首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Membranes prepared from Bombyx mori silk fibroin have shown potential as a substrate for human limbal epithelial (L-EC) and stromal cell cultivation. Here we present fibroin as a dual-layer construct containing both an epithelium and underlying stroma for corneolimbal reconstruction. We have compared the growth and phenotype of L-EC on non-porous versus porous fibroin membranes. Furthermore, we have compared the growth of limbal mesenchymal stromal cells (L-MSC) in either serum-supplemented medium or the MesenCult-XF(?) culture system within fibroin fibrous mats. The co-culture of L-EC and L-MSC in fibroin dual-layer constructs was also examined. L-EC on porous membranes displayed a squamous monolayer; in contrast, L-EC on non-porous fibroin appeared cuboidal and stratified. Both constructs maintained evidence of corneal phenotype (cytokeratin 3/12) and distribution of ΔNp63(+) progenitor cells. L-MSC cultivated within fibroin fibrous mats in serum-supplemented medium contained less than 64% of cells expressing the characteristic MSC phenotype of CD73(+)CD90(+)CD105(+) after two weeks, compared with over 81% in MesenCult-XF(?) medium. Dual-layer fibroin scaffolds consisting of L-EC and L-MSC maintained a similar phenotype as on the separate layers. These results support the feasibility of a 3D engineered limbus constructed from B.?mori silk fibroin, and warrant further studies into the potential benefits it offers to corneolimbal tissue regeneration.  相似文献   

2.
Poly(vinyl alcohol) (PVA) is a biocompatible, transparent hydrogel with physical strength that makes it promising as a material for an artificial cornea. In our previous study, type I collagen was immobilized onto PVA (PVA-COL) as a possible artificial cornea scaffold that can sustain a functional corneal epithelium. The cellular adhesiveness of PVA in vitro was improved by collagen immobilization; however, stable epithelialization was not achieved in vivo. To improve epithelialization in vivo, we created an amniotic membrane (AM)-immobilized polyvinyl alcohol hydrogel (PVA-AM) for use as an artificial cornea material. AM was attached to PVA-COL using a tissue adhesive consisting of collagen and citric acid derivative (CAD) as a crosslinker. Rabbit corneal epithelial cells were air-lift cultured with 3T3 feeder fibroblasts to form a stratified epithelial layer on PVA-AM. The rabbit corneal epithelial cells formed 3-5 layers of keratin-3-positive epithelium on PVA-AM. Occludin-positive cells were observed lining the superficial epithelium, the gap-junctional protein connexin43-positive cells was localized to the cell membrane of the basal epithelium, while both collagen IV were observed in the basement membrane. Epithelialization over implanted PVA-AM was complete within 2 weeks, with little inflammation or opacification of the hydrogel. Corneal epithelialization on PVA-AM in rabbit corneas improved over PVA-COL, suggesting the possibility of using PVA-AM as a biocompatible hybrid material for keratoprosthesis.  相似文献   

3.
Silk fibroin films are a promising class of biomaterials that have a number of advantages for use in ophthalmic applications due to their transparent nature, mechanical properties and minimal inflammatory response upon implantation. Freestanding silk films with parallel line and concentric ring topographies were generated for in vitro characterization of human corneal limbal epithelial (HCLE) cell response upon differing geometric patterned surfaces. Results indicated that silk film topography significantly affected initial HCLE culture substrate attachment, cellular alignment, cell-to-cell contact formation, actin cytoskeleton alignment and focal adhesion (FA) localization. Most notably, parallel line patterned surfaces displayed a 36-54% increase on average in initial cell attachment, which corresponded to a more than 2-fold increase in FA localization when compared to other silk film surfaces and controls. In addition, distinct localization of FA formation was observed along the edges for all patterned silk film topographies. In conclusion, silk film feature topography appears to help direct corneal epithelial cell response and cytoskeleton development, especially with regard to FA distribution, in vitro.  相似文献   

