首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
BACKGROUND: Induction of inducible nitric oxide synthase (iNOS) results in nitric oxide (NO) overproduction during endotoxemia. Cellular uptake of L-arginine, modulated by the isozymes of type-2 cationic amino acid transporters (CAT), including CAT-2, CAT-2A and CAT-2B, has been reported to be a crucial factor in the regulation of iNOS activity. We sought to elucidate the expression of CAT-2 isozymes and the role of nuclear factor-kappaB (NF-kappaB) in this expression in lipopolysaccharide (LPS)-treated rat liver. METHODS: Adult male Sprague-Dawley rats were randomly given intravenous (i.v.) injections of normal saline (N/S), LPS, LPS preceded by an NF-kappaB inhibitor (PDTC, dexamethasone or salicylate) or an NF-kappaB inhibitor alone. After injection, rats were sacrificed at different times and enzyme expression and liver injury were examined. Hepatic and systemic NO production were also measured. RESULTS: CAT-2, CAT-2A and CAT-2B were constitutively expressed in un-stimulated rat liver. LPS stimulation not only significantly increased iNOS mRNA and NO concentrations but also decreased the mRNA concentrations of CAT-2 and CAT-2B, but not CAT-2A, in a time-dependent manner. LPS-induced hepatic and systemic NO overproduction was associated with hepatocellular injury. Pre-treatment with NF-kappaB inhibitors significantly attenuated LPS-induced iNOS induction as well as CAT-2/CAT-2B mRNA destabilization, which was associated with significant inhibition of NO biosynthesis and less liver injury. CONCLUSION: NF-kappaB inhibitors stabilize CAT-2 and CAT-2B mRNA in LPS-stimulated rat liver. The hepatic CAT-2/CAT-2B pathway may be a constitutive part of cytoprotective mechanisms against sepsis.  相似文献   

2.
BACKGROUND: Endotoxemia stimulates nitric oxide (NO) biosynthesis through induction of inducible NO synthase (iNOS). Cellular uptake of L-arginine, the sole substrate for iNOS, is an important mechanism regulating NO biosynthesis by iNOS. The isozymes of type-2 cationic amino acid transporters, including CAT-2, CAT-2A, and CAT-2B, constitute the most important pathways responsible for trans-membrane L-arginine transportation. Therefore, regulation of CAT-2 isozymes expression may constitute one of the downstream regulatory pathways that control iNOS activity. We investigated the time course of enzyme induction and the role of nuclear factor-kappaB (NF-kappaB) in CAT-2 isozymes expression in lipopolysaccharide-(LPS) treated rat lungs. METHODS: Adult male Sprague-Dawley rats were randomly given intravenous injections of normal saline (N/S), LPS, LPS plus NF-kappaB inhibitor pre-treatment (PDTC, dexamethasone, or salicylate), or an NF-kappaB inhibitor alone. The rats were sacrificed at different times after injection and enzyme expression and lung injury were examined. Pulmonary and systemic NO production were also measured. RESULTS: LPS co-induced iNOS, CAT-2, and CAT-2B but not CAT-2A expression in the lungs. Furthermore, NF-kappaB actively participated in LPS-induction of iNOS, CAT-2, and CAT-2B. LPS induced pulmonary and systemic NO overproduction and resulted in lung injuries. Attenuation of LPS-induced iNOS, CAT-2, and CAT-2B induction significantly inhibited NO biosynthesis and lessened lung injury. CONCLUSION: NF-kappaB actively participates in the induction of CAT-2 and CAT-2B in intact animals. Our data further support the idea that CAT-2 and CAT-2B are crucial in regulating iNOS activity.  相似文献   

