首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Biomaterial, an essential component of tissue engineering, serves as a scaffold for cell attachment, proliferation, and differentiation; provides the three dimensional (3D) structure and, in some applications, the mechanical strength required for the engineered tissue. Both synthetic and naturally occurring calcium phosphate based biomaterial have been used as bone fillers or bone extenders in orthopedic and reconstructive surgeries. This study aims to evaluate two popular calcium phosphate based biomaterial i.e., hydroxyapatite (HA) and tricalcium phosphate/hydroxyapatite (TCP/HA) granules as scaffold materials in bone tissue engineering. In our strategy for constructing tissue engineered bone, human osteoprogenitor cells derived from periosteum were incorporated with human plasma-derived fibrin and seeded onto HA or TCP/HA forming 3D tissue constructs and further maintained in osteogenic medium for 4 weeks to induce osteogenic differentiation. Constructs were subsequently implanted intramuscularly in nude mice for 8 weeks after which mice were euthanized and constructs harvested for evaluation. The differential cell response to the biomaterial (HA or TCP/HA) adopted as scaffold was illustrated by the histology of undecalcified constructs and evaluation using SEM and TEM. Both HA and TCP/HA constructs showed evidence of cell proliferation, calcium deposition, and collagen bundle formation albeit lesser in the former. Our findings demonstrated that TCP/HA is superior between the two in early bone formation and hence is the scaffold material of choice in bone tissue engineering.  相似文献   

2.
In this study, we fabricated polycaprolactone/hydroxyapatite (PCL/HA) scaffolds with a multi-head deposition system, a solid free-form fabrication technology that was developed in our previous study. The bone regeneration potential of the scaffolds was compared with that of PCL scaffolds fabricated with the same system. The fabricated scaffolds had a pore size of 400 μm and a porosity of 66.7%. The PCL/HA scaffolds had higher mechanical strength and modulus than the PCL scaffolds. To compare the osteogenic potential, the two types of scaffolds were seeded with rat osteoblasts and cultured in vitro or implanted subcutaneously into athymic mice. The cells cultured on PCL/HA scaffolds expressed higher levels of osteopontin and osteonectin, both of which are osteogenic proteins. The PCL/HA scaffolds resulted in larger bone area and calcium deposition in the implants compared to the PCL scaffolds.  相似文献   

3.
Liu HC  E LL  Wang DS  Su F  Wu X  Shi ZP  Lv Y  Wang JZ 《Tissue engineering. Part A》2011,17(19-20):2417-2433
The objective of the present study was to evaluate the capacity of a tissue-engineered bone complex of recombinant human bone morphogenetic protein 2 (rhBMP-2)-mediated dental pulp stem cells (DPSCs) and nano-hydroxyapatite/collagen/poly(L-lactide) (nHAC/PLA) to reconstruct critical-size alveolar bone defects in New Zealand rabbit. Autologous DPSCs were isolated from rabbit dental pulp tissue and expanded ex vivo to enrich DPSCs numbers, and then their attachment and differentiation capability were evaluated when cultured on the culture plate or nHAC/PLA. The alveolar bone defects were treated with nHAC/PLA, nHAC/PLA+rhBMP-2, nHAC/PLA+DPSCs, nHAC/PLA+DPSCs+rhBMP-2, and autogenous bone (AB) obtained from iliac bone or were left untreated as a control. X-ray and a polychrome sequential fluorescent labeling were performed postoperatively and the animals were sacrificed 12 weeks after operation for histological observation and histomorphometric analysis. Our results showed that DPSCs expressed STRO-1 and vementin, and favored osteogenesis and adipogenesis in conditioned media. DPSCs attached and spread well, and retained their osteogenic phenotypes on nHAC/PLA. The rhBMP-2 could significantly increase protein content, alkaline phosphatase activity/protein, osteocalcin content, and mineral formation of DPSCs cultured on nHAC/PLA. The X-ray graph, the fluorescent, histological observation, and histomorphometric analysis showed that the nHAC/PLA+DPSCs+rhBMP-2 tissue-engineered bone complex had an earlier mineralization and more bone formation inside the scaffold than nHAC/PLA, nHAC/PLA+rhBMP-2, and nHAC/PLA+DPSCs, or even autologous bone. Implanted DPSCs' contribution to new bone was detected through transfected eGFP genes. Our findings indicated that stem cells existed in adult rabbit dental pulp tissue. The rhBMP-2 promoted osteogenic capability of DPSCs as a potential cell source for periodontal bone regeneration. The nHAC/PLA could serve as a good scaffold for autologous DPSC seeding, proliferation, and differentiation. The tissue-engineered bone complex with nHAC/PLA, rhBMP-2, and autologous DPSCs might be a better alternative to autologous bone for the clinical reconstruction of periodontal bone defects.  相似文献   