4.
We have performed clinical applications of cell sheet-based regenerative medicine with human patients in several fields. In order to achieve the mass production of transplantable cell sheets, we have developed automated cell culture systems. Here, we report an automated robotic system utilizing a cell culture vessel, cell cartridge. The cell cartridge had two rooms for epithelial cells and feeder layer cells separating by porous membrane on which a temperature-responsive polymer was covalently immobilized. After pouring cells into this robotic system, cell seeding, medium change, and microscopic examination during culture were automatically performed according to the computer program. Transplantable corneal epithelial cell sheets were successfully fabricated in cell cartridges with this robotic system. Then, fabricated cell sheets were transplanted onto ocular surfaces of rabbit limbal epithelial stem cell deficiency model after 6-h transportation using a portable homothermal container to keep inner temperature at 36 °C. Within one week after transplantation, normal corneal epithelium was successfully regenerated. This automatic cell culture system would be useful for industrialization of tissue-engineered products for regenerative medicine.  相似文献   

5.
兔角膜缘上皮细胞羊膜种植及生物学特性研究   总被引:1,自引:0,他引:1  
研究兔角膜缘上皮细胞(含干细胞)在完整羊膜和去上皮羊膜上种植及生物学特征,探讨组织工程技术体外重建角膜上皮良好的方式和方法.将兔角膜缘上皮细胞分别种植于去上皮羊膜基底膜和完整羊膜上进行体外培养扩增.从倒置显微镜下的生长特性、光镜下的组织结构、超微结构、免疫组织化学检测等方面对培养获得的复合组织进行观察.结果表明兔角膜缘上皮细胞在完整羊膜上不易贴壁、生长缓慢、很难汇合成片.而在去上皮羊膜上细胞能黏附生长并增殖形成由羊膜基底膜和4~5层上皮细胞组成的复合组织,基底层细胞与羊膜之间有半桥粒连接,细胞之间可见桥粒连接,细胞表达角蛋白3.该复合物可作为组织工程化角膜上皮组织.  相似文献   

6.
Membranes were prepared from fibroin, a protein isolated from the domesticated silkworm (Bombyx mori) silk, and evaluated as a potential substratum for corneal limbal epithelial cells. These membranes (i.e., B. mori silk fibroin [BMSF] membranes) were cast from dialyzed solutions of fibroin protein (4% w/v) dispensed into 35-mm-diameter culture dishes and dried at room temperature (23-24 degrees C). The resulting material was transparent, easy to handle, and supported levels of human limbal epithelial (HLE) cell growth comparable to that observed on tissue culture plastic. Remarkably, these results were obtained utilizing a commercial serum-free medium (CnT-20) designed for the ex vivo expansion of corneal epithelial progenitor cells. The potential benefits of serum proteins on this culture system were examined through addition of fetal bovine serum (FBS) either to fibroin stocks prior to membrane casting or by supplementation of the CnT-20 medium. Membranes cast in the presence of FBS displayed increasing opacity and induced little change in HLE growth. Supplementation of CnT-20 medium with FBS deterred cell growth on all substrata, including tissue culture plastic control substrata. The remarkable properties of BMSF membranes demonstrated under serum-free conditions warrant investigation of this material as a substratum in the creation of tissue-engineered constructs for the restoration of diseased or damaged ocular surface.  相似文献   

7.
We report our experience with corneal epithelium, grown in vivo, transplantation in three patients with persistent epithelial defect (PED). The three patients had ocular surface disease unresponsive to standard treatments and were therefore chosen for transplantation. They underwent transplantation of epithelial sheets, grown in vivo, to the most affected eye. In vivo cultivation was carried out in the cornea of a living related donor. After epithelialization was completed, the epithelium grown on an amniotic membrane was harvested gently; it was then transplanted into the patient's eye after debridement of fibrovascular tissue. The cultivated epithelium was completely epithelialized by 2 weeks; it was well-differentiated with well-formed hemidesmosome. On immunohistochemical staining, p63, connexin 43, and Integrin beta4 were expressed in the cells on the epithelial sheet. The PED was covered completely and maintained for 4 weeks in all cases. However, corneal erosion recurred after 5 weeks in two cases. This novel technique demonstrates the corneal epithelial cells can be expanded in vivo successfully on denuded amniotic membrane of a healthy cornea and harvested safely. A corneal epithelial sheet, grown in vivo, can be transplanted to treat eye with a severe ocular surface disease, such as total limbal deficiency.  相似文献   