3.
BACKGROUND: Platonin, a cyanine photosensitizing dye, is a potent immunomodulator that suppresses acute inflammation. Platonin not only inhibits interleukin (IL)-1beta, IL-6, and tumor necrosis factor (TNF)-alpha production but also improves circulatory failure in septic rats. In addition, platonin reduces plasma nitric oxide (NO) formation during sepsis. However, the effects of platonin on inducible NO synthase (iNOS) and cationic amino-acid transporter (including CAT-2, CAT-2 A, and CAT-2B) expressions during sepsis remain uninvestigated. METHODS: Five groups of confluent murine macrophages (RAW264.7 cells) were randomly allocated to receive a 1-h pretreatment of one of five doses of platonin (0.1 microM, 1 microM, 10 microM, 100 microM, or 1000 microM) followed by lipopolysaccharide (LPS; 100 ng ml(-1)). For negative, positive, and platonin control, three other groups of cell cultures were randomly allocated to receive phosphate-buffered saline, LPS, or platonin (1000 microM). The cultures were harvested after exposing them to LPS for 18 h or a comparable duration in those groups without LPS. NO production, L-arginine transport, and expression of the relevant enzymes were then evaluated. RESULTS: Platonin significantly attenuated LPS-induced up-regulation of iNOS expression and NO production in stimulated murine macrophages in a dose-dependent manner. Platonin also significantly inhibited up-regulation of CAT-2 and CAT-2B expression as well as L-arginine transport in LPS-stimulated murine macrophages in a dose-dependent manner. In contrast, CAT-2 A expression in murine macrophages was not affected by LPS and/or platonin. CONCLUSIONS: Platonin attenuates NO production and L-arginine transport in LPS-stimulated murine macrophages possibly through inhibiting iNOS, CAT-2, and CAT-2B expression.  相似文献   

4.
We measured renal sodium and water excretion in five healthymale volunteers who inhaled nitric oxide. Urine volumes, urinarysodium and creatinine, and plasma sodium and creatinine weremeasured before, during and after a 2-h period inhaling nitricoxide (40 vpm in air). A control experiment, excluding the nitricoxide, was done on a separate day. Nitric oxide increased urinaryvolume (mean increase 85%, SEM 22%) and prevented a decreasein fractional excretion of sodium (32% SEM 8%) seen in the controlexperiments, without a detectable change in creatinine clearance.The results suggest the inhaled nitric oxide may alter tubularsalt and water resorbtion in humans. The mechanism for thisremains unclear. Br J Anaesth 2001; 86: 267–9  相似文献   

5.
BACKGROUND: It has become evident that increased nitric oxide (NO) generation may be associated with production of reactive oxygen species, such as peroxynitrite (ONOO-). Peroxynitrite has been postulated to be responsible for several of the cytotoxic effects previously ascribed to NO. Since cellular arginine uptake has been shown to modulate nitric oxide synthase activity, we were intrigued to study the effect of ONOO- on arginine traffic in renal mesangial cells. METHODS: Arginine uptake, CAT-1 and CAT-2 mRNA expression by northern blotting analysis, and CAT-1 protein content using western blotting were determined in mesangial cells pre-treated with peroxynitrite (0.1 and 0.5 mM) for 2 h. RESULTS: Peroxynitrite induced a significant increase in arginine uptake and CAT-2 mRNA expression compared with untreated cells. In contrast, CAT-1 mRNA expression and protein abundance were diminished. CONCLUSIONS: In rat mesangial cells, peroxynitrite augments arginine uptake via augmentation of CAT-2 while decreasing CAT-1 expression.  相似文献   

6.
BACKGROUND: Urotensin II (U-II) and its receptor GPR-14 are expressed in the kidney and the cardiovascular system of various mammalian species. Recent studies suggested that the U-II/GPR-14 system is upregulated in patients with congestive heart failure (CHF). However, the involvement of the peptide in the alterations of renal function in CHF remains unknown. METHODS: The effects of incremental doses (1.0-100.0 nmol/kg) of human U-II (hU-II) on renal haemodynamic and clearance parameters were assessed in rats with an aorto-caval fistula, an experimental model of CHF, and sham controls. Additionally, the effects of pre-treatment with the nitric oxide (NO) synthase blocker, nitro-L-arginine methyl ester (L-NAME), and the cyclooxygenase inhibitor, indomethacin, on the renal haemodynamic response to hU-II were studied in CHF rats. RESULTS: hU-II caused a decrease in mean arterial pressure in control and CHF rats. In controls, hU-II did not alter renal blood flow (RBF), and caused a minimal decrease (-12.5%) in renal vascular resistance (RVR). However, in CHF rats, the peptide induced a marked increase in RBF (+28%) and a decrease in RVR (-21.5%). These effects were attenuated by L-NAME, but not by indomethacin. Furthermore, hU-II caused a significant increase (+29%) in glomerular filtration rate (GFR) in CHF rats, whereas GFR tended to decrease in controls. Sodium excretion was not altered in control or in CHF rats in response to hU-II. CONCLUSIONS: hU-II exerts an NO-dependent renal vasodilatation that is more pronounced in rats with CHF. The data further suggest that the U-II/GPR-14 system may be involved in the regulation of renal haemodynamics in CHF.  相似文献   

