首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 437 毫秒
1.
Methacrylate resin-based sealers have attracted wide attention because of their easy handling, superior aesthetic qualities, good mechanical properties and excellent adhesive ability with dentin. 2,2-Bis[4-(2′-hydroxy-3′-methacryloyloxypropoxy)-phenyl]-propane (Bis-GMA) is the main component of the newly developed commercial root canal sealer 'Epiphany', which is one of the methacrylate resin-based sealers. In order to further reduce the polymerization volume shrinkage of Bis-GMA, 4,4′-(α-methylbenzylidene)-bis(2′-hydroxy-3′-methacryloyloxy-propoxy)benzene (4,4′-AMBHMB) with higher molecular weight and larger molecular volume was synthesized to replace Bis-GMA as one of the components of the root canal sealer used in this study. The structure of monomer 4,4′-AMBHMB was confirmed by FT-IR, 1H-NMR, mass spectrum and elemental analysis. The photopolymerization behavior of mixture of 4,4′-AMBHMB and triethylene glycol dimethacrylate (TEGDMA) was investigated by FT-IR. Degree of double bond conversion, volume shrinkage, water sorption and solubility, diffusion coefficient value, flexure strength and glass transition temperature of 4,4′-AMBHMB/TEGDMA system with a mass ratio of 50:50 were measured. A 50:50 Bis-GMA/TEGDMA formulation was used as reference. The results illustrated that 4,4′-AMBHMB/TEGDMA system had the same double bond conversion and water sorption with Bis-GMA/TEGDMA system. Polymerization shrinkage, water solubility and diffusion coefficient of 4,4′-AMBHMB/TEGDMA system were lower than that of the Bis-GMA/TEGDMA system, whereas the flexural strength and glass-transition temperature of 4,4′-AMBHMB/TEGDMA system were higher than that of the Bis-GMA/TEGDMA system.  相似文献   

2.
In this study, a dimethacrylate monomer, 1,4-Bis[2-(4-(2′-hydroxy-3′-methacryloyloxy-propoxy)phenyl)-2propyl]benzene (BMPPB) was synthesized to replace 2,2-bis[4-(2′-hydroxyl-3′-methacryloyloxy-propoxy)phenyl]propane (Bis-GMA) as one component of dental restorative materials. The structure of BMPPB and its intermediate product 1,4-bis[2-(4-(oxiranylmethoxy)phenyl)-2propyl]benzene (BOPPB) were confirmed by Fourier transform infrared (FTIR) spectroscopy, proton nuclear magnetic resonance spectroscopy (1H-NMR), and elemental analysis. In order to evaluate the possibility of replacing Bis-GMA with BMPPB in dental resin, double bond conversion (DC), polymerization shrinkage, contact angle, water sorption (WS) and solubility (SL), and flexural strength (FS) and modulus of BMPPB/tri(ethylene glycol)dimethacrylate (TEGDMA) (50/50?wt) resin system and Bis-GMA/BMPPB/TEGDMA (25/25/50?wt) resin system were studied. Commercially used Bis-GMA/TEGDMA (50/50?wt) dental resin system was used as reference. The results showed that BMPPB-contained copolymer had higher DC, higher WS and SL than the copolymer that only contained Bis-GMA (p?<?0.05). All of the copolymers had nearly the same contact angle (p?>?0.05). BMPPB/TEGDMA resin system had lower polymerization shrinkage, higher FS and modulus (p?<?0.05) than Bis-GMA/TEGDMA resin system. There was no significant difference on polymerization shrinkage, FS and modulus (p?>?0.05) between Bis-GMA/BMPPB/TEGDMA resin system and Bis-GMA/TEGDMA resin system. Before and after water immersion, both FS and modulus of every copolymer did not change significantly (p?>?0.05). Therefore, BMPPB had potential to be used to replace Bis-GMA as base resin in dental restorative materials, but many studies should be undertaken further.  相似文献   