4.
Repair of bone defects is a difficult clinical problem for reconstructive surgeons. Bone tissue engineering using an appropriate scaffold with cells is a new therapy for the repair of bone defects. The aim of this study was to evaluate the in vitro osteogenesis of canine adipose tissue-derived mesenchymal stem cells (Ad-MSCs) cultured in a combination of collagen I gel and a porous serum-derived albumin scaffold. A serum-derived albumin scaffold was prepared with canine serum by cross-linking and freeze-drying procedures. Ad-MSCs were seeded into serum-derived albumin scaffolds with or without collagen I gel, and were exposed to osteogenic differentiation conditions in vitro. After 28?days of in vitro culture, the distribution and osteogenic differentiation of Ad-MSCs cultured in the scaffold were evaluated by scanning electron microscopy, histology, immunohistochemistry, alkaline phosphatase (ALP) activity assay, and calcium colorimetric assay. Ad-MSCs showed more homogeneous distribution and osteogenic differentiation in the scaffold with collagen I gel than without collagen I gel. ALP activity and extracellular matrix mineralization in the construct with type I collagen were significantly higher than in the construct without type I collagen (p?<?0.05). In conclusion, the combination of collagen I gel and the serum-derived albumin scaffold enhanced osteogenic differentiation and homogenous distribution of Ad-MSCs.  相似文献   

5.
In vitro osteogenesis was successfully achieved with synovium-derived mesenchymal stem cells (SMSCs), which intrinsically have a strong chondrogenic tendency, by in situ release of alendronate (AL) and dexamethasone (Dex) from poly(lactic-co-glycolic acid) (PLGA)/hydroxyapatite (HA) sintered microspherical scaffold (PLGA/HA-SMS). Cumulative release profiles of AL and Dex from PLGA/HA-SMS and the influence on SMSCs osteogenic commitment were investigated. SMSCs seeded in Al-/Dex-loaded PLGA/HA-SMS (PLGA/HA-Com-SMS) exhibited significant osteogenic differentiation, as indicated by high yields of alkaline phosphatase (ALP) and bone calcification. In addition, mechanical properties (compressional) of PLGA/HA-Com-SMSs were also evaluated and approved. In conclusion, by promoting osteogenic commitment of SMSCs in vitro, this newly designed controlled-release system opens a new door to bone reparation and regeneration.  相似文献   