7.
BACKGROUND: We sought to compare two techniques, microdialysis and repeated blood withdrawal, for serial assessment of hepatic and systemic nitric oxide (NO) biosynthesis in septic rats. METHODS: Rats were randomly allocated to either microdialysis or blood withdrawal groups. Two microdialysis probes, one in liver and the other in right atrium, were placed in rats in the microdialysis group. Half of the rats from each group were then given lipopolysaccharide (LPS) to induce NO production. The other half of the rats from each group were injected with vehicle (normal saline) to serve as controls. In the microdialysis group, dialysate (30 microl) was collected every 30 min. In the blood withdrawal group, 0.3 ml of blood was drawn every 30 min. Sampling was performed up to 6 h after injection of LPS or vehicle. Hemodynamics, hepatic and systemic NO concentrations, and iNOS expression in harvested liver tissues were assayed. RESULTS: Repeated blood withdrawal by itself caused a significant decrease in blood pressure and induced hepatic iNOS expression. Microdialysis, on the contrary, reliably detected LPS-induced NO production without resulting either in hemodynamic changes or in iNOS induction in liver tissue. CONCLUSIONS: Microdialysis provides serial measure of hepatic and systemic NO concentrations in LPS-treated rats without the need for removal of tissue.  相似文献   

8.
Deficiencies in folate lead to increased serum concentrations of homocysteine (Hcy), which is known as hyperhomocysteinemia (HHcy), is associated with bone disorders. Although, Hcy accumulates collagen in bone and contribute to decrease in bone strength. The mechanism of Hcy induced bone loss and remodeling is unclear. Therefore, the present study was aimed to determine the role of folic acid (FA) in genetically HHcy‐associated decrease in bone blood flow and remodeling. Wild type (WT) and cystathionine‐β‐synthase heterozygous (CBS+/?) mice were used in this study and supplemented with or without FA (300 mg/kg, Hcy reducing agent) in drinking water for 6 weeks. The tibial bone blood flow was measured by laser Doppler and ultrasonic flow probe method. The tibial bone density (BD) was assessed by dual energy X‐ray absorptiometry. The bone homogenates were analyzed for oxidative stress, NOX‐4 as oxidative marker and thioredoxin‐1 (Trx‐1) as anti‐oxidant marker, bone remodeling (MMP‐9) and bio‐availability of nitric oxide (eNOS/iNOS/NO) by Western blot method. The results suggested that there was decrease in tibial blood flow in CBS+/? mice. The BD was also reduced in CBS+/? mice. There was an increase in NOX‐4, iNOS, MMP‐9 protein as well as MMP‐9 activity in CBS+/? mice and decrease in Trx‐1, eNOS protein levels, in part by decreasing NO bio‐availability in CBS+/? mice. Interestingly, these effects were ameliorated by FA and suggested that FA supplementation may have therapeutic potential against genetically HHcy induced bone loss. © 2011 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 29: 1511–1516, 2011  相似文献   

