首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
With the development of regeneration medicine, many researchers have attempted hepatic differentiation from nonhepatic-origin cell sources. The differentiation of embryonic stem (ES) cells into hepatocyte-like cells has been reported in several papers. Mouse ES cells have shown a potential to develop into hepatocyte-like cells in vitro on the basis of hepatic gene expression after adding several growth factors. We transplanted cultured embryoid body (EB) cells (male) into female mice. A liver specimen of the recipient was examined by immunohistochemical staining for albumin and fluorescence in situ hybridization for the Y chromosome after transplantation. Both Y chromosome- and albumin-positive cells were recognized in the recipient female liver, and were considered to be hepatocyte-like cells derived from ES cells containing the Y chromosome. Many groups, including ourselves, have studied hepatocyte-like cell differentiation from umbilical cord blood cells (UBCs). We cultured nucleated cells isolated from UBCs. Using immunostaining, ALB-positive and CK-19-positive cells were recognized in the culture. Dual staining of ALB and CK-19 demonstrated that ALB was coexpresed with CK-19, suggesting the existence of hepatic progenitors. In this review, we consider recent studies of the differentiation of hepatocytes from nonhepatic origins, especially ES cells and umbilical cord blood.  相似文献   

2.
Embryonic stem (ES) cells have a potential to differentiate into various progenitor cells. Here we investigated the differentiation capacity of mouse ES cells into hepatocytes both in vitro and in vivo. During the culture of embryoid bodies (EBs) derived from ES cells, albumin (ALB) messenger RNA (mRNA) was expressed within 12 days after removal of leukemia inhibitory factor, and alpha-fetoprotein (AFP) mRNA was observed within 9 days without additional exogenous growth factors. In ES cells and early EBs, by contrast, neither ALB mRNA nor AFP mRNA was observed. ALB protein was first detected at day 15 and the level increased with the culture period. The differentiation of EBs facilitated the synthesis of urea with the culture period, whereas early EBs and ES cells produced no urea. These results suggest that cultured EBs contain hepatocytes capable of producing ALB and urea. ES cells and the isolated cells from EBs were transplanted through portal vein to the liver after 30% partial hepatectomy of female mice pretreated with 2-acetylaminofluorene. Four weeks after transplantation with isolated cells from day-9 EBs, ES-derived cells containing Y-chromosome in the liver were positive for ALB (0.2% of total liver cells), whereas teratoma was found in mice transplanted with ES cells or EBs up to day 6. The incidence of teratoma was decreased with the culture duration and no teratoma was observed in the liver transplanted with isolated cells from day-9 EBs. In conclusion, our in vitro and in vivo experiments revealed that cultured EBs contain functional hepatocytes or hepatocyte-like cells.  相似文献   

3.
OBJECTIVE: Embryonic stem (ES) cells have a pluripotent ability to differentiate into a variety of cell lineages. Cell‐to‐cell contact is important for cell differentiation. Mouse ES cells were cocultured with mouse fetal liver cells and the green fluorescent protein (GFP) positive ES cells were transplanted into rats liver through the portal vein in order to investigate their potential to differentiate into hepatocytes. METHODS: Mouse ES cells were cocultured with the mouse fetal liver cell line, BNL.CL2. They did not make direct contact; instead the culture media was exchanged freely. After coculture for 48 h, albumin, transthyretin, glucose 6 phosphates, hepatic nuclear factor 4 and SEK1 mRNA were assayed by RT‐PCR, and alpha‐fetoprotein by immunohistochemistry. The morphology was investigated by microscopy. After transplantion of the GFP‐positive ES cells, the whole liver was removed from a rat every four days. The liver slices were examined under a fluorescent microscope to detect the GFP‐positive cells. Albumin was detected on the same slices by immunohistochemistry. RESULTS: After coculture with BNL.CL2 cells, the differentiated ES cells had the same morphology as the BNL.CL2 cells, and albumin, transthyretin, glucose 6 phosphates and SEK‐1 mRNA were found by RT‐PCR, and alpha‐fetoprotein was detected immuno­histochemically. The transplanted GFP‐positive ES cells were found in the rats’ liver slices by GFP fluorescence, and development of teratomas was not observed. The immunohistochemistry results indicated that the transplanted GFP‐positive ES cells retained an albumin‐producing ability. CONCLUSIONS: Cell‐to‐cell contact is important for the differentiation of ES cells. Mouse embryonic stem cells can differentiate into hepatocytes directly either in vitro or in vivo.  相似文献   