6.
A number of studies have shown in vivo bone regeneration by transplantation of osteogenic cells differentiated in vitro from adipose-derived stromal cells (ADSCs). However, the in vitro osteogenic differentiation process requires an additional culture period, and the dexamethasone that is generally used in the process may be cytotoxic. Here, we tested the hypothesis that ADSCs that are not differentiated osteogenically in vitro prior to transplantation would extensively regenerate bone in vivo when exogenous bone morphogenetic protein-2 (BMP-2) is delivered to the transplantation site. We fabricated a poly(dl-lactic-co-glycolic acid)/hydroxyapatite (PLGA/HA) composite scaffold with osteoactive HA that is highly exposed on the scaffold surface. This scaffold was able to release BMP-2 over a 4-week period in vitro. Human ADSCs cultured on BMP-2-loaded PLGA/HA scaffolds for 2 weeks differentiated toward osteogenic cells expressing alkaline phosphatase (ALP), osteopontin (OPN), and osteocalcin (OCN) mRNA, while cells on PLGA/HA scaffolds without BMP-2 expressed only ALP. To study in vivo bone formation, PLGA/HA scaffolds (group 1), BMP-2-loaded PLGA/HA scaffolds (group 2), undifferentiated ADSCs seeded on PLGA/HA scaffolds (group 3), and undifferentiated ADSCs seeded on BMP-2-loaded PLGA/HA scaffolds (group 4) were implanted into dorsal, subcutaneous spaces of athymic mice. Eight weeks after implantation, group 4 exhibited a 25-fold greater bone formation area and 5-fold higher calcium deposition than group 3. Bone regeneration by transplanted human ADSCs in group 4 was confirmed by expression of human-specific osteoblastic genes, ALP, collagen type I, OPN, OCN, and bone sialoprotein, while group 3 expressed much lower levels of collagen type I and OPN mRNA only. This study demonstrates the feasibility of extensive in vivo bone regeneration by transplantation of ADSCs without prior in vitro osteogenic differentiation, and that a PLGA/HA composite BMP-2 delivery system stimulates bone regeneration following transplantation of undifferentiated human ADSCs.  相似文献   

7.
Kim SS  Park MS  Gwak SJ  Choi CY  Kim BS 《Tissue engineering》2006,12(10):2997-3006
Although biodegradable polymer/ceramic composite scaffolds can overcome the limitations of conventional ceramic bone substitutes, the osteogenic potential of these scaffolds needs to be further enhanced for efficient bone tissue engineering. In this study, bonelike apatite was efficiently coated onto the scaffold surface by using polymer/ceramic composite scaffolds instead of polymer scaffolds and by using an accelerated biomimetic process to enhance the osteogenic potential of the scaffold. The creation of bonelike, apatite-coated polymer scaffold was achieved by incubating the scaffolds in simulated body fluid (SBF). The apatite growth on porous poly(D,L-lactic-co-glycolic acid)/nanohydroxyapatite (PLGA/ HA) composite scaffolds was significantly faster than on porous PLGA scaffolds. In addition, the distribution of coated apatite was more uniform on PLGA/HA scaffolds than on PLGA scaffolds. After a 5-day incubation period, the mass of apatite coated onto PLGA/HA scaffolds incubated in 5 x SBF was 2.3-fold higher than PLGA/HA scaffolds incubated in 1 x SBF. Furthermore, when the scaffolds were incubated in 5 x SBF for 5 days, the mass of apatite coated onto PLGA/HA scaffolds was 4.5-fold higher than PLGA scaffolds. These results indicate that the biomimetic apatite coating can be accelerated by using a polymer/ceramic composite scaffold and concentrated SBF. When seeded with osteoblasts, the apatite-coated PLGA/HA scaffolds exhibited significantly higher cell growth, alkaline phosphatase activity, and mineralization in vitro compared to the apatite-coated PLGA scaffolds. Therefore, the apatite-coated PLGA/HA scaffolds may provide enhanced osteogenic potential when used as scaffold for bone tissue engineering.  相似文献   

8.
For the application of bone marrow stromal cells (BMSCs) in cartilage tissue engineering, it is imperative to develop efficient strategies for their chondrogenic differentiation. In this study, the conditioned media derived from chondrocyte/scaffold constructs were used to direct chondrogenic differentiation of BMSCs. The porcine articular chondrocytes were seeded on the PGA/PLA scaffolds to form chondrocyte/scaffold constructs and were cultured to form engineered cartilage in vitro. The culture media were collected as conditioned media and used for chondrogenic induction of BMSC pellets (experimental group, Exp.). The chondrocyte pellets and BMSC pellets were cultured routinely as positive control (PC) and negative control (NC), respectively. After 4 weeks, the wet weight and GAG content in Exp. group and PC group were significantly higher than that in NC group. Histological and immunohistochemical analysis showed that cartilaginous tissue was formed with typical cartilage lacuna structure and positive staining of collagen Type II (Col II) in the peripheral area of the BMSC pellets in Exp. group. Gene expression of Sox9, Col II, and COMP in Exp. group and PC group were significantly higher than that in NC group. The growth factors in the conditioned media derived from human costal chondrocytes‐scaffold constructs were tested by protein microassay. The conditioned media contained low levels of TGF‐β1,2,3, IGF‐1 and high levels of IGF‐2, FGF‐4, and IGFBP4,6, and so forth. The soluble factors derived from the engineered cartilage can induce chondrogenic differentiation of BMSCs independently. Many cytokines may function in chondrogenesis in a coordinated way. Anat Rec, 2012. © 2012 Wiley Periodicals, Inc.  相似文献   