3.
Lu H  Stansbury JW  Nie J  Berchtold KA  Bowman CN 《Biomaterials》2005,26(12):1329-1336
Reactive diluents such as triethyleneglycol-dimethacrylate (TEGDMA) have been widely used with bisphenol-A-glycidyl-dimethacrylate (Bis-GMA) to achieve restorative resins with appropriate viscosity and higher conversion. However, additional water sorption and polymerization shrinkage were also introduced. The aim of this work is to investigate whether the cure and material properties can be improved in dental resins containing novel mono-(meth)acrylates as reactive diluents so that these Bis-GMA-based copolymers have reduced polymerization shrinkage but higher overall double bond conversion. Several ultra-high-reactivity mono-(meth)acrylates that contain secondary functionalities have been synthesized and investigated. The polymerization rate and double bond conversion were monitored using photo-FTIR. Polymerization shrinkage, dynamic mechanical analysis, and flexural strength were characterized. Compared with the Bis-GMA/TEGDMA control, the Bis-GMA/mono-methacrylate systems studied showed higher final conversions, faster curing rates, and decreased polymerization shrinkage. Our optimum system Bis-GMA/morpholine carbamate methacrylate achieved 86% final conversion (vs. 65%), a polymerization rate 3.5 times faster, and a 30% reduction in polymerization volumetric shrinkage. These results indicate that certain highly reactive, novel mono-(meth)acrylates possess very promising potential to replace TEGDMA as reactive diluents and can readily be applied to develop superior dental resins.  相似文献   

4.
A synthesized benzothiazole containing mono-methacrylate monomer BTTMA was incorporated into Bis-GMA/TEGDMA dental resin system with a series of mass concentration from 5 to 30 wt.% as an antibacterial agent. The influence of BTTMA on physicochemical properties of dental resin system, such as double bond conversion (DC), volumetric shrinkage (VS), flexural strength (FS) and modulus (FM), water sorption (WS) and solubility (SL) were investigated. Direct contact testing and agar diffusion testing were used to evaluate the antibacterial activity of BTTMA containing dental resin. The results showed that BTTMA could endow dental resin with significant antibacterial activity when its concentration reached a certain amount (20 wt.%), and the antibacterial activity of BTTMA containing dental resin was mainly attributed to the immobilized BTTMA instead of the unreacted leachable BTTMA. BTTMA had no negative effect on physicochemical properties of dental resin, and even some BTTMA containing dental resins had advantages like higher DC, lower VS and WS when compared with control resin. Therefore, BTTMA could be considered as a suitable antibacterial agent in dental material, but much more researches concerned about biocompatibility should be done in future to prove whether it could be applied in clinic.  相似文献   

5.
The effect of dilution of 2,2-bis (4-(2-hydroxy-3-methacryloxyprop-1-oxy) phenyl) propane (Bis-GMA) with 2,2-bis(4-(2-methacryloxyprop-1-oxy)phenyl) propane (CH3Bis-GMA) on extent of polymerization (Ep) was investigated by FTIR and NMR. The results correlate well with Ep values of the system and its flexibility probed by Tg (obtained by DSC). Spatially resolved photopolymerization kinetics and polymerization shrinkage (PS, i.e. volumetric polymerization contraction) was also studied by stray-field imaging (STRAFI-MRI). PS was obtained in the presence of oxygen from the atmosphere as the total volumetric contraction. All the results were compared with those obtained for the Bis-GMA/TEGDMA (triethylene glycol dimethacrylate) system. Use of Bis-GMA mixed with hydrophobic low viscosity CH3Bis-GMA comonomer, as a substitute for the commonly used TEGDMA, resulted in improving significantly properties such as PS, water sorption and Ep, thereby reducing the unreacted double bond concentration.  相似文献   

6.
A new urethane dimethacrylate TMA was synthesized through a typical urethane reaction. TMA was used to replace 1,6-bis(methacryloxy-2-ethoxycarbonyl- amino)-2,4,4- trimethylhexane (UDMA) in UDMA based composite partially or totally to prepare TMA containing composites. Critical properties of TMA containing composites were investigated. 2,2-bis[4(2-hydroxy-3-methacryloy- propyloy)phenyl]propane (Bis-GMA) based and UDMA based composites were used as references. FT-IR and 1H-NMR confirmed the structure of TMA. All of experimental dental resin composites had the similar double bond conversion (p?>?0.05). With a certain amount of TMA, TMA containing composites could have lower volumetric shrinkage (p?<?0.05) and shrinkage stress (p?<?0.05) than control groups. Water sorption, solubility, flexural strength and modulus of TMA containing composites were not worse than those of control groups. All of TMA containing composites and UDMA based composite had the same fracture toughness (p?>?0.05), which was higher than that of Bis-GMA based composite (p?<?0.05). TMA has potential as Bis-GMA substitute to prepare Bis-GMA free dental resin composites with low shrinkage stress.  相似文献   

