首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Tong YW  Shoichet MS 《Biomaterials》2001,22(10):1029-1034
Embryonic hippocampal neurons cultured on surface modified fluoropolymers showed enhanced interaction and neurite extension. Poly(tetrafluoroethylene-co-hexafluoropropylene) (FEP) film surfaces were aminated by reaction with a UV-activated mercury ammonia system yielding FEP-[N/O]. Laminin-derived cell-adhesive peptides (YIGSR and IKVAV) were coupled to FEP surface functional groups using tresyl chloride activation. Embryonic (E18) hippocampal neurons were cultured in serum-free medium for up to 1 week on FEP film surfaces that were modified with either one or both of GYIGSR and SIKVAV or GGGGGGYIGSR and compared to control surfaces of FEP-[N/O] and poly(L-lysine)/laminin-coated tissue culture polystyrene. Neuron-surface interactions were analyzed over time in terms of neurite outgrowth (number and length of neurites), cell adhesion and viability. Neurite outgrowth and adhesion were significantly better on peptide-modified surfaces than on either FEP or FEP-[N/O]. Cells on the mixed peptide (GYIGSR/SIKVAV) and the spacer group peptide (GGGGGGYIGSR) surfaces demonstrated similar behavior to those on the positive PLL/laminin control. The specificity of the cell-peptide interaction was demonstrated with a competitive assay where dissociated neurons were incubated in media containing peptides prior to plating. Cell adhesion and neurite outgrowth diminished on all surfaces when hippocampal neurons were pre-incubated with dissolved peptides prior to plating.  相似文献   

2.
Fluorinated ethylenepropylene copolymer (FEP) and polyvinylidene fluoride (PVDF) can generate static and transient electrical charges, respectively, after bulk molecular rearrangements induced by electrical charging techniques. Neurons cultured on electrically active FEP and PVDF show increased levels of nerve fiber outgrowth compared to electrically neutral material. The purpose of the present study was to determine if the addition of charged surface groups to the surfaces of FEP and PVDF would modify the influence of bulk electrical charges on cultured neurons. Mouse neuroblastoma (Nb2a) cells were cultured on electrically charged and uncharged FEP and PVDF substrates with covalently modified surfaces containing hydroxyl (OH) and amine (NH2) groups. Surface chemical modification was performed on the entire surface or in discrete striped regions. Nb2a cells cultured on electrically active FEP and PVDF showed greater levels of differentiation than cells on electrically neutral substrates. The presence of NH2 groups attenuated these responses in serum-containing media. Cells attached to NH2 rich surfaces generally displayed a flatter morphology and tended to remain attached for longer time periods. Cells cultured on stripe-modified substrates in serum-containing media showed a strong preferential attachment to modified regions, especially on NH2 stripes. In summary, bulk electrical charges are more important than surface charges in stimulating Nb2a cell differentiation. Surface groups serve to modulate neuronal morphology and confer specific attachment promoting properties in serum-containing media. The development of an optimal neuronal regeneration template may require the incorporation of specific bulk and surface properties.  相似文献   

3.
Collagen (Col) hydrogels have poor physicochemical and mechanical properties and are susceptible to substantial shrinkage during cell culture, which limits their potential applications in hard tissue engineering. Here, we developed novel nanocomposite hydrogels made of collagen and mesoporous bioactive glass nanoparticles (mBGns) with surface amination, and addressed the effects of mBGn addition (Col:mBG = 2:1, 1:1 and 1:2) and its surface amination on the physicochemical and mechanical properties of the hydrogels. The amination of mBGn was shown to enable chemical bonding with collagen molecules. As a result, the nanocomposite hydrogels exhibited a significantly improved physicochemical and mechanical stability. The hydrolytic and enzymatic degradation of the Col–mBGn hydrogels were slowed down due to the incorporation of mBGn and its surface amination. The mechanical properties of the hydrogels, specifically the resistance to loading as well as the stiffness, significantly increased with the addition of mBGn and its aminated form, as assessed by a dynamic mechanical analysis. Mesenchymal stem cells cultivated within the Col–mBGn hydrogels were highly viable, with enhanced cytoskeletal extensions, due to the addition of surface aminated mBGn. While the Col hydrogel showed extensive shrinkage (down to ~20% of initial size) during a few days of culture, the shrinkage of the mBGn-added hydrogel was substantially reduced, and the aminated mBGn-added hydrogel had no observable shrinkage over 21 days. Results demonstrated the effective roles of aminated mBGn in significantly improving the physicochemical and mechanical properties of Col hydrogel, which are ultimately favorable for applications in stem cell culture for bone tissue engineering.  相似文献   