9.
The bone mesenchymal stem cells (BMSCs) were seeded on [poly(lactide-co-glycolide) scaffolds with hydroxyapatite (HA) coating, and "s" stands for surface] (PLGA/HA-S), PLGA/HA-M (containing the same HA amount in the matrix as that of the PLGA/HA-S and "m" stands for matrix), and PLGA scaffolds, which were then cultured in a medium-containing Escherichia coli-derived recombinant human bone morphogenetic protein-2 (ErhBMP-2). In vitro culture of rat BMSCs found no different cell morphology in all the scaffolds, but the alkaline phosphatase activity and osteogenic gene expression of type I collagen (COL I) and osteocalcin (OCN) in the PLGA/HA-S scaffolds were always highest and were significantly improved in comparison with those in the PLGA scaffolds. In a rat calvarial defect model, new bone formation was enhanced in the PLGA/HA-S/ErhBMP-2 implants at 4 and 8 weeks after implantation too. Therefore, the PLGA/HA-S scaffold can better enhance the ErhBMP-2-induced osteogenic differentiation of BMSCs in vitro and osteogenesis in vivo.  相似文献   

10.
目的以人成骨细胞(MG-63细胞)复合纳米羟基磷灰石/胶原/聚乳酸[nano-hydroxyapatite/collagen/poly(L-lactic)acid,nHAC/PLA]支架材料进行体外培养,观察其早期附着生长情况。方法将MG-63细胞在nHAC/PLA支架材料上培养,通过倒置显微镜观察、HE染色、ALP染色、细胞增殖指数测定等方法对细胞在nHAC/PLA支架材料上的早期附着情况进行研究。结果细胞在nHAC/PLA上生长良好;ALP染色阳性度高,细胞增殖指数比空白对照组有显著提高。结论nHAC/PLA支架有利于MG-63细胞的早期黏附、生长,可以用作骨组织工程的支架材料。  相似文献   

11.
背景:观察成骨细胞在生物材料上的形态、增殖和分化等项目,可评估生物支架材料的生物相容性。 目的:观察复合支架材料纳米羟基磷灰石/胶原对成骨细胞增殖、分化的影响。 方法:取新生24 h内Wistar大鼠的颅盖骨,采用改良胶原酶消化法进行成骨细胞原代培养,取第3代细胞与纳米羟基磷灰石/胶原支架或普通羟基磷灰石材料体外复合培养。培养3,6,9 d后,观察材料周边的细胞形态及支架材料对细胞分化、增殖的影响。 结果与结论:纳米羟基磷灰石/胶原材料较普通的羟基磷灰石材料更有利于成骨细胞的黏附、生长、分化、增殖,证实其生物相容性更好,有望成为一种新型的骨组织工程支架材料。  相似文献   

12.
Three-dimensional oriented chitosan (CS)/hydroxyapatite (HA) scaffolds were prepared via in situ precipitation method in this research. Scanning electron microscopy (SEM) images indicated that the scaffolds with acicular nano-HA had the spoke-like, multilayer and porous structure. The SEM of osteoblasts which were polygonal or spindle-shaped on the composite scaffolds after seven-day cell culture showed that the cells grew, adhered, and spread well. The results of X-ray powder diffractometer and Fourier transform infrared spectrometer showed that the mineral particles deposited in the scaffold had phase structure similar to natural bone and confirmed that particles were exactly HA. In vitro biocompatibility evaluation indicated the composite scaffolds showed a higher degree of proliferation of MC3T3-E1 cell compared with the pure CS scaffolds and the CS/HA10 scaffold was the highest one. The CS/HA scaffold also had a higher ratio of adhesion and alkaline phosphate activity value of osteoblasts compared with the pure CS scaffold, and the ratio increased with the increase of HA content. The ALP activity value of composite scaffolds was at least six times of the pure CS scaffolds. The results suggested that the composite scaffolds possessed good biocompatibility. The compressive strength of CS/HA15 increased by 33.07% compared with the pure CS scaffold. This novel porous scaffold with three-dimensional oriented structure might have a potential application in bone tissue engineering.  相似文献   