9.
10.
BACKGROUND: In recent studies increased amounts of nitric oxide (NO) and apoptosis have been implicated in various pathological conditions in the kidney. We have studied the role of NO and its association with apoptosis in an experimental model of nephrotic syndrome induced by a single injection of adriamycin (ADR). METHODS: The alteration in the NO pathway was assessed by measuring nitrite levels in serum/urine and by evaluating the changes in vascular reactivity of the isolated perfused rat kidney (IPRK) system. Rats were stratified into control groups and ADR-induced nephropathy groups. These two groups were then divided into: group 1, animals receiving saline; and group 2, animals receiving aminoguanidine (AG) which is a specific inhibitor of inducible-NO synthase. On day 21, rats were sacrificed after obtaining material for biochemical analysis. RESULTS: Histopathological examination of the kidneys of rats treated with ADR revealed focal areas of mesangial proliferation and mild tubulointerstitial inflammation. They also had significantly higher levels of proteinuria compared with control and treatment groups (P < 0.05). Urine nitrite levels were significantly increased in the ADR-nephropathy group (P < 0.05). In the IPRK phenylephrine and acetylcholine related responses were significantly impaired in the ADR-nephropathy group. Apoptosis was not detected in controls. However, in the ADR-nephropathy group, numerous apoptotic cells were identified in the tubulointerstitial areas. Double staining revealed numerous interstitial apoptotic cells to stain for ED1, a marker for monocytes/macrophages. Treatment with AG prevented the impairment of renal vascular bed responses and reduced both urine nitrite levels and apoptosis to control levels. CONCLUSION: We suggest that interactions between NO and apoptosis are important in the pathogenesis of the ADR-induced nephrosis.  相似文献   

11.
Renal NOS2 is expressed and produces abundant nitric oxide (NO) in various renal cells in response to proinflammatory cytokines. However, the role of this enzyme in renal allograft survival remains unknown. Kidney allotransplantation was performed in the murine model of C57BL/6J (H-2(d)) to nephrectomized Balb/c (H-2(b)) mice. Here we show that deficiency in NOS2 expression in kidney donors significantly advanced allograft failure, indicated by decreasing mean survival of recipients receiving NOS2 null grafts (15.4 +/- 6.4 days) as compared to those with wild type grafts (65.4 +/- 28.1 days) (p = 0.0005). Consistent with survival results, NOS2 null grafts had more severe renal tubule injury and decreased renal function compared to wild type grafts. In vitro NOS2 expressing TEC had greater resistance to allogeneic lymphocyte-mediated apoptosis. The addition of exogenous NO inhibited Fas-mediated TEC apoptosis and reduced proliferation of allogeneic lymphocytes. These data suggest that endogenous production of NO through renal NOS2 activity can play a protective role in kidney grafts through attenuating Fas-mediated donor cell apoptosis as well as by inhibiting proliferation of inflammatory infiltrating lymphocytes. Enhanced donor NOS2 expression may be a useful strategy to improve kidney transplant survival.  相似文献   

12.
13.
As a precursor for nitric oxide (NO) synthesis and an immune-enhancing nutrient, amino acid L-arginine plays a critical role in maintaining intestine mucosal integrity and immune functions in sepsis. However, the relationship between intestinal arginine transport and NO synthesis in sepsis remains unclear. In the present study, we investigated the effects of lipopolysaccharide (LPS) and NO on the arginine transport in cultured rat intestinal epithelial IEC-6 cell. Near-confluent IEC-6 cells were incubated with LPS (0-50 μg/ml) in serum-free Dulbecco’s modified Eagles’s medium, in the presence and absence of the NO donor sodium nitroprusside (SNP, 0–500 μmol/L) and the inducible nitric oxide synthase (iNOS) inhibitor N-ω-nitro-L-arginine (NNA, 0–1000 μmol/L) for various periods of time (0-48 hours). Arginine transport activity, arginine transporter CAT1 mRNA and protein levels were measured with transport assay, Northern blot analysis, and Western blot analysis, respectfully. LPS increased arginine transport activity in a time- and dose-dependent fashion. Prolonged incubation of LPS (24 hours, 25 μg/ml) resulted in a 3-fold increase of arginine transport activity (control: 28 ±5; LPS: 92 ±20 pmol/mg/ min, P < 0.05), with the System y+ as the predominant arginine transport system, and a 2-fold increase of System y+ CAT1 mRNA and transporter protein levels (P < 0.05). LPS increased the arginine transport System y+ maximal velocity (Vmax, control: 1484 ±180; LPS: 2800 ±230 pmol/mg/min, P<0.05) without affecting the transport affinity (Km, control: 76 ±8; LPS: 84 ±14 μmol/L, p = NS). The LPSinduced arginine transport activity was blocked by sodium nitroprusside (SNP) (control: 25 ±6; LPS: 97 ±26*; SNP: 22 ±0.4+; LPS+SNP: 33 ±10.3+ pmole/mg/min, *P < 0.01 and +p = NS, compared with control). In contrary, the LPS-induced arginine transport activity was further augmented by NNA (control: 18 ±3.2; LPS: 59 ±2.7*; NNA: 26.3 ±5.8; LPS + NNA: 127 ±18+ pmol/mg/min; *P < 0.01 compared with control and +P < 0.01 compared with control or LPS). LPS-stimulates arginine transport activity in IEC-6 cells via a mechanism that involves increase of transport System y+ mRNA levels and transporter protein levels. The LPS-stimulated arginine transport activity is regulated by the availability of nitric oxide. Presented at the Forty-Sixth Annual Meeting of The Society for Surgery of the Alimentary Tract, Chicago, Illinois, May 14–18, 2005 (oral presentation). This work was supported in part by The Society for Surgery of Alimentary Tract Career Development Award (M.P.) and National Institute of Diabetes and Digestive and Kidney Disease Grant DK-62165 (M.P.).  相似文献   