4.
Human adipose tissue has been recognized as a source of adult stem cells for tissue engineering applications such as bone, cartilage, and soft tissue repair. For the success of these tissue-engineering approaches, a cell delivery vehicle such as a hydrogel or scaffold is required to position the stem cells at the site of need. Surface modification techniques have been instrumental in the development of scaffolds that promote cell-surface interactions. In this study, poly(caprolactone) (PCL), surfaces were modified in order to promote the attachment and proliferation of adipose-derived stem cells (ASCs). RGD, YIGSR, and IKVAV peptide sequences derived from the extracellular matrix protein laminin were each covalently attached to an aminated polymer surface using carbodiimide chemistry. The surface was characterized using scanning electron microscopy (SEM), goniometry and X-ray photoelectron spectroscopy (XPS). The attachment and proliferation of ASCs was assessed on the different peptide-treated surfaces. XPS analysis confirmed the presence of the peptide sequences on the surface of the polymer as indicated by the increase in the nitrogen/carbon ratio on the surface of the polymer. Among all peptide sequences tested, IKVAV-treated surfaces had a significantly greater number of ASCs bound 2 and 3 days after cell seeding. SEM confirmed differences in the morphology of the cells attached to the three peptide-treated surfaces. These results indicate that IKVAV is a suitable peptide sequence for use in surface modification techniques aimed at improving the attachment of ASCs to a tissue-engineered scaffold.  相似文献   

5.
Being prevalent extracellular matrix components, collagen and glycosaminoglycan (GAG) are co-precipitated as scaffolds for tissue regeneration. However, the amount of GAG incorporated and its long-term retention present a persistent problem. In this study, chemical modifications, namely deamination, methylation and amination, were used to alter the net charge of collagen prior to fabrication of collagen–GAG co-precipitate. While most GAGs were lost in the untreated group and the deaminated group within 1 day, methylation and amination of collagen retained over 20% and 40% GAG after 6 days, respectively. Moreover, over 60% of GAG retention was achieved in the aminated group after cell seeding for 8 days. Furthermore, amination of collagen increased the GAG/hydroxyproline ratio in the co-precipitate to >4.5, approaching that of native nucleus pulposus. Ultrastructural analysis showed that the aminated group contains abundant granular substances resembling the extracellular matrix of native nucleus pulposus. Despite lower initial cell adhesion than untreated, all modified scaffolds promoted proliferation of human mesenchymal stem cells (hMSCs) and showed >95% cell viability at all time points. Cell morphology was distinct among the different groups, being round in the untreated control and methylated groups but elongated in deaminated and aminated groups. hMSCs adhered to scaffolds via collagen receptor integrin α2β1 in all groups, while all but the aminated group showed extensive expression of the general matrix receptor integrin αv. This work reports an effective method, namely amination of collagen, to improve GAG incorporation and retention in collagen–GAG co-precipitates, facilitating the fabrication of GAG-rich collagenous scaffold for intervertebral disc tissue engineering.  相似文献   