13.
Successful bone-tissue engineering (TE) has been reported for various strategies to combine cells with a porous scaffold. In particular, the period after seeding until implantation of the constructs may vary between hours and several weeks. Differences between these strategies can be reduced to (a) the presence of extracellular matrix, (b) the differentiation status of the cells, and (c) the presence of residual potentially immunogenic serum proteins. These parameters are investigated in two types of calcium phosphate scaffolds in a goat model of ectopic bone formation. Culture-expanded bone-marrow stromal cells from eight goats were seeded onto two types of hydroxyapatite granules: HA60/400 (60% porosity, 400-microm average pore size) and HA70/800. Scaffolds seeded with cells and control scaffolds were cultured for 6 days in medium containing autologous or semisynthetic serum, in the presence or absence of dexamethasone. Other scaffolds were seeded with cells just before implantation in medium with or without serum. All conditions were implanted autologously in the paraspinal muscles. After 12 weeks, bone had formed in 87% of all TE constructs, as demonstrated by histology. Histomorphometry indicated significantly more bone in the HA70/800 scaffolds. Furthermore, a significant advantage in bone formation was found when the constructs had been cultured for 6 days. In conclusion, both scaffold characteristics (porosity) and TE strategy (culturing of the constructs) were demonstrated to be important for bone TE.  相似文献   

14.
Xu C  Su P  Chen X  Meng Y  Yu W  Xiang AP  Wang Y 《Biomaterials》2011,32(4):1051-1058
A novel biomimetic composite scaffold Bioglass-Collagen-Phosphatidylserine (BG-COL-PS) was fabricated with a freeze-drying technique. The macrostructure and morphology as well as mechanical strength of the scaffolds were characterized. Scanning electronic microscopy (SEM) showed that the BG-COL-PS scaffolds exhibited interconnected porous structures with pore sizes of several microns up to about 300 μm. The scaffolds have a porosity of 75.40% and the corresponding compressive strength of 1.5469 Mpa. Rat mesenchymal stem cells (rMSCs) were seeded on BG-COL-PS or BG-COL scaffolds and cultured for 21 days in vitro. Based on the results of SEM, dsDNA content, alkaline phosphatase (ALP) activity, osteogenic gene expression analysis and alizarin red staining, the responses of MSCs to the scaffold exhibited a higher degree of attachment, growth as well as osteogenic differentiation than those on BG-COL scaffolds in vitro. To investigate the in vivo biocompatibility and osteogenesis of the composite scaffolds, both pure BG-COL-PS scaffolds and MSC/scaffold constructs were implanted in rat femurs defects for 6 weeks and studied histologically and radiographically. The in vivo results showed that BG-COL-PS composite scaffolds exhibited good biocompatibility and extensive osteoconductivity with host bone. Moreover, the BG-COL-PS/MSC constructs dramatically enhanced the efficiency of new bone formation than pure BG-COL-PS scaffolds or BG-COL/MSC constructs. All these results demonstrate the usefulness of PS composited BG-COL-PS scaffolds for inducing enhanced bone formation. The BG-COL-PS scaffolds fulfill the basic requirements of bone tissue engineering scaffold and have the potential to be applied in orthopedic and reconstructive surgery.  相似文献   