14.
BACKGROUND: It has been demonstrated that myocardial ischemia/reperfusion (MI/R) causes renal damage. However, the mechanism underlying this damage in kidneys during revascularization of myocardium is unclear. Direct renal ischemia/reperfusion has been implicated in the induction of inducible nitric oxide synthase (iNOS) that leads to increase production of nitric oxide (NO). Recently, excessive production of NO has been found to be involved in causing renal injury by formatting peroxinitrite (ONOO(-)). The aim of this study was to investigate whether NO has a role in this damage, using aminoguanidine (AMG), a known iNOS inhibitor and an antioxidant, in rats undergoing MI/R. METHODS: Male Wistar rats were used for the experiments (n = 7 each group). In the MI/R group, the left coronary artery was occluded for 30 min and then reperfused for 120 min; the same procedure was used for the AMG group, with the additional step of AMG (200 mg/kg) administered 10 min prior to ischemia. A control group underwent sham operation. At the end of the reperfusion period, all rats were killed and their kidneys removed for biochemical determination and histopathological analysis. RESULTS: Myocardial ischemia/reperfusion in the rat kidney was accompanied by a significant increase in malondialdehyde and NO production, and a decrease in glutathione content. Administration of AMG reduced malondialdehyde and NO production and prevented depletion of glutathione content. These beneficial changes in the biochemical parameters were also associated with parallel changes in histopathological appearance. CONCLUSION: These findings suggest that MI/R plays a causal role in kidney injury and AMG exerts renal-protective effects, probably by inhibiting NO production and antioxidant activities.  相似文献   

15.
Aim Reduction in nitric oxide (NO) levels during kidney failure has been related to the reaction of NO with superoxide anions to yield peroxynitrite which possesses the biological activity responsible for renal damage. However, stimulation of the NO pathway ameliorates the progression of kidney failure. Thus, it is unclear whether NO prevents or acts as the compound responsible for the cytotoxicity observed during kidney failure. Methods We evaluated the development of kidney failure in animals that were wild type and deficient in endothelial NO synthase (eNOS (?/?)) and tested the effects of an antioxidant treatment and NO precursors on the generation of superoxide anion and kidney failure parameters. Results In wild‐type mice, five‐sixths nephrectomy increased proteinuria from 3.0 ± 0.35 to 14.5 ± 0.76 mg protein/24 h (P < 0.05), blood pressure from 83.1 ± 1.8 to 126.6 ± 1.7 mmHg (P < 0.05), and superoxide production from 1.4 ± 0.6% to 74.3 ± 0.8% (P < 0.05). The effects of five‐sixths nephrectomy on the eNOS (?/?) mice were greater compared with wild‐type mice. Proteinuria increased from 6.7 ± 0.5 to 22.7 ± 2.0 mg protein/24 h (P < 0.05), blood pressure increased from 93.3 ± 0.9 to 151.2 ± 3.4 mmHg (P < 0.05), and superoxide production increased from 12.9 ± 0.5% to 99.8 ± 1.3% (P < 0.05). The nitrotyrosine levels were lower in eNOS (?/?) mice as compared to wild‐type mice. A combination of L‐arginine and antioxidant treatment ameliorated renal damage. The effect was improved in wild‐type animals. Conclusion Our data support the relevance of NO as an antagonist to superoxide in renal tissues and suggest that the loss of this mechanism promotes the progression of kidney failure.  相似文献   