6.
Polyethylene oxide (PEO) surfaces reduce non-specific protein and cell interactions with implanted biomaterials and may improve their biocompatibility. PEO-like polymerized tetraglyme surfaces were made by glow discharge plasma deposition onto fluorinated ethylene propylene copolymer (FEP) substrates and were shown to adsorb less than 10 ng/cm2 of fibrinogen in vitro. The ability of the polymerized tetraglyme surfaces to resist leukocyte adhesion was studied in vitro and in vivo. Polymerized tetraglyme and FEP were implanted subcutaneously in mice and removed after 1 day or 4 weeks. Histological analysis showed a similar degree of fibrous encapsulation around all of the 4-week implants. Darkly stained wells were present in the fibrous tissues at the tissue-material interface of both FEP and tetraglyme. Scanning electron micrographs showed that in vivo macrophage adhesion to polymerized tetraglyme was much higher than to FEP. After 2-hour contact with heparinized whole blood, polymorphonuclear leukocyte (PMN) adhesion to polymerized tetraglyme was much higher than to FEP, while platelet adhesion to polymerized tetraglyme was lower than to FEP. When PMNs isolated from blood were suspended in 10% autologous plasma, cell adhesion to polymerized tetraglyme was higher than to FEP; however when the cells were suspended in heat inactivated serum, cell adhesion to FEP was higher than to polymerized tetraglyme. The surface chemistry of polymerized tetraglyme did not change after 2-hour blood contact, but displayed nitrogen functional groups after 1-day implantation and became slightly degraded after 4-week implantation. The surface chemistry of FEP did not change significantly after blood contact or implantation. Loosely bound proteins such as fibrinogen on polymerized tetraglyme may contribute to the adhesion of PMNs and macrophages and ultimately to fibrous encapsulation (the foreign body response) around the implants.  相似文献   

7.
Yue Z  Liu X  Molino PJ  Wallace GG 《Biomaterials》2011,32(21):4714-4724
In this work, polydimethylsiloxane was activated with oxygen plasma and treated with silanes bearing ethylene imine units. Hyaluronic acid was then grafted covalently onto the aminated surfaces. The influence of silane structure on surface amination was assessed and the influence of the modification on surface physiochemical properties and protein adsorption of modified polydimethylsiloxane were investigated. Collagen type I was conjugated onto the modified polydimethylsiloxane to improve its cyto-compatibility for neural applications. In vitro cultivation of rat pheochromocytoma cells on the bioactive polydimethylsiloxane showed a significant increase in cell growth and differentiation. The potential applications of the bio-functionalized polydimethylsiloxane in cochlear implant electrode arrays were discussed.  相似文献   

8.
Superhydrophobic surfaces have been fabricated on flexible fluorinated ethylene propylene (FEP) foils using nanoimprint lithography (NIL) and roughening by plasma etching. The combination of these two techniques results in hierarchical structures and superhydrophobic properties. The icephobic behavior of the surfaces has been studied with measurements of the freezing delay time (FDT) of water droplets on cooled surfaces. It is demonstrated in this paper that the variability of the FDT values is due to the electrostatic surface potential Vs. The impact of this parameter is explored and it is shown that the delay of freezing increases when the surface potential decreases from 0 to ?500 V, and decreases for lower surface potentials. This decrease is related to the saturation effect of contact angle, which is well known in electrowetting literature. Contact angles analysis confirms that this saturation effect occurs around ?500 V in the present experimental case. The effect of potential surface polarity is also discussed. By optimizing surface potentials of FEP hierarchical structures, it is possible to obtain FDT higher than 40 min at ?15 °C.  相似文献   

