首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A poly(vinyl alcohol) (PVA) hydrogel composite scaffold containing N,O-carboxymethylated chitosan (NOCC) was tested to assess its potential as a scaffold for cartilage tissue engineering in a weight-bearing environment. The mechanical properties under unconfined compression for different hydration periods were investigated. The effect of supplementing PVA with NOCC (20 wt.% PVA:5 vol.% NOCC) produced a porosity of 43.3% and this was compared against a non-porous PVA hydrogel (20 g PVA: 100 ml of water, control). Under non-hydrated conditions, the porous PVA–NOCC hydrogel behaved in a similar way to the control non-porous PVA hydrogel, with similar non-linear stress–strain response under unconfined compression (0–30% strain). After 7 days’ hydration, the porous hydrogel demonstrated a reduced stiffness (0.002 kPa, at 25% strain), resulting in a more linear stiffness relationship over a range of 0–30% strain. Poisson’s ratio for the hydrated non-porous and porous hydrogels ranged between 0.73 and 1.18, and 0.76 and 1.33, respectively, suggesting a greater fluid flow when loaded. The stress relaxation function for the porous hydrogel was affected by the hydration period (from 0 to 600 s); however the percentage stress relaxation regained by about 95%, after 1200 s for all hydration periods assessed. No significant differences were found between the different hydration periods between the porous hydrogels and control. The calculated aggregate modulus, HA, for the porous hydrogel reduced drastically from 10.99 kPa in its non-hydrated state to about 0.001 kPa after 7 days’ hydration, with the calculated shear modulus reducing from 30.92 to 0.14 kPa, respectively. The porous PVA–NOCC hydrogel conformed to a biphasic, viscoelastic model, which has the desired properties required for any scaffold in cartilage tissue engineering.  相似文献   

2.
A major problem which hinders the applications of neural prostheses is the inconsistent performance caused by tissue responses during long-term implantation. The study investigated a new approach for improving the electrode–neural tissue interface. Hydrogel poly(vinyl alcohol)/poly(acrylic acid) interpenetrating polymer networks (PVA/PAA IPNs) were synthesized and tailored as coatings for poly(dimethylsiloxane) (PDMS) based neural electrodes with the aid of plasma pretreatment. Changes in the electrochemical impedance and maximum charge injection (Qinj) limits of the coated iridium oxide microelectrodes were negligible. Protein adsorption on PDMS was reduced by ~85% after coating. In the presence of nerve growth factor (NGF), neurite extension of rat pheochromocytoma (PC12) cells was clearly greater on PVA/PAA IPN films than on PDMS substrates. Furthermore, the tissue responses of PDMS implants coated with PVA/PAA IPN films were studied by 6-week implantation in the cortex of rats, which found that the glial fibrillary acidic protein (GFAP) immunoreactivity in animals (n = 8) receiving coated implants was significantly lower (p < 0.05) compared to that of uncoated implants (n = 7) along the entire distance of 150 μm from the outer skirt to the implant interface. The coated film remained on the surface of the explanted implants, confirmed by scanning electron microscopy (SEM). All of these suggest the hydrogel coating is feasible and favorable to neural electrode applications.  相似文献   

3.
Spherical microporous matrix type microspheres composed of 330 kD P(HB-HV) (10.8% HV) 20%PCL II containing a range of %BSA loadings have been fabricated using a single emulsion technique with solvent evaporation. Microspheres were generated in high yield (>75%) and the percentage incorporation of BSA had no significant effect on microsphere size distribution, typically 6-50 μm in diameter with a mean of 26.28 ± 2.34 μm, n = 25, for 20% BSA loaded microspheres. The loss of BSA both by partitioning into the aqueous continuous phase and through micropores generated during the precipitation of the fabrication polymer concomitant with solvent evaporation resulted in a low encapsulation efficiency (<15%). When the total cumulative release of BSA was expressed as a percentage of the actual total BSA incorporated, BSA release was only marginally influenced by the theoretical percentage loading suggesting that the amount and duration of BSA release in vitro was initially influenced as much by micropore number and diameter as by the extent of matrix BSA loading and detectable levels of BSA release could be monitored for up to 24 days.  相似文献   