7.
The goal of this study is to evaluate the hypothesis that the properties of the resin adhesive might affect the microtensile bond strength (MTBS) of multibottle dental adhesive system. In order to alter the properties, the experimental resin adhesives containing 2,2-bis (4-2-hydroxy-3-methacryloyloxypropoxyphenyl)propane (Bis-GMA) and triethylene glycol dimethacrylate (TEGDMA) at various ratios were prepared. Degree of conversion immediately after curing (DC-immed), degree of conversion at 48 h after curing (DC-48h) of a thin coat of the experimental adhesives, the flexural strength (FS) of the bulk specimens made of the experimental adhesives, pH, viscosity at shear rate of 1 S(-1), and the microtensile bond strength (MTBS) values of the adhesives to dentin were investigated. The maximum MTBS and FS values of the resin adhesives were observed when the ratio of Bis-GMA/TEGDMA was 60/40. However, pH and viscosity values increased with increasing Bis-GMA content in the adhesives. When Bis-GMA content was more than 60 wt %, the viscosity increased exponentially and restricted the DC and FS, and accordingly decreased the bond strength. The stronger the resin adhesives were, the higher the bond strength to dentin could be obtained.  相似文献   

8.
Experimental cement formulations were prepared by replacing part of the methylmethacrylate (MMA) liquid phase of a conventional surgical cement with an equivalent weight of 2,2-bis [4(2-hydroxy-3-methacryloxypropoxy) phenyl] propane (Bis-GMA), which is the reaction product of diglycidyl ether of bisphenol A and methacrylic acid. It was found that up to 50 wt % of the MMA could be replaced by Bis-GMA without reductions in flow characteristics of the precured polymers. Cements containing 20, 30, 40, and 50 wt % of Bis-GMA in the liquid component were prepared. Over this range of Bis-GMA wt %, it was found that, relative to the unmodified cement, the volumetric shrinkage (DV), the peak temperature reached during the polymerization reaction (Tp), and the flexural strength (obtained in three-point bend tests) were each significantly reduced, the flexural modulus (obtained in three-point bend tests) increased significantly, the compressive strength increased slightly, while there were no significant effects on any of the other properties determined, namely, degree of conversion of the monomer during the polymerization reaction and the glass transition temperature. The drops in D(V) and Tp indicate that cements whose liquid monomers are modified using Bis-GMA hold promise for use in anchoring total joint replacements. The increase in the crosslinking density with increasing amount of Bis-GMA renders the polymer matrix more brittle. This feature was considered responsible for the reduced flexural strength.  相似文献   

9.
In order to endow dental resin with antibacterial activity, a series of antibacterial quaternary ammonium methacrylate monomers (QAM) with different substituted alkyl chain length (from 10 to 18) were incorporated into commonly used 2,2-bis[4-(2′-hydroxy-3′-methacryloyloxy-propoxy)-phenyl]propane (Bis-GMA)/triethyleneglycol dimethacrylate (TEGDMA) (50?wt/50?wt) dental resin as immobilized antibacterial agents. Double bond conversion (DC), flexural strength (FS) and modulus (FM), and young and mature biofilms inhibition effectiveness of prepared dental resins were studied and Bis-GMA/TEGDMA without QAM was used as reference. Results showed that there was no significant difference on DC, FS, and FM between copolymer with and without 5?wt% QAM. Substituted alkyl chain length of QAM had no influence on DC, FS, and FM of copolymer, but had influence on antibacterial activity of copolymer. Antibacterial activity of copolymer increased with increasing of substituted alkyl chain length of QAM, and the sequence followed as 5%C10?<?5%C11≈5%C12?<?5%C16≈5%C18. Copolymers containing C18 and C16 had the best inhibition effectiveness on both young biofilm and mature biofilm, copolymers containing C12 and C11 only had inhibition effectiveness on young biofilm and copolymer containing C10 had none inhibition effectiveness on neither young biofilm nor mature biofilm.  相似文献   