9.
We have examined the possibility that mouse bone marrow-derived cultured mast cells (BMCMC) have the capacity to attach to and migrate on extracellular matrix components in vitro through the use of time lapse videography. Unactivated mast cells did not display significant interaction with slide flasks coated with either 3% BSA or collagen IV, and FcεRI-mediated activation of BMCMC did not appreciably increase their attachment and migratory characteristics. Both activated and unactivaled BMCMC adhered to surfaces coated with a synthetic IKVAV laminin polypeptide, but this association resulted in the immobilization of the cells to the substrate. BMCMC did not adhere to surfaces coated with laminin, fibronectin or matrigel until Fcε RI-mediated activation, after which they displayed rapid, random movement on these surfaces. Cells continually interacted with laminin. fibronectin or matrigcl by flattening, interspaced by periods of movement as rounded cells with small pseudopodia. The mean velocity of BMCMC on laminin, fibronectin or matrigel was similar and averaged approximately 180 μm/hr. The mean velocity of BMCMC on these three substrates was not significantly different from the mean velocity of monocytes on laminin. The movement of BMCMC on these substrates demonstrated a directional tendency. In summary. these results demonstrate that mast cells activated through FcεRI are capable of attachment to and motion on components of extracellular matrix, and demonstrate one mechanism by which mast cells may migrate to areas of inflammation and wound repair.  相似文献   

10.
Monocytes and macrophages play important roles in host responses to implanted biomedical devices. Monocyte and macrophage interactions with biomaterial surfaces are thought to be mediated by adsorbed adhesive proteins such as fibrinogen and fibronectin. Non-fouling surfaces that minimize protein adsorption may therefore minimize monocyte adhesion, activation, and the foreign body response. Radio-frequency glow discharge plasma deposition (RF-GDPD) of tetraethylene glycol dimethyl ether (tetraglyme) was used to produce polyethylene oxide (PEO)-like coatings on a fluorinated ethylene-propylene (FEP) surface. Electron spectroscopy for chemical analysis (ESCA) and static time of flight secondary ion mass spectrometry (ToF-SIMS) were used to characterize the surface chemistry of tetraglyme coating. Fibrinogen adsorption to the tetraglyme surface was measured with 125I-labeled fibrinogen and ToF-SIMS. Adsorption of fibrinogen to plasma deposited tetraglyme was less than 10 ng cm(-2), a 20-fold decrease compared to untreated FEP or tissue culture polystyrene (TCPS). Monocyte adhesion to plasma deposited tetraglyme was significantly lower than adhesion to FEP or TCPS. In addition, when the surfaces were preadsorbed with fibrinogen, fibronectin, or blood plasma, monocyte adhesion to plasma deposited tetraglyme after 2 h or 1 day was much lower than adhesion to FEP. RF-GDPD tetraglyme coating provides a promising approach to make non-fouling biomaterials that can inhibit non-specific material-host interactions and reduce the foreign body response.  相似文献   

11.
Although the technique of coronary stenting has remarkably improved long-term results in recent years, (sub)acute thrombosis and late restenosis still remain problems to be solved. Metallic surfaces were regarded as thrombogenic, due to their positive surface charges, and stenosis resulted from the activation and proliferation of vascular smooth muscle cells (VSMCs). In this study, a unique surface modification method for metallic surfaces was studied using a self-assembled monolayer (SAM) technique. The method included the deposition of thin gold layers, the chemisorption of disulfides containing functional groups, and the subsequent coupling of PEG derivatives or heparin utilizing the functional groups of the disulfides. All the reactions were confirmed by ATR-FTIR and XPS. The surface modified with sulfonated PEG (Au-S-PEG-SO3) or heparinized PEG (Au-S-PEG-Hep) exhibited decreased static contact angles and therefore increased hydrophilicity to a great extent, which resulted from the coupling of PEG and the ionic groups attached. In vitro fibrinogen adsorption and platelet adhesion onto the Au-S-PEG-SO3 or Au-S-PEG-Hep surfaces decreased to a great extent, indicating enhanced blood compatibility. This decreased interaction of the modified surfaces should be attributed to the non-adhesive property of PEG and the synergistic effect of sulfonated PEG. The effect of the surface modification on the adhesion and proliferation of VSMCs was also investigated. The modified Au-S-PEG-SO3 or Au-S-PEG-Hep surfaces also exhibited decreased adhesion of VSMCs, while the deposited gold layer itself was effective. The enhanced blood compatibility and the decreased adhesion of VSMCs on the modified metallic surfaces may help to decrease thrombus formation and suppress restenosis. It would therefore be very useful to apply these modified surfaces to stents for improved functions. A long-term in vivo study using animal models is currently under way.  相似文献   