8.
Membranes prepared from a protein, fibroin, isolated from domesticated silkworm (Bombyx mori) silk, support the cultivation of human limbal epithelial (HLE) cells and thus display significant potential as biomaterials for ocular surface reconstruction. We presently extend this promising avenue of research by directly comparing the attachment, morphology and phenotype of primary HLE cell cultures grown on fibroin to that observed on donor amniotic membrane (AM), the current clinical standard substrate for HLE transplantation. Fibroin membranes measuring 6.3 ± 0.5 μm (mean ± sd) in thickness and permeable to FITC dextran of a molecular weight up to 70 kDa, were used. Attachment of HLE cells to fibroin was similar to that supported by tissue culture plastic but approximately 6-fold less than that observed on AM. Nevertheless, epithelia constructed from HLE on fibroin maintained evidence of corneal phenotype (K3/K12 expression) and displayed a comparable number and distribution of ΔNp63(+) progenitor cells to that seen in cultures grown on AM. These results support the suitability of membranes constructed from Bombyx mori silk fibroin as substrata for HLE cultivation and encourage progression to studies of efficacy in preclinical models.  相似文献   

9.
Corneal wound healing is one of the major issues in ocular surface reconstruction and ocular surface diseases. Amniotic membrane (AM) transplantation is an excellent treatment modality to promote corneal wound healing and treat corneal diseases. It is interesting and valuable to search for another synthetic and biocompatible substitute for the study of mechanism of AM and the treatment of ocular surface disorders. Chitosan, the second-most abundant polymer in nature, has many biological advantages such as biocompatibility, biodegradability, hemostatic activity, and wound-healing property to be used as biomedical applications. The purpose of this project is to evaluate the phenotype of cultured corneal epithelial cells in vitro on synthetic chitosan membrane (CM). We cultivated bovine corneal epithelial cells on CM and AM, and then evaluated their phenotypes. The viability of the respective cell cultures was investigated using the 3-[4,5-dimethylrhiazol-2-yl]-2,5-diphenyl tetrazolium bromide (MTT) assay. The cytotoxicity of CM and AM to corneal epithelial cells was evaluated by lactate dehydrogenase (LDH) assay. The morphology of cultivated corneal epithelial cells on CM and AM was observed by scanning electron microscopy. Additionally, immunocytochemical stainings were used to confirm the phenotype of corneal epithelial cells. In MTT and LDH assays we found that the CM can support the growth of cultured corneal epithelial cells in good condition with minimal toxicity. The SEM and immunohistocytochemistry showed that the phenotype of corneal epithelial cells is compatible with that of AM. We conclude that the CM has the potential to be a suitable biomaterial for treating ocular surface disorders.  相似文献   

10.
Corneal endothelial cells (CEnCs) play a fundamental role in maintaining the transparency of the cornea. CEnCs lose their full proliferating capacity when tissue damages occur. The loss in proliferation rate is associated with corneal edema and decrease in visual acuity, leading in severe cases, to blindness. In these situations, a corneal transplant is usually needed to restore the original tissue functions. Tissue engineering is an efficient alternative for the production of implantable films, which can regenerate the tissue functions regulating at the same time the immune-response.