4.
Swollen hydrogels with extended iodine release kinetics is highly desirable for burn and scald treatment. In this paper semi-interpenetrating poly (HEMA–PVP) hydrogels were prepared by radical polymerization followed by thermo-treatment to crosslink its PVP component. Incorporation of PVP component endows the hydrogels responsive to loaded iodine undergoing a reversible shrunken/swollen volume transition. This resulted in a self-regulating iodine release model, in which shrunken hydrogel at high iodine loading decreased drug diffusion thereby reducing burst release, and then gradually swollen hydrogel as drug release ensures rapid release of dissociated drug from strong affinity sites on hydrogel backbone, achieving a burst-free extended release. The hydrogels demonstrated 11.5-fold higher iodine loading than pure pHEMA hydrogel and showed a highest 40% volume shrink. Initial burst release of iodine was efficiently decreased from 12,894 μg/day of pure pHEMA hydrogel to 2570 μg/day of pHEMA/PVP hydrogel with 37% PVP content. Iodine-loaded hydrogels showed zero-order release at three time periods of 0–15 h, 15 h–3.5 days and 3.5–23.5 days corresponding to release rate of 2570, 776 and 493 μg/day. The work gained a new insight into swollen hydrogel drug delivery system with burst-free extended drug release kinetics.  相似文献   

5.
The aggregation of poly(α-hydroxy acid) microspheres during ethylene oxide (EO) gas sterilization makes it difficult for the microspheres to be used in clinical applications. In this study, six kinds of PLLA-PEG-PLLA triblock copolymers (TriPLE) were synthesized with various composition ratios of PEG/PLLA in the range of 0.012 to 0.103. TriPLE microspheres were prepared by the oil-in-water emulsion method. TriPLE microspheres were characterized by using 1H-NMR, gel permeation chromatography (GPC), and differential scanning calorimetry (DSC). After sterilization by EO gas at 55°C, the microspheres were analyzed by scanning electron microscope (SEM), laser diffractometry, standard sieves, X-ray diffraction (XRD), GPC, and DSC. When the composition ratio of PEG/PLLA was above 0.02, the initial crystallinity of TriPLE in microspheres was as high as 50%, and the microspheres were suitable to be sterilized by EO gas. On the other hand, TriPLE microspheres, which had composition ratios of PEG/PLLA below 0.02, had low initial crystallinities of about 30%, and aggregated during EO gas sterilization. For these microspheres, crystallinity increased up to 50% during the sterilization, whereas other TriPLE microspheres did not show any changes in crystallinity. Therefore, the aggregation of TriPLE microspheres during EO gas sterilization was markedly reduced as the initial crystallinity of TriPLE in the microspheres was increased.  相似文献   

6.
The convenient and precise fabrication of drug–hydrogel formulations with satisfactory degradability and a well-controlled drug release profile are crucial factors for injectable hydrogel formulations in clinical applications. Here a new injectable thermosensitive hydrogel formed from poly(ε-caprolactone) (PCL)–poly(ethylene glycol)–poly(ε-caprolactone) amphiphilicco-polymers with 1,4,8-trioxa[4.6]spiro-9-undecanone (TOSUO) moieties incorporated in the poly(ε-caprolactone) (PCL)block (PECT) was constructed to provide a route to tailor the degradation and drug release behavior. The effect of hydrophilic cyclic ether moieties on the degradation of and drug release by PECT hydrogels were evaluated in vitro and in vivo. The results indicated that a freeze-dried powder of paclitaxel-loaded PECT nanoparticles rapidly dissolved in water at ambient temperature with slightly shaking and formed a stable injectable in situ drug–hydrogel formulation at body temperature, which is convenient for clinical operations because it avoids the need for pre-quenching or long-term incubation. The paclitaxel distribution was also more quantitative and homogeneous on entrapping paclitaxel in PECT nanoparticles. Further, the small number of pendant cyclic ether groups in PCL could decrease the cystallinity and hydrophobicity and, as a result, the in vitro and in vivo retention time of PECT hydrogels and the release of entrapped paclitaxel could be tuned from a few weeks to months by varying the amount of PTOSUO in the hydrophobic block. Significantly, paclitaxel-loaded PECT nanoparticles and free paclitaxel could be simultaneously released during the in vitro paclitaxel release from PECT hydrogels. A histopathological evaluation indicated that in vivo injected PECT hydrogels produced only a modest inflammatory response. Thus pendant cyclic ether modification of PCL could be an effective way to achieve the desired degradation and drug release profiles of amphiphilicco-polymer thermosensitive hydrogels and PECT hydrogels may be suitable for local drug delivery.  相似文献   

