promote angiogenesis in the short term. In addition, platelet-derived growth factor-BB (PDGF-BB) encapsulated poly(lactic-co-glycolic acid) nanoparticles were embedded inside nanofibers to generate a sustained release of PDGF-BB for accelerated tissue regeneration and remodeling. In vitro studies revealed that our nanofibrous composites delivered VEGF quickly and PDGF-BB in a relayed manner, supported fibroblast growth and exhibited anti-bacterial activities. A preliminary in vivo study performed on normal full thickness rat skin wound models demonstrated that nanofiber/nanoparticle scaffolds significantly accelerated the wound healing process by promoting angiogenesis, increasing re-epithelialization and controlling granulation tissue formation. For later stages of healing, evidence also showed quicker collagen deposition and earlier remodeling of the injured site to achieve a faster full regeneration of skin compared to the commercial Hydrofera Blue® wound dressing. These results suggest that our nanoparticle-in-nanofiber system could provide a promising treatment for normal and chronic wound healing.  相似文献   

16.
Bronchial subepithelial fibrosis is an histological characteristic of asthma. Cytokines and other mediators, such as PDGF-BB, TGF-beta1 and ET-1 found in the asthmatic submucosa can potentially activate a repair process that leads to fibroblast proliferation and collagen synthesis. The mechanisms of modulation of the repair process leading to extracellular matrix deposition are still to be documented. In this study, we assessed the in vitro proliferation and collagen synthesis of bronchial fibroblasts isolated from normal and asthmatic subjects in response to ET-1, platelet-derived growth factor (PDGF)-BB and transforming growth factor (TGF)-beta1 alone or in combination, in the presence or absence of dexamethasone. The combination of ET-1 with one of the other two growth factors, or the triple combination, significantly increased DNA synthesis and collagen production of bronchial fibroblasts isolated from both normal and asthmatic subjects, but the same growth factors used separately had no significant effect on the same parameters. These results suggest that the simultaneous presence of ET-1, PDGF-BB and TGF-beta1 in both normal and asthmatic subjects is necessary to activate bronchial fibroblast proliferation and collagen synthesis. As these mediators are present in the submucosa of the asthmatic bronchi, they could be responsible, at least in part, for the accumulation of collagen in the mucosa.  相似文献   

17.
Hypertrophic scarring (HSc) following burn injury is a common, disfiguring, and functionally limiting form of dermal fibrosis, compromising recovery. Previously, elevated levels of transforming growth factor-beta1 (TGF-beta1), a fibrogenic cytokine, were found in wounds and serum of severely injured patients, antagonized in part by treatment with systemic interferon-alpha2b (IFN-alpha2b) both in vitro and in vivo. It is hypothesized that in wound healing after injury, platelets are an initial source of TGF-beta, but wound fibroblasts may be capable, after activation, of autoamplification of the initial response to injury by increasing TGF-beta mRNA and protein that may subsequently be responsive to IFN therapy with IFN-alpha or IFN-gamma or both. Using three pairs of site-matched HSc and normal fibroblasts from the same individuals, nonconfluent and near confluent fibroblasts were treated with TGF-beta, and cell proliferation and collagen production were assayed using cell counting and 18O2 isotopic uptake into hydroxyproline before analysis by gas chromatography-mass spectrometry (GC-MS). HSc and normal fibroblasts were assayed for the production of TGF-beta protein secretion using ELISA for TGF-beta1, TGF-beta2, and TGF-beta3 after acidification of medium samples from 96-h cultures. HSc and normal fibroblasts were treated with IFN-alpha2b or IFN-gamma or both for 96 h. Quantitative RT-PCR and Northern analysis were performed using newly synthesized internal standards for human TGF-beta1. TGF-beta stimulates both HSc and normal fibroblast proliferation. Collagen synthesis is greater in HSc than in normal fibroblasts and is maximally stimulated at 75 pM TGF-beta. TGF-beta stimulated collagen metabolism is antagonized by IFN-alpha or IFN-gamma or both in an additive fashion. HSc and normal fibroblasts not only possess the mRNA for TGF-beta1 but also secrete mature TGF-beta protein. Treatment of HSc and normal fibroblasts with IFN-alpha2b or IFN-gamma antagonizes TGF-beta protein production, and additive effects occur. RT-PCR demonstrates that after IFN treatment, downregulation of TGF-beta1 mRNA accounts in part for the reduction in protein secretion in HSc fibroblasts. Elevations of systemic TGF-beta may be due to wound fibroblasts. TGF-beta synthesis and antagonism of fibroblast TGF-beta protein secretion occurs with either IFN-alpha or IFN-gamma, in part by downregulation of TGF-beta1 mRNA levels.  相似文献   

18.
Cultures of ligament fibroblasts in fibrin matrix gel   总被引:1,自引:0,他引:1  
The cellular properties of anterior cruciate ligament (ACL) and medial collateral ligament (MCL) fibroblasts have been analyzed in a three-dimensional fibrin matrix gel (FMG) system. The MCL fibroblasts proliferated significantly faster than ACL fibroblasts in 10% fetal bovine serum (FBS). FMG contraction resembles soft-tissue wound contraction. Transforming growth factor-beta1 (TGF-beta1) (5 ng/ml) caused a significantly faster rate of FMG contraction than control (0.5% FBS) in both ACL and MCL fibroblasts. Unlike the cells in 10% FBS, this faster rate of FMG contraction was achieved without increasing the initial cell number. In the FMG, the MCL fibroblasts demonstrated significantly higher collagen synthesis per cell than ACL fibroblasts between the days 2 and 6 of culture. These differences in cellular properties of the ACL and MCL fibroblasts that were observed in vitro may explain the differences in the healing potential of these ligaments in vivo.  相似文献   

19.
The production of collagen and glycosaminoglycans (GAG) was studied in cultured human synovial cells exposed to four cytokines, alone or in dual combination, namely interleukin-1 (IL-1), tumor necrosis factor-alpha (TNF-alpha), interferon-gamma (IFN-gamma) and transforming growth factor-beta (TGF-beta). Among these cytokines, only TGF-beta (0.1-10 ng/ml) induced a significant and dose-dependent increase of collagen synthesis in a 24-h incubation. This effect was reversed when the factor was associated with either IL-1 beta (100-500 pg/ml), TNF-alpha (1-100 ng/ml) or IFN-gamma (100 U/ml). Except IFN-gamma which clearly inhibits the collagen production, the other cytokines IL-1 and TNF-alpha were not very effective when tested separately, although they generally induced a small reduction in collagen amount. IL-1 beta and TNF-alpha were found to be more efficient than TGF-beta in stimulating the production of GAG by the synovial cells. IFN-gamma exerted an antagonistic effect on the TGF-beta-induced stimulation of GAG synthesis. TNF-alpha and IL-1 beta were shown to have an additive effect on that production. The results indicate that interactions between cytokines present in the inflamed synovial tissue may modulate their respective actions and thus introduce differentials in their effect on collagen and GAG metabolism which are responsible for the alterations of synovial extracellular matrix in rheumatoid arthritis.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号