In this study, we proposed a stable and transparent film, composed of silk fibroin modified with glycerol (G/SF), as a potential substrate for corneal endothelial cells regeneration. Our results confirmed that G/SF films have a uniform structure, rougher surface and lower thickness respect to the SF film. In vitro tests show that G/SF films can induce a slight increase in CEnCs initial adhesion and proliferation rate if compared with the SF film. Morphology and gene expression evaluations demonstrated that the bioactive effects of silk fibroin were not affected by the presence of glycerol. For this reason, the G/SF films are suitable as CEnCs carrier and promising for the corneal damages treatments.  相似文献   


11.
The cornea is a transparent tissue of the eye, which is responsible for the refraction of incoming light. Both biological corneal equivalents and synthetic keratoprostheses have been developed to replace donor tissue as a means to restore vision. However, both designs have drawbacks in terms of stability and biocompatibility. Clinically available synthetic devices do not support an intact epithelium, which poses a risk of microbial infection or protrusion of the prosthesis. In the present study, type I collagen was immobilized onto poly(vinyl alcohol) (PVA-COL) as a possible artificial cornea scaffold that can sustain a functional corneal epithelium. Human and rabbit corneal epithelial cells were air-lift cultured with 3T3 feeder fibroblasts to form a stratified epithelial layer on PVA-COL. The epithelial sheet expressed keratin 3/12 differentiation markers, the tight junction protein occludin, and had characteristic microvilli structures on transmission electron microscopy. Functionally, the stratified epithelium contained normal glycogen levels, and an apical tight-junction network was observed to exclude the diffusion of horseradish peroxidase. Furthermore, the epithelium-PVA-COL composite was suturable in the rabbit cornea, suggesting the possibility of using PVA-COL as a biocompatible material for keratoprosthesis.  相似文献   

12.
The purpose of this study is to characterize and compare the ultrastructural changes occurring during the in vivo cultivation of corneal epithelium on amniotic membrane (AM) at several different time points. Corneal burn patients (n=7) with a corneal epithelial defect and severe limbal damage were selected. Initially, AM transplantation with limbal autograft was performed at the acute stage of corneal burn to reconstruct the damaged ocular surface. One to six (mean interval; 3.3+/-1.2) months later, the central part of AM containing an in vivo expanded corneal epithelium was excised and retransplanted in adjacent lesions. The excised epithelium with AM was examined by electron microscopy and immunohistochemical study. By electron microscopy, one and two months after expansion, cultivated epithelium on AM showed an undifferentiated epithelium and an incomplete basement membrane (BM). But, after three months, the cultivated epithelium began to differentiate into a multilayered epithelium with a continuous BM with increased hemidesmosomes. These findings were further confirmed by immunohistochemical study, that cytokeratin K3 was expressed in the cultivated corneal epithelium and newly formed BM was partially positive of collagen IV at three months. At least 3 months may be needed for the proliferation and differentiation of in vivo cultivated corneal epithelium on AM.  相似文献   

13.
The aim of this study was to develop nanofibrous silk substrates for limbal stem cell expansion that can serve as a potential alternative substrate to replace human amniotic membrane. The human limbal stem cell was used to evaluate the biocompatibility of substrates (random and oriented nanofibrous mats, and human amniotic membrane) based on their phenotypic profile, viability, proliferation, and attachment ability. Biocompatibility results indicated that all substrates were highly biocompatible, as limbal stem cells could favorably attach and proliferate on the nanofibrous surfaces. Microscopic figures showed that the human limbal stem cells were firmly anchored to the substrates and were able to retain a normal corneal stem cell phenotype. Microscopic analyses illustrated that cells infiltrated the nanofibers and successfully formed a three-dimensional corneal epithelium, which was viable for 15 days. Immunocytochemistry and real-time PCR results revealed no change in the expression profile of limbal stem cells grown on nanofibrous substrates when compared to those grown on human amniotic membrane. In addition, electrospun nanofibrous silk substrates especially oriented mat provides not only a milieu supporting limbal stem cells expansion, but also serve as a useful alternative carrier for ocular surface tissue engineering and could be used as an alternative substrate to amniotic membrane.  相似文献   