10.
Polydimethacrylate resins were prepared by photopolymerization of Bis-GMA, TEGDMA, UDMA or Bis-EMA (4) monomer, initiated by camphoroquinone/N,N-dimethylaminoethyl methacrylate system. The study of physical properties of these resins showed that TEGDMA seems to create the most dense polymer network, which however is the most flexible (0.74GPa), absorbs the highest amount of water (6.33 wt%) and releases the lowest amount of unreacted monomer (2.41 microg/mm(3)). UDMA and Bis-EMA (4) create more rigid networks, which absorb lower water and release higher unreacted monomer than TEGDMA. Bis-EMA (4) absorbs the lowest water amount (1.79 wt%) and releases the highest amount of unreacted monomer (14.21 microg/mm(3)). Bis-GMA leads to the formation of the most rigid network (1.43 GPa), which absorbs lower water than the resin made by TEGDMA but higher than the resin made by UDMA and Bis-EMA (4). Copolymers of Bis-GMA with the other monomers were also prepared, using various monomer combinations and molar ratios. Copolymers Bis-GMA/TEGDMA (50/50 and 70/30 wt%) showed significantly higher values for Young's modulus (1.83 and 1.78 GPa) than those predicted by the linear dependence of the values on the copolymer composition. Gradual replacement of TEGDMA with UDMA or/and Bis-EMA (4) in copolymerization with Bis-GMA resulted in more flexible resins with lower water sorption and higher solubility values, depending on the TEGDMA content.  相似文献   

11.
Abstract

Urethane-based polymers are very biocompatible in many biomedical applications. This study reports the synthesis of new low viscosity urethane dimethacrylates and evaluation of the formed composites. New urethane dimethacrylates were synthesized and formulated to form the composites. Compressive strength was used as a primary tool to evaluate the mechanical property. Water sorption, solubility, degree of conversion, flexural strengths and shrinkage were also investigated. It was found that liquid urethane dimethacrylates could be synthesized by derivatizing isocyanates with asymmetrical methacrylates. By eliminating diluent triethylene glycol dimethacrylate, the new urethane dimethacrylate-composed composites showed significantly higher modulus, lower water sorption, lower solubility and lower shrinkage, as compared to commercial BisGMA- and UDMA-based ones.  相似文献   

12.
This study investigated the leaching of monomers (Bis-GMA and TEGDMA) from nano-hybrid (Filtek Supreme) and flowable (Filtek Flow) dental composite resins cured with LED or conventional halogen curing lights, and immersed in saliva or water for 24 h. Nine disc specimens were made for each experimental group. After the polymerization process, the specimens were immersed in either water or saliva and incubated at 37 degrees C for 24 h. Eluted Bis-GMA and TEGDMA monomers were detected using high performance liquid chromatography (HPLC). The data were analyzed using three-way ANOVA (p = 0.05) and the independent samples t test. TEGDMA (53.15-1 microg/L) was leached from the resins at a higher level than Bis-GMA (28-0.5 microg/L) (p < 0.01), regardless of the affecting factors: composite type, solvent (media) and type of curing light. In general, Filtek Flow resin released more TEGDMA than Filtek Supreme (p < 0.05), but the Supreme resin released more Bis-GMA than TEGDMA (p < 0.05). Halogen light induced greater monomer elution than LED light immersion in water. Saliva released more TEGDMA than water (p < 0.05). We conclude that (1) total leached TEGDMA was higher than total Bis-GMA, (2) saliva and halogen light (lower intensity than LED) leached more monomers from the resins, and (3) the flowable composite resin leached more TEGDMA than the nano-hybrid.  相似文献   

13.
The applications of dental restorative composite resins containing 2,2 bis [4-(2-hydroxy-3-methacryloyloxy propoxy) phenyl] propane (Bis-GMA), as a base resin, and triethylene glycol dimethacrylate (TEGDMA), as a diluent, are often limited in dentistry due to the relatively large amount of volumetric shrinkage that occurs during the curing reaction. In this study, various new resin matrices were examined for use as dental composites in order to reduce the amount of volumetric shrinkage that occurs in dental composites as a result of curing. Bis-GMA derivatives were synthesized by substituting methyl groups for hydrogen on the phenyl ring. The derivatives of TEGDMA with different chain lengths or reactive groups were also examined. The molecular structural changes in the TEGDMA derivatives were not effective in reducing the level of volumetric shrinkage. The resin matrix containing a Bis-GMA derivative and TEGDMA showed a reduced amount of volumetric shrinkage in proportion to the number of methyl groups on the phenyl rings. Polymerization with a mixture of Bis-GMA, its derivatives and a diluent is a promising strategy for obtaining a polymer with a low amount of volumetric shrinkage. A comparison of the volumetric shrinkage of dental composites containing Bis-GMA, TMBis-GMA (2,2-bis[3,5-dimethyl, 4-(2-hydroxy-3-methacryloyloxy propoxy) phenyl] propane)), and TEGDMA with that prepared from a Bis-GMA and TEGDMA mixture showed that the volumetric shrinkage reduction in the new resin was approximately 50%. Furthermore, the mechanical strength of the former was higher than that of the latter.  相似文献   