4.
5.
6.
Direct hepatic fate specification from mouse embryonic stem cells   总被引:39,自引:0,他引:39  
The molecules responsible for hepatic differentiation from embryonic stem (ES) cells have yet to be elucidated. Here we have identified growth factors that allow direct hepatic fate-specification from ES cells by using simple adherent monolayer culture conditions. ES cell-derived hepatocytes showed liver-specific characteristics, including several metabolic activities, suggesting that ES cells can differentiate into functional hepatocytes without the requirement for embryoid body (EB) formation, in vivo transplantation, or a coculture system. Most importantly, transplantation of ES cell-derived hepatocytes in mice with cirrhosis showed significant therapeutic effects. In conclusion, this novel system for hepatic fate specification will help elucidate the precise molecular mechanisms of hepatic differentiation in vitro and could represent an attractive approach for developing stem cell therapies for treatment of hepatic disease in humans. Supplementary material for this article can be found on the HEPATOLOGY website ( http://www.interscience.wiley.com/jpages/0270-9139/suppmat/index.html).  相似文献   

7.
Embryonic stem (ES) cells provide a unique source for tissue regeneration. We examined whether mouse ES cells can efficiently differentiate into transplantable hepatocytes. ES cells were implanted into mouse livers 24 hours after carbon tetrachloride intoxication; ES-derived cells with several hepatocyte-cell-markers were generated. They were able to grow in vitro and showed morphology consistent with typical mature hepatocytes and expressed hepatocyte-specific genes. After transplantation into the carbon tetrachloride-injured mouse liver, ES-derived green fluorescent protein-positive cells were incorporated into liver tissue and rescued mice from hepatic injury. No teratoma formation was observed in the transplant recipients. In conclusion, ES cells can provide a valuable tool for studying the molecular basis for differentiation of hepatocytes and form the basis for cell therapies.  相似文献   

8.
9.
10.
AIM: To transplant undifferentiated embryonic stem (ES) cells into the spleens of carbon tetrachloride (CCl4)-treated mice to determine their ability to differentiate into hepatocytes in the liver.
METHODS: CCh, 0.5 mL/kg body weight, was injected into the peritoneum of C57BL/6 mice twice a week for 5 wk. In group 1 (n = 12), 1 × 10^5 undifferentiated ES cells (0.1 mL of 1 × 10^6/mL solution), genetically labeled with GFP, were transplanted into the spleens 1 d after the second injection. Group 2 mice (n = 12) were injected with 0.2 mL of saline twice a week, instead of CCh, and the same amount of ES cells was transplanted into the spleens. Group 3 mice (n = 6) were treated with CCh and injected with 0.1 mL of saline into the spleen, instead of ES cells. Histochemical analyses of the livers were performed on post-transplantation d (PD) 10, 20, and 30.
RESULTS: Considerable numbers of GFP-immunopositive cells were found in the periportal regions in group 1 mice (CCh-treated) on PD 10, however, not in those untreated with CCh (group 2). The GFP-positive cells were also immunopositive for albumin (ALB), alpha-1 antitrypsin, cytokeratin 18, and hepatocyte nuclear factor 4 alpha on PD 20. Interestingly, most of the GFP-positive cells were immunopositive for DLK, a hepatoblast marker, on PD 10. Although very few ES-derived cells were demonstrated immunohistologically in the livers of group 1 mice on PD 30, improvements in liver fibrosis were observed. Unexpectedly, liver tumor formation was not observed in any of the mice that received ES cell transplantation during the experimental period
CONCLUSION: Undifferentiated ES cells developed into hepatocyte-like cells with appropriate integration into tissue, without uncontrolled cell growth.  相似文献   