14.
几种丝素材料细胞毒性的实验研究   总被引:10,自引:1,他引:10  
目的:研究不同交联方式的再生丝素膜(WL组,SD组,HY组)的细胞毒性及其影响细胞增殖的因素。方法:采用浸提液法,体外培养鼠胚真皮层纤维细胞,用MTT法检测细胞增殖活力和计算相对增殖率。结果:WL组,SD组再生丝素膜细胞毒性小于1级,有较强的增殖活力;HY组再生丝素细胞毒性0~2级;而用高浓度环氧交联剂交联的再生丝素膜对细胞生长有一定抑制作用;且随着环氧交联剂浓度的增加,细胞毒性增大。结论:WL组和SD组再生丝素膜无细胞毒性,HY组再生丝素膜无明显的细胞毒性,高浓度环氧剂交联的再生丝素膜对细胞有一定的毒性,有待于进一步改性。  相似文献   

15.
Pax6 is the universal master control gene for eye morphogenesis. Other than retina and lens, Pax6 also expressed in the ocular surface epithelium from early gestation until the postnatal stage, in which little is known about the function of Pax6. In this study, corneal pannus tissues from patients with ocular surface diseases such as Stevens-Johnson syndrome (SJS), chemical burn, aniridia and recurrent pterygium were investigated. Our results showed that normal ocular surface epithelial cells expressed Pax6. However, corneal pannus epithelial cells from the above patients showed a decline or absence of Pax6 expression, accompanied by a decline or absence of K12 keratin but an increase of K10 keratin and filaggrin expression. Pannus basal epithelial cells maintained nuclear p63 expression and showed activated proliferation, evidenced by positive Ki67 and K16 keratin staining. On 3T3 fibroblast feeder layers, Pax6 immunostaining was negative in clones generated from epithelial cells harvested from corneal pannus from SJS or aniridia, but positive in those from the normal limbal epithelium; whereas western blots showed that some epithelial clones expanded from pannus retained Pax6 expression. Transient transfection of an adenoviral vector carrying EGFP-Pax6 transgenes into these Pax6(-) clones increased both Pax6 and K12 keratin expression. These results indicate that Pax6 helps to maintain the normal corneal epithelial phenotype postnatally, and that down-regulation of Pax6 is associated with abnormal epidermal differentiation in severe ocular surface diseases. Reintroduction of activation of the Pax6 gene might be useful in treating squamous metaplasia of the ocular surface epithelium.  相似文献   

16.
背景:丝素蛋白纤维材料具有透明性、结构可塑性、成分单一性、力学强韧性及生物相容性等特点。 目的:综述国内外丝素蛋白应用于角膜组织工程的研究进展。 方法:由第一作者在标题和摘要中以“silk fibroin, corneal, ocular”或“丝素,角膜”为检索词,检索1980至2011年PubMed及1990至2011年CNKI数据库中关于丝素蛋白角膜的文章。 结果与结论:从天然蚕丝中提取的高分子丝素蛋白,因其良好的生物相容性、独特的力学性能、光学透明性及降解速率可控性,既可以单独应用于角膜组织结构的重建,又可与其他组织材料联合应用,成为角膜组织工程学应用的理想材料。现已证明多种角膜细胞可在丝素纤维膜上良好生长,但体外培养的细胞应用于动物模型的相关研究较少;此外丝素蛋白材料植入角膜内对其产生何种影响的研究数据较缺乏,这些均是亟待解决的问题。  相似文献   

17.
角膜上皮功能异常所导致的角膜盲,在疾病早期往往仅需进行角膜上皮移植即可治愈。组织工程技术发展迅速,应用该技术构建的组织工程化角膜上皮层可成为角膜上皮移植的供体来源。综合探讨组织工程角膜上皮构建时种子细胞、载体材料的选择和构建方法。  相似文献   