12.
Silane coupling agents containing a fluorocarbon chain were prepared in high yields. It was found that silanes can be useful modifiers of the surfaces of glass, metals, and resin composites for dental use. The silane coupling agent CF3(CF2)9CH2CH2Si(OCH3)3 was the best modifier of these surfaces in terms of water and oil repellency. Colorants and experimental bacterial plaque detached much more easily from, and adhered less well to, surfaces modified with this silane coupling agent compared with unmodified surfaces. The surfaces of four teeth of a denture were modified with this silane coupling agent by spreading the agent on the surfaces with a small brush followed by brief drying with a hair drier. The modified tooth surfaces of the denture, which was worn for four months in a heavy smoker's oral cavity, were more stain-resistant than the unmodified tooth surfaces. It is expected that silane coupling agents containing a fluorocarbon chain will be useful surface modifiers for enhancement of oral health.  相似文献   

13.
Trimethylsilane (TMS) plasma nanocoatings were deposited onto stainless steel coupons in direct current (DC) and radio frequency (RF) glow discharges and additional NH3/O2 plasma treatment to tailor the coating surface properties. The chemical stability of the nanocoatings were evaluated after 12 week storage under dry condition (25 °C) and immersion in simulated body fluid (SBF) at 37 °C. It was found that nanocoatings did not impact surface roughness of underlying stainless steel substrates. X-ray photoelectron spectroscopy and Fourier transform infrared spectroscopy were used to characterize surface chemistry and compositions. Both DC and RF nanocoatings had Si- and C-rich composition; and the O- and N-contents on the surfaces were substantially increased after NH3/O2 plasma treatment. Contact angle measurements showed that DC-TMS nanocoating with NH3/O2 treatment generated very hydrophilic surfaces. DC-TMS nanocoatings with NH3/O2 treatment showed minimal surface chemistry change after 12 week immersion in SBF. However, nitrogen functionalities on RF-TMS coating with NH3/O2 post treatment were not as stable as in DC case. Cell culture studies revealed that the surfaces with DC coating and NH3/O2 post treatment demonstrated substantially improved proliferation of endothelial cells over the 12 week storage period at both dry and wet conditions, as compared to other coated surfaces. Therefore, DC nanocoatings with NH3/O2 post treatment may be chemically stable for long-term properties, including shelf-life storage and exposure to the bloodstream for coronary stent applications.  相似文献   

14.
In this study, we synthesized a biomaterial whose surface inhibits non-specific protein and cell attachment. The polymer was designed to mimic the external cell plasma membrane properties through the introduction of particular chemical constituents of the cell membrane: phospholipid polar headgroups. This was done by copolymerizing phosphorylcholine (PC) groups into a polyurethane polymer backbone (PCPUR). Peptides known to induce specific cell attachment were subsequently bound to the surface of this copolymer in a photoadressible manner to obtain surfaces that allowed the attachment of cells in a specific pattern. Two polymers with different phosphorylcholine concentrations were synthesized and their bulk and surface properties were characterized through differential scanning calorimetry, wettability measurements, angle-resolved X-ray photoelectron spectroscopy and time-of-flight secondary ion mass spectrometry. Protein and lipid adsorption investigation using optical waveguide light mode spectroscopy showed that the irreversible adsorption of both proteins and lipids is drastically reduced as a result of simultaneous contributions of the PC groups, molecular mobility and strong hydrophilicity of the polymers. Consequently, this leads to a marked reduction in the cellular attachment response, which further decreases with increasing PC concentration. Finally, when the polymer surface was photo-derivatized, attachment of the neural NG108-15 cell line occurred only on the areas of the PCPUR where the laminin CDPGYIGSR peptide sequence was photoimmobilized. Cell attachment was nevertheless found to be non-specific with respect to the peptide sequence used and reasons for such results are therefore discussed.  相似文献   