14.
To develop resin-modified glass ionomer materials, we synthesized methacrylate-functionalized acrylic copolymer (PAlk-LeuM) derived from acrylic acid, itaconic acid and N-acryloyl-L-leucine using (N-methacryloyloxyethylcarbamoyl-N′-4-hydroxybutyl) urea as the modifying agent. The spectroscopic (proton/carbon nuclear magnetic resonance, Fourier transform infrared spectroscopy) characteristics, and the gel permeation chromatography/Brookfield viscosity measurements were analysed and compared with those of the non-modified copolymer (PAlk-Leu). The photocurable copolymer (PAlk-LeuM, ~14?mol% methacrylate groups) and its precursor (PAlk-Leu) were incorporated in dental ionomer compositions besides diglycidyl methacrylate of bisphenol A (Bis-GMA) or an analogue of Bis-GMA (Bis-GMA-1), triethylene glycol dimethacrylate and 2-hydroxyethyl methacrylate. The kinetic data obtained by photo-differential scanning calorimetry showed that both the degree of conversion (60.50–75.62%) and the polymerization rate (0.07–0.14?s?1) depend mainly on the amount of copolymer (40–50 wt.%), and conversions over 70% were attained in the formulations with 40 wt.% PAlk-LeuM. To formulate light-curable cements, each organic composition was mixed with filler (90 wt.% fluoroaluminosilicate/10 wt.% hydroxyapatite) into a 2.7:1 ratio (powder/liquid ratio). The light-cured specimens exhibited flexural strength (FS), compressive strength (CS) and diametral tensile strength (DTS) varying between 28.08 and 64.79?MPa (FS), 103.68–147.13?MPa (CS) and 16.89–31.87?MPa (DTS). The best values for FS, CS and DTS were found for the materials with the lowest amount of PAlk-LeuM. Other properties such as the surface hardness, water sorption/water solubility, surface morphology and fluorescence caused by adding the fluorescein monomer were also evaluated.  相似文献   

15.
In this work the effect of dilution with TEGDMA on the kinetics of Bis-GMA polymerization and on the extent of polymerization or degree of conversion was studied using (a) DSC and (b) NMR. The systems with lower viscosity and lower Tg exhibited higher extent of polymerization. For Bis-GMA/TEGDMA mixtures the calculated Tg values were found to be higher than the experimental values suggesting that a dilution effect is predominant rather than intermolecular hydrogen bonding. Solid state NMR has been shown to be a convenient method for measuring the total amount of conversion in a mixed monomer system. The disappearance of the NMR solution spectrum was used to reveal overall polymerization kinetics.  相似文献   

16.
Shrinkage strain-rates of dental resin-monomer and composite systems   总被引:2,自引:0,他引:2  
Atai M  Watts DC  Atai Z 《Biomaterials》2005,26(24):5015-5020
The purpose of this study was to investigate the shrinkage strain rate of different monomers, which are commonly used in dental composites and the effect of monomer functionality and molecular mass on the rate. Bis-GMA, TEGDMA, UDMA, MMA, HEMA, HPMA and different ratios of Bis-GMA/TEGDMA were mixed with Camphorquinone and Dimethyl aminoethyle methacrylate as initiator system. The shrinkage strain of the samples photopolymerised at Ca. 550 mW/cm2 and 23 degrees C was measured using the bonded-disk technique of Watts and Cash (Meas. Sci. Technol. 2 (1991) 788-794), and initial shrinkage-strain rates were obtained by numerical differentiation. Shrinkage-strain rates rose rapidly to a maximum, and then fell rapidly upon vitrification. Strain and initial strain rate were dependent upon monomer functionality, molecular mass and viscosity. Strain rates were correlated with Bis-GMA in Bis-GMA/TEGDMA mixtures up to 75-80 w/w%, due to the higher molecular mass of Bis-GMA affecting termination reactions, and then decreased due to its higher viscosity affecting propagation reactions. Monofunctional monomers exhibited lower rates. UDMA, a difunctional monomer of medium viscosity, showed the highest shrinkage strain rate (P < 0.05). Shrinkage strain rate, related to polymerization rate, is an important factor affecting the biomechanics and marginal integrity of composites cured in dental cavities. This study shows how this is related to monomer molecular structure and viscosity. The results are significant for the production, optimization and clinical application of dental composite restoratives.  相似文献   