18.
In this study, biodegradable polyester based carriers were designed for tissue engineering of the epithelial and the stromal layers of the cornea, and the final construct was tested in vitro. In the construction of the epithelial layer, micropatterned films were prepared from blends of biodegradable and biocompatible polyesters of natural (PHBV) and synthetic (P(L/DL)LA) origin, and these films were seeded with D407 (retinal pigment epithelial) cells. To improve cell adhesion and growth, the films were coated with fibronectin. To serve as the stromal layer of the cornea, highly porous foams of P(L/DL)LA-PHBV blends were seeded with 3T3 fibroblasts. Cell numbers on the polyester carriers were significantly higher than those on the tissue culture polystyrene control. The cells and the carriers were characterized scanning electron micrographs showed that the foam was highly porous and the pores were interconnected. 3T3 Fibroblasts were distributed quite homogeneously at the seeding site, but probably because of the high thickness of the carrier ( approximately 6 mm); they could not sufficiently populate the core (central parts of the foam) during the test duration. The D407 cells formed multilayers on the micropatterned polyester film. Immunohistochemical studies showed that the cells retained their phenotype during culturing; D407 cells formed tight junctions characteristic of epithelial cells, and 3T3 cells deposited collagen type I into the foams. On the basis of these results, we concluded that the micropatterned films and the foams made of P(L/DL)LA-PHBV blends have a serious potential as tissue engineering carriers for the reconstruction of the epithelial and stromal layers of the cornea.  相似文献   

19.
Limbal stem cell deficiency (LSCD) leads to severe ocular surface abnormalities that can result in the loss of vision. The most successful therapy currently being used is transplantation of limbal epithelial cell sheets cultivated from a limbal biopsy obtained from the patient's healthy, contralateral eye or cadaveric tissue. In this study, we investigated the therapeutic potential of murine vibrissae hair follicle bulge-derived stem cells (HFSCs) as an autologous stem cell (SC) source for ocular surface reconstruction in patients bilaterally affected by LSCD. This study is an expansion of our previously published work showing transdifferentiation of HFSCs into cells of a corneal epithelial phenotype in an in vitro system. In this study, we used a transgenic mouse model, K12(rtTA/rtTA) /tetO-cre/ROSA(mTmG) , which allows for HFSCs to change color, from red to green, once differentiation to corneal epithelial cells occurs and Krt12, the corneal epithelial-specific differentiation marker, is expressed. HFSCs were isolated from transgenic mice, amplified by clonal expansion on a 3T3 feeder layer, and transplanted on a fibrin carrier to the eye of LSCD wild-type mice (n = 31). The HFSC transplant was able to reconstruct the ocular surface in 80% of the transplanted animals; differentiating into cells with a corneal epithelial phenotype, expressing Krt12, and repopulating the corneal SC pool while suppressing vascularization and conjunctival ingrowth. These data highlight the therapeutic properties of using HFSC to treat LSCD in a mouse model while demonstrating a strong translational potential and points to the niche as a key factor for determining stem cell differentiation.  相似文献   

20.
目的 利用眼表生物膜固定装置(BMFD)与羊膜(AM)制成接触镜,输送人表皮干细胞至角膜缘干细胞缺损(LSCD)的兔眼表,并评价其重建角膜上皮的效果.方法 制作去角膜上皮及角膜缘干细胞的雌性LSCD兔模型,分为3组:羊膜加人表皮干细胞移植组(n=20),将男性人表皮干细胞悬液注射到BMFD-AM接触镜(简称羊膜接触镜)与眼表之间;羊膜遮盖组(n=20),戴羊膜接触镜;对照组(n=20),单纯药物治疗.裂隙灯显微镜结合角膜荧光素钠染色观察并评价角膜修复情况.随访至角膜完全上皮化后,取角膜组织行病理学检查和免疫组织化学鉴定,PCR检测人Y-STR基因鉴定细胞来源.结果 羊膜加人表皮干细胞移植组角膜上皮修复快,平均(5.60±0.46)d达到完全上皮化,另外两组角膜上皮修复迟缓.羊膜遮盖组(9.25±0.51)d、对照组(12.45±0.65)d才完成角膜上皮化(P均<0.05).组织病理学示羊膜加人表皮干细胞移植组角膜上皮细胞形态接近正常,K3/K12(+)、Mucin 5AC(-)、K4(-).并可检测到人Y-STR基因.组织病理学示另外两组角膜上皮结膜化,K4(+)、Mucin 5AC(+)、K3/K12(-).结论 羊膜接触镜联合人表皮干细胞悬液注射能够重建LSCD兔角膜上皮.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号