11.
Cai J  Zhao Y  Liu Y  Ye F  Song Z  Qin H  Meng S  Chen Y  Zhou R  Song X  Guo Y  Ding M  Deng H 《Hepatology (Baltimore, Md.)》2007,45(5):1229-1239
The differentiation capacity of human embryonic stem cells (hESCs) holds great promise for therapeutic applications. We report a novel three-stage method to efficiently direct the differentiation of human embryonic stem cells into hepatic cells in serum-free medium. Human ESCs were first differentiated into definitive endoderm cells by 3 days of Activin A treatment. Next, the presence of fibroblast growth factor-4 and bone morphogenetic protein-2 in the culture medium for 5 days induced efficient hepatic differentiation from definitive endoderm cells. Approximately 70% of the cells expressed the hepatic marker albumin. After 10 days of further in vitro maturation, these cells expressed the adult liver cell markers tyrosine aminotransferase, tryptophan oxygenase 2, phosphoenolpyruvate carboxykinase (PEPCK), Cyp7A1, Cyp3A4 and Cyp2B6. Furthermore, these cells exhibited functions associated with mature hepatocytes including albumin secretion, glycogen storage, indocyanine green, and low-density lipoprotein uptake, and inducible cytochrome P450 activity. When transplanted into CCl4 injured severe combined immunodeficiency mice, these cells integrated into the mouse liver and expressed human alpha-1 antitrypsin for at least 2 months. In addition, we found that the hESC-derived hepatic cells were readily infected by human immunodeficiency virus-hepatitis C virus pseudotype viruses. CONCLUSION: We have developed an efficient way to direct the differentiation of human embryonic stem cells into cells that exhibit characteristics of mature hepatocytes. Our studies should facilitate searching the molecular mechanisms underlying human liver development, and form the basis for hepatocyte transplantation and drug tests.  相似文献   

12.
13.
体外定向诱导E14小鼠胚胎干细胞为肝细胞   总被引:5,自引:0,他引:5  
目的探索体外定向诱导胚胎干细胞分化为肝细胞。方法常规方法培养E14小鼠胚胎干细胞(ESC)后,进行悬滴-悬浮培养,形成胚胎体,再进行分阶段定向诱导,在培养第9~12天、第12~18人以及第15~18天分别加入酸性成纤维细胞生长因子、肝细胞生长因子和制瘤素M。利用倒置相差显微镜观察细胞形态变化,逆转录聚合酶链反应(RT-PCR)法分析持异性基因mRNA的表达,并用吲哚氰绿(ICG)摄取和过碘酸雪夫反应(PAS)分析细胞的分化及功能。结果在诱导培养的第13天,细胞出现肝细胞样改变。RTPCR分析可见,在诱导的第6天和第12天分别可以榆测到内胚层或卵黄囊分化标志基因-甲状腺素运载蛋白和α1抗胰蛋白酶的mRNA表达,第6天出现末成熟肝细胞标志基因-甲胎蛋白mRNA表达,第9天、第15天和第18天分别开始出现成熟肝细胞的特异性标志基因-白蛋白、葡萄糖6磷酸酶、酪氨酸氨基转移酶mRNA表达。同时,ESC源性肝细胞表现为ICG摄取和PAS反应阳性,经过诱导,ICG阳性细胞数约占85.1%。结论ESC源性肝细胞具备肝细胞特性,FSC有可能成为肝细胞治疗的替代供体细胞。  相似文献   

14.
小鼠胚胎干细胞诱导为肝细胞的研究   总被引:12,自引:1,他引:12  
胚胎干细胞(ES细胞)是从体外受精胚囊的内细胞团分离建立的、具有发育全能性的细胞系,在特定条件下可向多种细胞分化,是细胞移植治疗很有前途的细胞来源。目的:探明ES细胞是否能被诱导分化为肝细胞,并探索小鼠ES细胞诱导分化为肝细胞的分化条件。方法:在ES细胞培养液中分别加入肝细胞生长因子(HGF)、β-神经细胞生长因子(NGF)和维甲酸(BA)以及与小鼠胎肝细胞共培养,观察分化细胞的形态学变化,逆转录聚合酶链反应(RT—PCR)检测白蛋白和转甲状腺蛋白mRNA水平的表达,免疫组化法检测甲胎蛋白和α1—抗胰蛋白酶蛋白水平的表达。结果:ES细胞培养液中加入HGF和β-NGFl5天后,分化出较多的上皮样细胞,并检测出白蛋白、转甲状腺蛋白mRNA水平的表达和甲胎蛋白、αl-抗胰蛋白酶蛋白水平的表达,表明ES细胞已诱导分化为肝细胞。ES细胞与胎肝细胞共培养2天后,分化出单一形态的上皮细胞,同样有上述肝细胞标志物的阳性表达。RA诱导出的细胞除转甲状腺蛋白mRNA外,无其他肝细胞标志物的阳性表达。结论:在HGF和β—NGF的作用下,有部分小鼠ES细胞被诱导为肝细胞,RA则无此作用。共培养方法也能诱导出肝细胞标志物阳性的细胞,并且细胞形态较单一。小鼠ES细胞有向肝细胞分化的潜能。  相似文献   