16.
《Renal failure》2013,35(9):878-884
Abstract

Background: Nitric oxide is an important regulator of renal hemodynamics. This study aimed to investigate the role of endothelial nitric oxide synthase (eNOS) gene polymorphism in type 2 diabetic patients with end-stage renal disease (ESRD) and to elucidate any alteration of nitric oxide synthase (NOS) activity caused by this polymorphism. Methods: The study included 80 patients with type 2 diabetes of >10 years duration (40 with diabetes-derived ESRD, 40 without nephropathy) and 20 healthy controls. Plasma nitrate/nitrite level, and serum NOS activity were measured and eNOS Glu298Asp genotypes were determined. Results: The frequency of Glu/Glu (GG) genotype in diabetics with ESRD was lower than controls. However, the frequency of Asp/Asp (TT) genotype was increased in diabetics with ESRD as compared to those without nephropathy and controls. Diabetics with ESRD had significantly lower nitrate/nitrite level and NOS activity than those without nephropathy. Diabetic patients with TT genotype are at a significant risk for ESRD. Moreover, subjects carrying TT genotype had lower nitrate/nitrite level and NOS activity than those carrying GG genotype. In diabetics with ESRD, creatinine clearance was positively correlated with both nitrate/nitrite level and NOS activity. Conclusions: These results imply that TT genotype of eNOS may be associated with an increased risk of ESRD in Egyptian type 2 diabetics. It could represent a useful genetic marker to identify diabetics at high risk for the development of ESRD. However, larger future prospective studies are required to confirm the role of eNOS gene polymorphism in the progression of diabetic nephropathy to ESRD.  相似文献   

17.
AKI is associated with high mortality rates and the development of CKD. Ischemia/reperfusion (IR) is an important cause of AKI. Unfortunately, there is no available pharmacologic approach to prevent or limit renal IR injury in common clinical practice. Renal IR is characterized by diminished nitric oxide bioavailability and reduced renal blood flow; however, the mechanisms leading to these alterations are poorly understood. In a rat model of renal IR, we investigated whether the administration of the novel nonsteroidal mineralocorticoid receptor (MR) antagonist BR-4628 can prevent or treat the renal dysfunction and tubular injury induced by IR. Renal injury induced by ischemia was associated with increased oxidant damage, which led to a cysteine sulfenic acid modification in endothelin B receptor and consequently decreased endothelial nitric oxide synthase activation. These modifications were efficiently prevented by nonsteroidal MR antagonism. Furthermore, we demonstrated that the protective effect of BR-4628 against IR was lost when a selective endothelin B receptor antagonist was coadministered. These data describe a new mechanism for reduced endothelial nitric oxide synthase activation during renal IR that can be blocked by MR antagonism with BR-4628.  相似文献   

18.
19.
20.
《Renal failure》2013,35(6):738-743
Lipoprotein-associated phospholipase A2 (Lp-PLA2) and arginase are recently described inflammatory biomarkers associated with cardiovascular disease. In this study, we aimed to investigate the possible effects of serum Lp-PLA2 mass levels on arginase/nitric oxide (NO) pathway as a cardiovascular risk marker in hemodialysis (HD) patients. Forty-three HD patients and 15 healthy subjects were included in this study. Lipid profile, high sensitivity C-reactive protein (hs-CRP), albumin, creatinine, body mass index (BMI), Lp-PLA2 and total nitrite levels, and arginase activity were determined in serum samples from patients and control subjects. Lp-PLA2 levels were found to be positively correlated with arginase, triglycerides, total cholesterol, low-density lipoprotein-cholesterol, and age and negatively correlated with high-density lipoprotein-cholesterol and total nitrite levels, while there was no correlation with BMI and hs-CRP, albumin, and creatinine levels in HD patients. We conclude that elevated Lp-PLA2 mass levels may contribute to impaired arginase/NO pathway in HD patients and that increased the arginase activity and Lp-PLA2 mass levels with decreased total nitrite levels seem to be useful biochemical markers in terms of reflecting endothelial dysfunction and associated cardiovascular risks in HD patients.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号