7.
Photo-cross-linked poly(vinyl pyrrolidone) (PVP) and poly(ethylene oxide)(PEO)/PVP electrospun nanofibrous mats containing complex-bound iodine have been studied. FT-IR spectroscopy analyses have proved that coordination of molecular iodine with carbonyl group and nitrogen atom of pyrrolidone rings of the PVP chains has taken place. The distribution of iodine along the fibers is uniform as revealed by X-ray mapping. The microbiological tests have demonstrated that the iodine complex-containing electrospun mats are highly effective against the Gram-positive bacterium Staphylococcus aureus, the Gram-negative bacterium Escherichia coli and the fungus Candida albicans. Comparison with iodine complex-containing films has shown that the iodine complex-containing nanofibers exhibit a higher killing rate than the films against bacteria E. coli. SEM observations showed that PVP–iodine nanofibrous mats inhibit the adhesion of bacteria S. aureus. These characteristic features make the electrospun iodine-containing nanofibers good candidates for wound-dressing materials.  相似文献   

8.
Poly(lactic-co-glycolic acid) (PLGA) microspheres have been widely used as drug carriers for minimally invasive, local, and sustained drug delivery. However, their use is often plagued by limited controllability of encapsulation efficiency, initial burst, and release rate of drug molecules, which cause unsatisfactory outcomes and several side effects including inflammation. This study presents a new strategy of tuning the encapsulation efficiency and the release rate of protein drugs from a PLGA microsphere by filling the hollow core of the microsphere with poly(ethylene glycol) (PEG) hydrogels of varying cross-linking density. The PEG gel cores were prepared by inducing in situ cross-linking reactions of PEG monoacrylate solution within the PLGA microspheres. The resulting PEG-PLGA core–shell microspheres exhibited (1) increased encapsulation efficiency, (2) decreased initial burst, and (3) a more sustained release of protein drugs, as the cross-linking density of the PEG gel core was increased. In addition, implantation of PEG-PLGA core–shell microspheres encapsulated with vascular endothelial growth factor (VEGF) onto a chicken chorioallantoic membrane resulted in a significant increase in the number of new blood vessels at an implantation site, while minimizing inflammation. Overall, this strategy of introducing PEG gel into PLGA microspheres will be highly useful in tuning release rates and ultimately in improving the therapeutic efficacy of a wide array of protein drugs.  相似文献   