15.
Epithelial cells in embryonic day (ED) 12.5 murine fetal liver were separated from hematopoietic cell populations using fluorescence-activated cell sorting (FACS) and were characterized by immunocytochemistry using a broad set of antibodies specific for epithelial cells (alpha-fetoprotein [AFP], albumin [ALB], pancytokeratin [PanCK], Liv2, E-cadherin, Dlk), hematopoietic/endothelial cells (Ter119, CD45, CD31), and stem/progenitor cells (c-Kit, CD34, Sca-1). AFP(+)/ALB(+) cells represented approximately 2.5% of total cells and were positive for the epithelial-specific surface markers Liv2, E-cadherin, and Dlk, but were clearly separated and distinct from hematopoietic cells (Ter119(+)/CD45(+)). Fetal liver epithelial cells (AFP(+)/E-cadherin(+)) were Sca-1(+) but showed no expression of hematopoietic stem cell markers c-Kit and CD34. These cells were enriched by FACS sorting for E-cadherin to a purity of 95% as defined by co-expression of AFP and PanCK. Purified fetal liver epithelial cells formed clusters in cell culture and differentiated along the hepatocytic lineage in the presence of dexamethasone, expressing glucose-6-phosphatase (G6P) and tyrosine amino transferase. Wild-type ED12.5 murine fetal liver cells were transplanted into adult dipeptidyl peptidase IV knockout mice and differentiated into mature hepatocytes expressing ALB, G6P, and glycogen, indicating normal biochemical function. Transplanted cells became fully incorporated into the hepatic parenchymal cords and showed up to 80% liver repopulation at 2 to 6 months after cell transplantation. In conclusion, we isolated and highly purified a population of epithelial cells from the ED12.5 mouse fetal liver that are clearly separate from hematopoietic cells and differentiate into mature, functional hepatocytes in vivo with the capacity for efficient liver repopulation. Supplementary material for this article can be found on the HEPATOLOGY website (http://www.interscience.wiley.com/jpages/0270-9139/suppmat/index.html).  相似文献   

16.
BACKGROUND/AIMS: Self-renewing stem cells responsible for tissue or organ development and regeneration have been recently described. To isolate such cells using flow cytometry, it should be required to find molecules expressing on their cell surfaces. We have previously reported that, on cells fulfilling the criteria for hepatic stem cells, the hepatocyte growth factor receptor c-Met is expressed specifically in the developing mouse liver. In this study, to determine whether c-Met is an essential marker for hepatic stem cells in other animal strains, we examined the potential for in vivo liver-repopulation in sorted fetal rat-derived c-Met+ cells using the retrorsine model. METHODOLOGY: Using flow cytometry and monoclonal antibodies for c-Met and leukocyte common antigen CD45, fetal rat liver cells were fractionated according to the expression of these molecules. Then, cells in each cell subpopulation were sorted and transplanted into the retrorsine-treated adult rats with two-third hepatectomy. At 9 months post transplant, frequency of liver-repopulation was examined by qualitative and quantitative analyses. RESULTS: When we transplanted c-Met+ CD45- sorted cells, many donor-derived cells formed colonies that included mature hepatocytes expressing albumin and containing abundant glycogen in their cytoplasm. In contrast, c-Met- cells and CD45+ cells could not repopulate damaged recipient livers. CONCLUSIONS: High enrichment of liver-repopulating cells was conducted by sorting of c-Met+ cells from the developing rat liver. This result suggests that c-Met/HGF interaction plays a crucial role for stem cell growth, differentiation, and self-renewal in rat liver organogenesis. Since the c-Met is also expressed in the fetal mouse-derived hepatic stem cells, this molecule could be expected to be an essential marker for such cell population in the various animal strains, including human.  相似文献   

17.
To investigate multitissue engraftment of human primitive hematopoietic cells and their differentiation in goats, human CD34+ Lin- cord blood cells transduced with a GFP vector were transplanted into fetal goats at 45-55 days of gestation. GFP+ cells were detected in hematopoietic and nonhematopoietic organs including blood, bone marrow, spleen, liver, kidney, muscle, lung, and heart of the recipient goats (1.2-36% of all cells examined). We identified human beta2 microglobulin-positive cells in multiple tissues. GFP+ cells sorted from the perfused liver of a transplant goat showed human insulin-like growth factor 1 gene sequences, indicating that the engrafted GFP+ cells were of human origin. A substantial fraction of cells engrafted in goat livers expressed the human hepatocyte-specific antigen, proliferating cell nuclear antigen, albumin, hepatocyte nuclear factor, and GFP. DNA content analysis showed no evidence for cellular fusion. Long-term engraftment of GFP+ cells could be detected in the blood of goats for up to 2 yr. Microarray analysis indicated that human genes from a variety of functional categories were expressed in chimeric livers and blood. The human/goat xenotransplant model provides a unique system to study the kinetics of hematopoietic stem cell engraftment, gene expression, and possible stem cell plasticity under noninjured conditions.  相似文献   