15.
Resorbable porous ceramic constructs, based on silicon-stabilized tricalcium phosphate, were implanted in critical-size defects of sheep tibias, either alone or after seeding with bone marrow stromal cells (BMSC). Only BMSC-loaded ceramics displayed a progressive scaffold resorption, coincident with new bone deposition. To investigate the coupled mechanisms of bone formation and scaffold resorption, X-ray computed microtomography (muCT) with synchrotron radiation was performed on BMSC-seeded ceramic cubes. These were analyzed before and after implantation in immunodeficient mice for 2 or 6 months. With increasing implantation time, scaffold thickness significantly decreased while bone thickness increased. The muCT data evidenced that all scaffolds showed a uniform density distribution before implantation. Areas of different segregated densities were instead observed, in the same scaffolds, once seeded with cells and implanted in vivo. A detailed muX-ray diffraction analysis revealed that only in the contact areas between deposited bone and scaffold, the TCP component of the biomaterial decreased much faster than the HA component. This event did not occur at areas away from the bone surface, highlighting coupling and cell-dependency of the resorption and matrix deposition mechanisms. Moreover, in scaffolds implanted without cells, both the ceramic density and the TCP:HA ratio remained unchanged with respect to the pre-implantation analysis.  相似文献   

16.
Bone defect repair is challenging in orthopaedic clinics. For treatment of large bone defects, bone grafting remains the method of choice for the majority of surgeons, as it fills spaces and provides support to enhance biological bone repair. As therapeutic agents are desirable for enhancing bone healing, this study was designed to develop such a bioactive composite scaffold (PLGA/TCP/ICT) made of polylactide-co-glycolide (PLGA) and tricalcium phosphate (TCP) as a basic carrier, incorporating a phytomolecule icaritin (ICT), i.e., a novel osteogenic exogenous growth factor. PLGA/TCP/ICT scaffolds were fabricated as PLGA/TCP (control group) and PLGA/TCP in tandem with low/mid/high-dose ICT (LICT/MICT/HICT groups, respectively). To evaluate the in vivo osteogenic and angiogenic potentials of these bioactive scaffolds with slow release of osteogenic ICT, the authors established a 12 mm ulnar bone defect model in rabbits. X-ray and high-resolution peripheral quantitative computed tomography results at weeks 2, 4 and 8 post-surgery showed more newly formed bone within bone defects implanted with PLGA/TCP/ICT scaffolds, especially PLGA/TCP/MICT scaffold. Histological results at weeks 4 and 8 also demonstrated more newly mineralized bone in PLGA/TCP/ICT groups, especially in the PLGA/TCP/MICT group, with correspondingly more new vessel ingrowth. These findings may form a good foundation for potential clinical validation of this innovative bioactive scaffold incorporated with the proper amount of osteopromotive phytomolecule ICT as a ready product for clinical applications.  相似文献   

17.
This in vitro study was performed to evaluate the ability of two types of porous bioactive glass scaffolds to support the growth and differentiation of an established osteogenic cell line. The two scaffold types tested included 13-93 glass fiber and trabecular-like scaffolds seeded with murine MLO-A5 cells and cultured for intervals of 2 to 12 days. Culture in MTT-containing medium showed metabolically active cells both on the surface and within the interior of the scaffolds. Scanning electron microscopy revealed well-attached cells on both types of scaffolds with a continual increase in cell density over a 6-day period. Protein measurements also showed a linear increase in cell density during the incubation. Activity of alkaline phosphatase, a key indicator of osteoblast differentiation, increased about 10-fold during the 6-day incubation with both scaffold types. The addition of mineralization media to MLO-A5 seeded scaffolds triggered extensive formation of alizarin red-positive mineralized extracellular material, additional evidence of cell differentiation and completion of the final step of bone formation on the constructs. Collectively, the results indicate that the 13-93 glass fiber and trabecular scaffolds promote the attachment, growth, and differentiation of MLO-A5 osteogenic cells and could potentially be used for bone tissue engineering applications. ? 2012 Wiley Periodicals, Inc. J Biomed Mater Res Part A 100A: 2593-2601, 2012.  相似文献   