9.
A biodegradable polymer network hydrogel with both hydrophobic and hydrophilic components was synthesized and characterized. The hydrophobic and hydrophilic components were a three-arm poly(ε-caprolactone) maleic acid (PGCL-Ma, as the hydrophobic constituent) and poly(ethylene glycol) diacrylate macromer (PEGDA, as a hydrophilic constituent), respectively. These two polymers were chemically photo-crosslinked to generate a three-dimensional network structure, which were characterized by FT-IR, DSC and SEM. The swelling property of the networks was studied in phosphate-buffered saline (PBS, pH 7.4). The results of this study showed that a wide-range swelling property was obtained by changing the composition ratio of PGCL-Ma to PEGDA. The in vitro release of bovine serum albumin (BSA) from these hydrogels as a function of the PEGDA to PGCL-Ma composition ratio and incubation time was examined and we found that the incorporation of PEGDA into PGCL-Ma increased the initial burst release of BSA. As the PEGDA component increased, the rate of formation of a loose three-dimensional (3D) network structure increased; consequently, the sustained rate and extent of BSA release increased. We suggest that the release of BSA was controlled by both diffusion of BSA through swelling of the hydrophilic phase during an early stage and degradation of the hydrophobic phase during a late stage; and that the relative magnitude of diffusion versus degradation controlled release depended on composition ratio and immersion time.  相似文献   

10.
The use of calcium phosphate cements (CPC) is restricted by their lack of macroporosity and poor drug release properties. To overcome these two limitations, incorporating degradable polymer microparticles into CPC is an attractive option, as polymer microparticles could help to control drug release and induce macroporosity after degradation. Although few authors have yet tested synthetic polymers, the potentiality of polysaccharides’ assuming this role has never been explored. Low-methoxy amidated pectins (LMAP) constitute valuable candidates because of their biocompatibility and ionic and pH sensitivity. In this study, the potentiality of a LMAP with a degree of esterification (DE) of 30 and a degree of amidation (DA) of 19 was explored. The aim of this study was to explore the influence of LMAP microspheres within the composite on the cement properties, drug release ability and final macroporosity after microspheres degradation. Three LMAP incorporation ratios, 2%, 4% and 6% w/w were tested, and ibuprofen was chosen as the model drug. In comparison with the CPC reference, the resulting composites presented reduced setting times and lowered the mechanical properties, which remained acceptable for an implantation in moderate-stress-bearing locations. Sustained release of ibuprofen was obtained on at least 45 days, and release rates were found to be controlled by the LMAP ratio, which modulated drug diffusion. After 4 months of degradation study, the resulting CPC appeared macroporous, with a maximum macroporosity of nearly 30% for the highest LMAP incorporation ratio, and interconnectivity between pores could be observed. In conclusion, LMAP appear as interesting candidates to generate macroporous bone cements with tailored release properties and macroporosity by adjusting the pectin content within the composites.  相似文献   

11.
A method suitable for transfer of poly(ε-caprolactone) and poly(L-lactide) microspheres (synthesized by pseudoanionic dispersion polymerization of ε-caprolactone and L-lactide in heptane1,4-dioxane mixed solvent) from heptane to water was developed. This method consists of treating the microspheres with KOH-ethanol in the presence of surfactants (nonionic Triton X-405, anionic sodium dodecyl sulfate (SDS), and zwitterionic ammonium sulfobetaine-2 (ASB)). Partial hydrolysis of polyesters results in the formation of hydroxyl and carboxyl groups in the surface layer of microspheres and enhances their stability in water-based media. Minimal concentrations of surfactants, needed to obtain stable suspensions of particles, were equal to 3 × 10-2, and 6 × 10-2, and 3 × 10-2 mol l-1 for Triton X-405, SDS, and ASB, respectively. In the case of poly(ε-caprolactone) microspheres, suspensions in water were stable for all three surfactants for pH values ranging from 3 to 11. Suspensions of poly(L-lactide) were stable in the same range of pH values only for ASB. Surface charge density determined by electrophoretic mobility varied for poly(ε-caprolactone) microspheres from 2.6 × 10-7 to 8.9 × 10-7 mol m-2, for particles stabilized with Triton X-405 and ASB, respectively. In the case of poly(L-lactide) microspheres, surface charge density varied from 3.9 × 10-7 (stabilizer: Triton X-405) to 7.4 × 10-7 mol m-2 (stabilizer: ASB). Carboxyl groups located in the surface layer of poly(L-lactide) microspheres were used for covalent immobilization of 6-aminoquinoline, a fluorophore with an amino group. Maximum surface concentration of immobilized 6-aminoquinoline was equal to 1.9 × 10-6 mol m-2. Poly(ε-caprolactone) microspheres transferred into water were loaded with ethyl salicylate. Loading up to 38% (w/w) was obtained.  相似文献   