18.
BACKGROUND/AIMS: Recent advances in stem cell research have revealed that hepatic stem/progenitor cells may play an important role in liver development and regeneration. However, a lack of detectable definitive markers in viable cells has hindered their primary culture from adult livers. METHODS: Enzymatically dissociated liver cells from green fluorescent protein (GFP)-transgenic mice, which express GFP highly in liver endodermal cells, were sorted by GFP expression using a fluorescence-activated cell sorter. Sorted cells were characterized, and also low-density cultured for extended periods to determine their proliferation and clonal differentiation capacities. RESULTS: When CD45(-)TER119(-) side-scatter(low) GFP(high) cells were sorted, alpha-fetoprotein-positive immature endoderm-characterized cells, having high growth potential, were present in this population. Clonal analysis and electron microscopic evaluation revealed that each single cell of this population could differentiate not only into hepatocytes, but also into biliary epithelial cells, showing their bilineage differentiation activity. When surface markers were analyzed, they were positive for Integrin-alpha6 and -beta1, but negative for c-Kit and Thy1.1. CONCLUSIONS: Combination of GFP-transgenic mice and fluorescence-activated cell sorting enabled purification of hepatic progenitor cells from adult mouse liver. Further analysis of this population may lead to purification of their human correspondence that would be an ideal cell-source candidate for regenerative medicine.  相似文献   

19.
AIM: To evaluate the effect of intrahepatic transplantation of hepatic oval cells (HOC) on fulminant hepatic failure (FHF) in rats.
METHODS: HOC obtained from rats were labeled with green fluocescent protein (GFP) or 5, 6- carboxyfluorescein diacetate succinmidyl ester (CFDASE). Cell fluorescence was observed under fluorescent microscope at 6, 24, 48 and 72 h after labeling. CFDA- SE labeled HOC (5 × 10^6 cells each rat) were injected into livers of rats with FHF induced by D-galactosamine. Serum albumin (ALB), alanine aminotransferase (ALT), aspartate aminotransferase (AST) and total bilirubin (TBil) levels were measured at different time points. Liver function of rats was examined on days 3, 7, 14 and 21 after HOC transplantation.
RESULTS: The positive rate of GFP and CFDA-SE labeled HOC was 10% and 90%, respectively, with no significant change in cell viabilities. The survival rate was higher in HOC transplantation group than in control group, especially 48 (9/15 vs 6/15) and 72 h (9/15 vs 4/15) after HOC transplantation. The serum ALT, AST and TBil levels were decreased while the serum AIb level was increased after HOC transplantation. Fluorescence became faded and diffused in liver tissues, suggesting that proliferation and differentiation occur in transplanted HOC.
CONCLUSION: CFDA-SE is superior to GFP in labeling HOC, although fluorescence intensity is decreased progressively with cell division. HOC transplantation can improve the liver function and increase the survival rate of recipients.  相似文献   

20.
罗浩  江洪  蔡军  曾彬 《心脏杂志》2006,18(4):392-395
目的建立能够稳定表达绿色荧光蛋白(green fluorescent prote in,GFP)的小鼠胚胎干细胞系,并诱导其向心肌细胞分化。方法质粒pEGFP-N1脂质体复合体转染小鼠胚胎干细胞,经G418筛选后选取GFP强阳性克隆进行扩增建系。对稳定表达GFP的胚胎干细胞系进行畸胎瘤形成检测,观察其多向分化潜能。诱导GFP阳性胚胎干细胞向心肌细胞分化。免疫荧光及RT-PCR检测心肌细胞特异性标志物。结果转染后胚胎干细胞经20次传代后仍然表达GFP,裸鼠皮下接种胚胎干细胞后3050 d均可形成畸胎瘤。GFP阳性胚胎干细胞成功向心肌细胞分化。结论成功建立表达GFP的小鼠胚胎干细胞系,并可诱导其向心肌细胞分化。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号