18.
Calcium phosphate ceramics have been widely used for filling bone defects to aid in the regeneration of new bone tissue. Addition of osteogenic cells to porous ceramic scaffolds may accelerate the bone repair process. This study demonstrates the feasibility of culturing marrow stromal cells (MSCs) on porous biphasic calcium phosphate ceramic scaffolds in a flow perfusion bioreactor. The flow of medium through the scaffold porosity benefits cell differentiation by enhancing nutrient transport to the scaffold interior and by providing mechanical stimulation to cells in the form of fluid shear. Primary rat MSCs were seeded onto porous ceramic (60% hydroxyapatite, 40% β-tricalcium phosphate) scaffolds, cultured for up to 16 days in static or flow perfusion conditions, and assessed for osteoblastic differentiation. Cells were distributed throughout the entire scaffold by 16 days of flow perfusion culture whereas they were located only along the scaffold perimeter in static culture. At all culture times, flow perfused constructs demonstrated greater osteoblastic differentiation than statically cultured constructs as evidenced by alkaline phosphatase activity, osteopontin secretion into the culture medium, and histological evaluation. These results demonstrate the feasibility and benefit of culturing cell/ceramic constructs in a flow perfusion bioreactor for bone tissue engineering applications.  相似文献   

19.
Poly(L-lactic acid) and hydroxyapatie (PLLA/HA) composite scaffolds have good properties and suit to use as bone tissue engineering. In this work, hollow HA microspheres (HAM) with poor crystallinity were fabricated by a flame-drying method. The HAM has the potential to be used to release drugs or proteins in addition to improve osteoconductivity. Different ratios of PLLA/HAM were used to prepare porous composite scaffolds using the thermally induced phase separation technique. The HAMs were randomly incorporated into the PLLA porous scaffolds. As the HAMs ratio was increased, the porous composite scaffolds changed from ladder-like into isotropic structure. In addition, the compressive strength of PLLA/HAMs composite scaffolds improved first and declined with the increasing of HAMs ratio in the scaffolds. In vitro experiment showed that PLLA/HAMs composite scaffolds improved the attachment, migration, and differentiation of osteoblastic cells. These results demonstrated that the PLLA/HAMs composite scaffolds were superior to plain PLLA scaffold for bone tissue engineering.  相似文献   

20.
Kim SS  Sun Park M  Jeon O  Yong Choi C  Kim BS 《Biomaterials》2006,27(8):1399-1409
Biodegradable polymer/bioceramic composite scaffolds can overcome the limitations of conventional ceramic bone substitutes such as brittleness and difficulty in shaping. However, conventional methods for fabricating polymer/bioceramic composite scaffolds often use organic solvents (e.g., the solvent casting and particulate leaching (SC/PL) method), which might be harmful to cells or tissues. Furthermore, the polymer solutions may coat the ceramics and hinder their exposure to the scaffold surface, which may decrease the likelihood that the seeded osteogenic cells will make contact with the bioactive ceramics. In this study, a novel method for fabricating a polymer/nano-bioceramic composite scaffold with high exposure of the bioceramics to the scaffold surface was developed for efficient bone tissue engineering. Poly(D,L-lactic-co-glycolic acid)/nano-hydroxyapatite (PLGA/HA) composite scaffolds were fabricated by the gas forming and particulate leaching (GF/PL) method without the use of organic solvents. The GF/PL method exposed HA nanoparticles at the scaffold surface significantly more than the conventional SC/PL method does. The GF/PL scaffolds showed interconnected porous structures without a skin layer and exhibited superior enhanced mechanical properties to those of scaffolds fabricated by the SC/PL method. Both types of scaffolds were seeded with rat calvarial osteoblasts and cultured in vitro or were subcutaneously implanted into athymic mice for eight weeks. The GF/PL scaffolds exhibited significantly higher cell growth, alkaline phosphatase activity, and mineralization compared to the SC/PL scaffolds in vitro. Histological analyses and calcium content quantification of the regenerated tissues five and eight weeks after implantation showed that bone formation was more extensive on the GF/PL scaffolds than on the SC/PL scaffolds. Compared to the SC/PL scaffolds, the enhanced bone formation on the GF/PL scaffolds may have resulted from the higher exposure of HA nanoparticles at the scaffold surface, which allowed for direct contact with the transplanted cells and stimulated the cell proliferation and osteogenic differentiation. These results show that the biodegradable polymer/bioceramic composite scaffolds fabricated by the novel GF/PL method enhance bone regeneration compared with those fabricated by the conventional SC/PL method.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号