12.
This study seeks to determine the effect of ionic ligands on the drug delivery characteristics of biodegradable polyurethane materials synthesized from lysine diisocyanate (LDI) and glycerol. Two naturally occurring, structurally related ionic species, choline chloride (CC) and isethionic acid (ISE), along with 3,3-dimethyl-butanol (DMB), their neutral carbon analog, were covalently incorporated into LDI–glycerol polyurethane materials. Selected organometallic and tertiary amine catalysts were used to fashion films and foams, respectively. The potent anticancer compound DB-67, a fluorescent camptothecin derivative, was also covalently linked to the polyurethane constructs. It was first determined that the sulfonate functional group on ISE does not react to a significant degree with isocyanate. The morphological characteristics of the polyurethane films and foams were assessed via scanning electron microscopy, showing significant differences related to the ionic ligands. The ionic materials displayed increased swelling in aqueous media over the neutral control materials. Differences in the distribution of DB-67 throughout the films and foams were then detected by fluorescence microscopy. The drug delivery characteristics of the materials were then evaluated in vitro, revealing accelerated release from ionic materials. The results of this study demonstrate the unique effects that incorporation of ionic ligands into LDI–glycerol polyurethanes have on the morphology and drug distribution of the materials. These differences have a significant impact on the drug delivery characteristics of the materials, and this information should prove useful in the design and synthesis of biodegradable controlled release systems.  相似文献   

13.
In situ forming implants are an attractive choice for controlled drug release into a fixed location. Currently, rapidly solidifying solvent exchange systems suffer from a high initial burst, and sustained release behavior is tied to polymer precipitation and degradation rate. The present studies investigated addition of hydroxyapatite (HA) and drug-loaded poly(β-amino ester) (PBAE) microparticles to in situ forming poly(lactic-co-glycolic acid) (PLGA)-based systems to prolong release and reduce burst. PBAEs were synthesized, imbibed with simvastatin (osteogenic) or clodronate (anti-resorptive), and then ground into microparticles. Microparticles were mixed with or without HA into a PLGA solution, and the mixture was injected into buffer, leading to precipitation and creating solid scaffolds with embedded HA and PBAE microparticles. Simvastatin release was prolonged through 30?days, and burst release was reduced from 81 to 39% when loaded into PBAE microparticles. Clodronate burst was reduced from 49 to 32% after addition of HA filler, but release kinetics were unaffected after loading into PBAE microparticles. Scaffold dry mass remained unchanged through day 15, with a pronounced increase in degradation rate after day 30, while wet scaffolds experienced a mass increase through day 25 due to swelling. Porosity and pore size changed throughout degradation, likely due to a combination of swelling and degradation. The system offers improved release kinetics, multiple release profiles, and rapid solidification compared to traditional in situ forming implants.  相似文献   

14.
Poly (glycerol–sebacate) (PGS) is an elastomeric biodegradable polymer which possesses the ideal properties of drug carriers. In the present study, we prepared a series of PGS implants (5-FU-PGSs) loaded with different weight percent of 5-fluorouracil (2, 5, 7.5 and 10%). We studied the infrared spectrum properties, in vitro degradation and drug release, in vivo degradation and tissue biocompatibility of 5-FU-PGSs, in order to provide detailed information for the application of PGS as biodegradable drug carrier in cancer therapy. Macroscopically, all 5-FU-PGS wafers in phosphate buffer solution (PBS) kept their geometries during the degradation period of 30 days. The in vitro degradation rates of 5-FU-PGSs were accelerated when higher concentration of 5-FU was doped. Scanning electron microscopy observation showed that the surfaces of 5-FU-PGSs with higher concentration of 5-FU had irregular pits. The cumulative drug release profiles of 5-FU-PGSs exhibited a biphasic release with an initial burst release in the first day. After 7 days, almost 100% cumulative release of 5-FU was found for all 5-FU-PGSs.The degradation rate of 5-FU-PGSs in vivo was much quicker than that in vitro. Hematoxylin and eosin staining showed that no remarkable inflammations were observed in the tissue surrounding 5-FU-PGS implants, suggesting 5-FU-PGSs had good biocompatibility and no tissue toxicity. In vitro anti-tumor activity assay suggested that 5-FU-PGSs exhibited anti-tumor activity through sustained-release drug mode. These results demonstrate that PGS is a candidate of biodegradable drug carriers.  相似文献   