17.
In this work the room-temperature photopolymerization of Bis-GMA, Bis-EMA, urethane dimethacrylate (UDMA) and triethylene glycol dimethacrylate (TEGDMA) induced by camphoroquinone/N,N-dimethylaminoethyl methacrylate, as photo-initiator system, was followed by FT-IR. The results obtained were then fitted by a non-linear least square method to a rational function, which permitted the accurate calculation of the limiting degree of conversion. The latter was found to increase in the order Bis-GMA < Bis-EMA < UDMA < TEGDMA. This trend is discussed in connection with the chemical structure of dimethacrylates. The photopolymerization of mixtures of Bis-GMA/TEGDMA, Bis-GMA/UDMA and Bis-GMA/Bis-EMA showed a good linear relationship of degree of conversion with the mole fraction of Bis-GMA and in the case of the first pair also with the Tg of the initial monomer mixture.  相似文献   

18.
The purpose of this study is to compare the properties of two experimental materials, nano-material (Nano) and Microhybrid, and two trade products, Clearfil AP-X and Filtek Supreme XT. The flexural strength and modulus after 24h water storage and 5000 thermocycles, water sorption, solubility and X-ray opacity were determined according to ISO 4049. The volumetric behavior (DeltaV) after curing and after water storage was investigated with the Archimedes principle. ANOVA was calculated with p<0.05. Clearfil AP-X showed the highest flexural strength (154+/-14 MPa) and flexural modulus (11,600+/-550 MPa) prior to and after thermocycling (117+/-14 MPa and 13,000+/-300 MPa). The flexural strength of all materials decreased after thermocycling, but the flexural modulus decreased only for Filtek Supreme XT. After thermocycling, there were no significant differences in flexural strength and modulus between Filtek Supreme XT, Microhybrid and Nano. Clearfil AP-X had the lowest water sorption (22+/-1.1 microg mm(-3)) and Nano had the highest water sorption (82+/-2.6 microg mm(-3)) and solubility (27+/-2.9 microg mm(-3)) of all the materials. No significant differences occurred between the solubility of Clearfil AP-X, Filtek Supreme XT and Microhybrid. Microhybrid and Nano provided the highest X-ray opacity. Owing to the lower filler content, Nano showed higher shrinkage than the commercial materials. Nano had the highest expansion after water storage. After thermocycling, Nano performed as well as Filtek Supreme XT for flexural strength, even better for X-ray opacity but significantly worse for flexural modulus, water sorption and solubility. The performances of microhybrids were superior to those of the nano-materials.  相似文献   

19.
This study probes the interrelationships between polymerization shrinkage stress development and the polymerization progress with a novel experimental technique. This technique is capable of real time, simultaneous measurement of double-bond conversion and shrinkage stress with the use of a noninvasive near-infrared fiber-optic system, along with a cantilever beam-based tensometer. The results from both filled and unfilled bis-GMA/TEGDMA (70:30 mass ratio) systems showed that the shrinkage stress buildup was concentrated in the latter stages of polymerization, with its dramatic increase linked to the asymptotic approach of conversion to its limiting value. The monotonic increase of shrinkage stress with conversion in the vitrified state is attributed to the dramatic increase of the sample's elastic modulus during the vitrification stage and a certain amount of cooling stress as the sample cools down from the temperature rise caused by the exothermic polymerization and light absorption. Excellent reproducibility of both the polymerization kinetics assessment and the shrinkage stress measurement has been achieved.  相似文献   

20.
In this study, 3,4-methylenedioxybenzene methoxyl methacrylate (MDBMM) was synthesized for the purpose of replacing both triethylene glycol dimethacrylate (TEGDMA) and tertiary amine, which was usually used as a comonomer and coinitiator for dental resin, respectively. Urethane dimethacrylate (UDMA) was chosen as a monomer. Real time near Fourier transform infrared (FTIR) with a horizontal sample holder and dynamic mechanical analyzer (DMA) were used to study the kinetics and mechanical properties, respectively. The results showed that the addition of MDBMM as a coinitiator in UDMA/TEGDMA/CQ (70/30/0.5 wt %) system led to the increase of the rate of polymerization. When compared with the commercial polymerizable amine, 2-(N,N-dimethyl amino)ethyl methacrylate (DMEM), MDBMM showed comparable initiating reactivity and led to higher modulus around human body temperature (37 degrees C). MDBMM as a comonomer resulted in slightly higher final double bond conversion than that of TEGDMA, which brought higher modulus around 37 degrees C. Therefore, MDBMM can be used as both potential coinitiator and comonomer for dental application.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号