15.
Laminin promotes adhesion of various cell types via multiple interactions with cell surface components. We have used a laminin domain involved in adhesion of melanoma cells, peptide F9 (Charonis et al., J. Cell Biol. 107:1253 [( 1988]), to examine its specific interaction with cell surface components. Cells were surface labeled, solubilized, and the cell surface associated macromolecules were purified via laminin and F9 affinity columns. We have observed that a macromolecule with apparent molecular weight 90,000 interacts with laminin and peptide F9. This macromolecule does not change electrophoretic mobility upon reduction, cannot be removed from the cell surface by high salt treatment and partitions in the detergent phase of Triton X-114. These results suggest that this macromolecule is associated with melanoma cell surfaces and may be involved in their interaction with laminin.  相似文献   

16.
Surface adherent monocytes and macrophages play a central role in the inflammatory response to biomaterials. In the present study the adhesion, viability and apoptotic changes in material surface adherent monocytes during the first hours of cell-surface interactions in vitro were studied, using tissue culture polystyrene surfaces coated with human albumin and fibrinogen. Human peripheral blood monocytes were enriched by a two-step gradient centrifugation and resuspended (1 x 10(6)/ml) in RPMI with 10% fetal bovine serum. The cells were added to polystyrene surfaces coated with human fibrinogen or albumin and incubated in 37 degrees C (5% CO2, 100% humidity) for 30 min, 1, 2, 3 and 24 h. The adherent cells were stained for early apoptotic changes (exposed phosphatidylserine) and cell death using Annexin-V-fluorescein and propidium iodide staining, respectively. A bi-phasic adhesion was observed on the fibrinogen coated surface, having the highest number of adherent cells after 30 min and 24 h, while the cell number was markedly reduced after 1-3 h. The number of adherent cells on albumin was relatively low after all short time incubations but had reached a high level after 24 h.The number of adherent dead cells was highest after I h on both albumin (approximately 30%) and fibrinogen (approximately 15%). In the 24 h cultures, the viability of adherent cells was high on both surfaces (95-100%). Viable cells staining positive for early apoptotic changes could only be clearly observed on the albumin coated surface, after 30 min of cell-material surface interaction. Cell death, including apoptotic death, thus seems to play an important role during the initial interactions between monocytes and a foreign surface.  相似文献   

17.
Pathogenic leptospires have the ability to survive and disseminate to multiple organs after penetrating the host. Several pathogens, including spirochetes, have been shown to express surface proteins that interact with the extracellular matrix (ECM). This adhesin-mediated binding process seems to be a crucial step in the colonization of host tissues. This study examined the interaction of putative leptospiral outer membrane proteins with laminin, collagen type I, collagen type IV, cellular fibronectin, and plasma fibronectin. Six predicted coding sequences selected from the Leptospira interrogans serovar Copenhageni genome were cloned, and proteins were expressed, purified by metal affinity chromatography, and characterized by circular dichroism spectroscopy. Their capacity to mediate attachment to ECM components was evaluated by binding assays. We have identified a leptospiral protein encoded by LIC12906, named Lsa24 (leptospiral surface adhesin; 24 kDa) that binds strongly to laminin. Attachment of Lsa24 to laminin was specific, dose dependent, and saturable. Laminin oxidation by sodium metaperiodate reduced the protein-laminin interaction in a concentration-dependent manner, indicating that laminin sugar moieties are crucial for this interaction. Triton X-114-solubilized extract of L. interrogans and phase partitioning showed that Lsa24 was exclusively in the detergent phase, indicating that it is a component of the leptospiral membrane. Moreover, Lsa24 partially inhibited leptospiral adherence to immobilized laminin. This newly identified membrane protein may play a role in mediating adhesion of L. interrogans to the host. To our knowledge, this is the first leptospiral adhesin with laminin-binding properties reported to date.  相似文献   