15.
Poly(ε-caprolactone) (PCL) microspheres containing c. 3% bovine serum albumin (BSA) were prepared by melt encapsulation and solvent evaporation techniques. PCL, because of its low Tm, enabled the melt encapsulation of BSA at 75°C thereby avoiding potentially toxic organic solvents such as dichloromethane (DCM). Unlike the solvent evaporation method, melt encapsulation led to 100% incorporation efficiency which is a key factor in the microencapsulation of water-soluble drugs. Examination of the stability of the encapsulated protein by sodium dodecyl sulphate-polyacrylamide gel electrophoresis (SDS-PAGE) demonstrated that protein integrity was unaffected by both methods of encapsulation. In vitro release of the protein into phosphate buffer examined at 37 °C from microspheres prepared by both techniques showed that the release rate from melt-encapsulated microspheres was somewhat slower compared to the release from solvent-evaporated spheres. Both released around 20% of the incorporated protein in 2 weeks amounting to approximately 6.5 μgmg-1 of microspheres. Although the diffusivity of macromolecules in PCL is rather low, it is shown that PCL microspheres are capable of delivering sufficient quantity of proteins by diffusion for prolonged periods to function as a carrier for many vaccines. Unlike poly(lactic acid) (PLA) and poly(glycolic acid) (PGA) polymers which generate extreme acid environments during their degradation, the delayed degradation characteristics of PCL do not generate an acid environment during protein release and, therefore, may be advantageous for sustained delivery of proteins and polypeptides.  相似文献   

16.
In this paper, a series of copolymer hydrogels were fabricated from methacrylated poly(γ-glutamic acid) (mPGA) and poly(ethylene glycol) diacrylate (PEGDA). The effect of ionic strength and pH on the swelling behavior and mechanical properties of these hydrogels were studied in detail. Release of Rhodamine B as a model drug from the hydrogel was evaluated under varied pH. In vitro photoencapsulation of bovine cartilage chondrocytes was performed to assess the cytotoxicity of this copolymer hydrogel. The results revealed that the copolymer hydrogel is ionic- and pH-sensitive, and does not exhibit acute cytotoxicity; this copolymer hydrogel may have promising application as matrix for controlled drug release and scaffolding material in tissue engineering.  相似文献   

17.
Predicting Anatomical Therapeutic Chemical (ATC) code of drugs is of vital importance for drug classification and repositioning. Discovering new association information related to drugs and ATC codes is still difficult for this topic. We propose a novel method named drug–domain hybrid (dD-Hybrid) incorporating drug–domain interaction network information into prediction models to predict drug’s ATC codes. It is based on the assumption that drugs interacting with the same domain tend to share therapeutic effects. The results demonstrated dD-Hybrid has comparable performance to other methods on the gold standard dataset. Further, several new predicted drug-ATC pairs have been verified by experiments, which offer a novel way to utilize drugs for new purposes effectively.  相似文献   