18.
From previous studies, we know that calcium phosphate (CaP) coated implants stimulate bone formation compared to uncoated implants. Nevertheless, the mechanism by which substrate surface characteristics affect cell function is unclear. In this study, we examined the initial interaction (30 min to 24 h) of U2OS cells with titanium substrates with or without a CaP coating. The effect of substrate roughness was also studied. When cell attachment was studied, we found that cells attached more readily to rough than to smooth surfaces. Also, more cells attached to the uncoated than to the CaP coated surface. After 24 h, cell numbers were similar for all substrate surfaces. Further, cells spread to a larger area on noncoated titanium than on the CaP coated substrates. At 24 h, the sequence of cell size was smooth titanium > rough titanium > CaP coated titanium. Shape measurements showed differences in cell shape between the cells on the different materials only at 7 h, not at different culture times. Cells expressed alpha2, alpha3, alpha5, alpha6, alphav, and beta1 subunits. Expression of alpha1, alpha4, alphavbeta3, beta3, beta4, and beta7 was extremely low or was not found.The beta1 integrin expression was higher on the coated than on the noncoated titanium at 3 h, but not on the other studied times. Expression of alpha2, alpha5, alpha6, and alphav expression was found to be upregulated at 24 h compared to earlier culture times on coated titanium, but not on uncoated titanium substrates. From this we conclude that the surface characteristics of a material (roughness and composition) can affect the initial interaction of cells with the material.  相似文献   

19.
Implantation of deep-brain recording devices is a traumatic event, which inevitably elicits reactive gliosis. The ensuing glial scar encapsulating the implanted device impedes the long-term functional recording capability of the microelectrode. In this work, a bioactive surface is prepared by conjugation of transforming growth factor-beta one (TGF-beta1) and laminin to dextran, which is in turn conjugated to a biomaterial substrate. Poly-L-lysine coated surfaces are treated with oxidized dextran, and the dextran is re-oxidized with sodium metaperiodate to generate hemiacetal structures to which TGF-beta1 and laminin are covalently bound. Covalent conjugation of the ligand is confirmed by enzyme-linked immunosorbent assay. A primary cell line of astrocytes is incubated on a surface conjugated with laminin and TGF-beta1 and a surface only conjugated with laminin. Proliferation on the laminin plus TGF-beta1 surface is 57% less (p < 0.002) than the control surface (laminin alone). The results demonstrate that conjugated TGF-beta1 retains its efficacy toward astrocyte proliferation and represents a potential strategy for reducing glial scar formation in vivo.  相似文献   

20.
The skin is an important gateway for Fusarium infection in humans. Our hypothesis is that metabolites produced by Fusarium oxysporum should change the barrier structure to permeate the skin. Male Wistar rats received a topical application of a solution (0.05 mg/mL) of Fusarium metabolites. The animals were euthanized 3, 6, 12, 24 h after and the skin was processed for immunostaining by laminin and E‐cadherin to investigate whether the Fusarium metabolites can break the barrier of healthy skin. Other techniques were employed: H&E to study the morphology; metalloproteinase‐9 (MMP‐9), TUNEL, and PCNA immunostaining to evaluate the inflammation, cell death, and proliferation, respectively. There was an inflammatory response mainly centered in the dermis. Qualitatively, the skin of the experimental group showed reduced E‐cadherin and laminin immunostaining at 3, 12, and 24 h. Higher intensity staining by TUNEL at 3 h, and PCNA at 6, 12, and 24 h. There was intense MMP‐9 activity at 6, 12, and 24 h. None of analyses revealed any changes in the epidermis. It was concluded that the fraction was able to permeate the skin and act selectively in dermis, inducing inflammatory response, increasing MMP‐9 immunostaining, inducing apoptosis, and reducing E‐cadherin and laminin immunostaining.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号