18.
Soft hydrogels with elasticity modulus values lower than 100 kPa that are tough and biodegradable are of great interest in medicine and in tissue engineering applications. We have developed a series of soft hydrogel structures from different methacrylate-functionalized triblock copolymers of poly(ethylene glycol) (PEG) with poly(trimethylene carbonate) (PTMC) by photo-crosslinking aqueous solutions of the macromonomers in 2.5 and 5 wt.% colloidal dispersions of clay nanoparticles (Laponite XLG). The length of the PTMC blocks of the macromonomers and the clay content determined the physicomechanical properties of the obtained hydrogels. While an increase in the PTMC block length in the macromonomers from 0.2 to 5 kg/mol resulted in a decrease in the gel content, the addition of 5 wt.% Laponite nanoclay to the crosslinking solution lead to very high gel contents of the hydrogels of more than 95%. The effect of PTMC block length on the mechanical properties of the hydrogels was not as pronounced, and soft gels with a compressive modulus of less than 15 kPa and toughness values of 25 kJ m?3 were obtained. However, the addition of 5 wt.% Laponite nanoclay to the formulations considerably increased the compressive modulus and resilience of the hydrogels; swollen nanocomposite networks with compressive modulus and toughness values of up to 67 kPa and 200 kJ m?3, respectively, could then be obtained. The prepared hydrogels were shown to be enzymatically degradable by cholesterol esterase and by the action of macrophages. With an increase in PTMC block length in the hydrogels, the rates of mass loss increased, while the incorporated Laponite nanoclay suppressed degradation. Nanocomposite hydrogel structures with a designed gyroid pore network architecture were prepared by stereolithography. Furthermore, in the swollen state the porous gyroid structures were mechanically stable and the pore network remained fully open and interconnected.  相似文献   

19.
The therapeutic use of biological molecules such as growth factors and monoclonal antibodies is challenging in view of their limited half-life in vivo. This has elicited the interest in delivery materials that can protect these molecules until released over extended periods of time. Although previous studies have shown controlled release of biologically functional BMP-2 and TGF-β from silica sol–gels, more versatile release conditions are desirable. This study focuses on the relationship between room temperature processed silica sol–gel synthesis conditions and the nanopore size and size distribution of the sol–gels. Furthermore, the effect on release of large molecules with a size up to 70 kDa is determined. Dextran, a hydrophilic polysaccharide, was selected as a large model molecule at molecular sizes of 10, 40 and 70 kDa, as it enabled us to determine a size effect uniquely without possible confounding chemical effects arising from the various molecules used. Previously, acid catalysis was performed at a pH value of 1.8 below the isoelectric point of silica. Herein the silica synthesis was pursued using acid catalysis at either pH 1.8 or 3.05 first, followed by catalysis at higher values by adding base. This results in a mesoporous structure with an abundance of pores around 3.5 nm. The data show that all molecular sizes can be released in a controlled manner. The data also reveal a unique in vivo approach to enable release of large biological molecules: the use more labile sol–gel structures by acid catalyzing above the pH value of the isoelectric point of silica; upon immersion in a physiological fluid the pores expand to reach an average size of 3.5 nm, thereby facilitating molecular out-diffusion.  相似文献   

20.
An effective strategy was developed to fabricate a supramolecular hydrogel with the complexation of α-cyclodextrins (α-CDs) and monoend-functionalized low molecular weight methoxy poly(ethylene glycol) (mPEG, Mn=2000) micelles. Hydrophobic cinnamic acid was immobilized on methoxy poly(ethylene glycol) via L-lysine as linker to prepare amphiphilic mPEG. The monoend-functionalized mPEG self-assembled micelles in aqueous solution. The size and size distribution of the micelles were tested by dynamic laser scattering (DLS). The morphology of the micelles was observed by SEM, TEM and AFM. The critical micelle concentration (CMC) was tested and it was 42.5 mg/L. The monodisperse micelles had core-shell structure and the mean diameter was around 40 nanometers. α-cyclodextrins were added in the suspension of micelles to form supramolecular hydrogel with the polypseudorotaxanes complexation. Hydrophilic drug doxorubicin hydrochloride was used as model drug to study the release profile. The results showed that the hydrogel was a promising carrier for drug delivery.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号