首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This study explored the feasibility of applying nanocomposites derived from conducting organic polymers and silicone elastomers to fabricate electrodes for neural stimulation. A novel combination of nanoparticulate polypyrrole polymerized within a processable elastomeric silicone host polymer was evaluated in vitro and in vivo. The electrical properties of the elastomeric conductors were strongly dependent on their composition, and mixtures were identified that provided high and stable conductivity. Methods were developed for incorporating conductive polymer-siloxane co-polymer nanocomposite and silicone insulating polymers into thin-layered structures for simple single-poled electrode fabrication. In vitro testing revealed that the materials were stable under continuous pulsing for at least 10 days. Single contact prototype nerve cuff electrodes were fabricated and device functionality was demonstrated in vivo following acute implantation. The results of this study demonstrate the feasibility of conductive elastomers for peripheral nerve stimulating electrodes. Matching the mechanical properties of cuff electrode to those of the underlying neural tissue is expected to improve the long-term tissue response to the presence of the electrode.  相似文献   

2.
Silicone rubber is commonly used for biomedical applications, including implanted cuff electrodes for both recording and stimulation of peripheral nerves. This study was undertaken to evaluate the consequences of a new platinum metallization method on the biocompatibility of silicone rubber cuff electrodes. This method was introduced in order to allow the manufacture of spiral nerve cuff electrodes with a large number of contacts. The metallization process, implying silicone coating with poly(methyl methacrylate) (PMMA), its activation by an excimer laser and subsequent electroless metal deposition, led to a new surface microtexture. The neutral red cytotoxicity assay procedure was first applied in vitro on BALB/c 3T3 fibroblasts in order to analyze the cellular response elicited by the studied material. An in vivo assay was then performed to investigate the tissue reaction after chronic subcutaneous implantation of the metallized material. Results demonstrate that silicone rubber biocompatibility is not altered by the new platinum metallization method.  相似文献   

3.
Synthetic polymers such as polypyrrole (PPy) are gaining significance in neural studies because of their conductive properties. We evaluated two novel biodegradable block co-polymers of PPy with poly(ε-caprolactone) (PCL) and poly(ethyl cyanoacrylate) (PECA) for nerve regeneration applications. PPy–PCL and PPy–PECA co-polymers can be processed from solvent-based colloidal dispersions and have essentially the same or greater conductivity (32 S/cm for PPy–PCL, 19 S/cm for PPy–PECA) compared to the PPy homo-polymer (22 S/cm). The PPy portions of the co-polymers permit electrical stimulation whereas the PCL or PECA blocks enable degradation by hydrolysis. For in vitro tests, films were prepared on polycarbonate sheets by air brushing layers of dispersions and pressing the films. We characterized the films for hydrolytic degradation, electrical conductivity, cell proliferation and neurite extension. The co-polymers were sufficient to carry out electrical stimulation of cells without the requirement of a metallic conductor underneath the co-polymer film. In vitro electrical stimulation of PPy–PCL significantly increased the number of PC12 cells bearing neurites compared to unstimulated PPy–PCL. For in vivo experiments, the PPy co-polymers were coated onto the inner walls of nerve guidance channels (NGCs) made of the commercially available non-conducting biodegradable polymer poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHB-HV). The NGCs were implanted in a 10 mm defect made in the sciatic nerve of rats, and harvested after 8 weeks. Histological staining showed axonal growth. The studies indicated that these new conducting degradable biomaterials have good biocompatibility and support proliferation and growth of PC12 cells in vitro (with and without electrical stimulation) and neurons in vivo (without electrical stimulation).  相似文献   

4.
Abstract

The ambulatory monitoring of biosignals involves the use of sensors, electrodes, actuators, processing tools and wireless communication modules. When a garment includes these elements with the purpose of recording vital signs and responding to specific situations it is call a ‘Smart Wearable System’. Over the last years several authors have suggested that conductive textile material (e-textiles) could perform as electrode for these systems. This work aims at implementing an electrical characterization of e-textiles and an evaluation of their ability to act as textile electrodes for lower extremity venous occlusion plethysmography (LEVOP). The e-textile electrical characterization is carried out using two experimental set-ups (in vitro evaluation). Besides, LEVOP records are obtained from healthy volunteers (in vivo evaluation). Standard Ag/AgCl electrodes are used for comparison in all tests. Results shown that the proposed e-textiles are suitable for LEVOP recording and a good agreement between evaluations (in vivo and in vitro) is found.  相似文献   

5.
The feasibility of two methods for selectively activating muscles with peripheral nerve electrodes has been investigated. One method for achieving selectivity is to place a cuff electrode around the nerves to each group of synergistic muscles to be stimulated. A second method is to stimulate through pairs of electrodes selected from a multielectrode array placed around a common nerve trunk. Both methods have been tesed in experiments conducted on four dogs. It was shown that the first method, cuff electrodes placed on individual motor branches, is an effective technique for selective activation, Thresholds of motor bibres lying outside of, but adjacent to, cuff electrodes are much greater than the stimulus amplitudes required to maximally stimulate motor fibres contained within the cuff electrode. Good results were obtained with a multielectrode array in two animals, but results, were poor in a third dog. Electrode position and contact with the nerve were found to be important factors in achieving good selectivity.  相似文献   

6.
Although biodegradable polymers have found extensive application in medical devices, there are very few commercially available elastomeric biodegradable polymers. In this work, starting with the well-known monomers l-lactide and ε-caprolactone, we developed elastomers using a multiblock co-polymer approach. This ensures that the degradation products of such elastomers are also acceptable from a cytotoxicity standpoint. A series of polymers with various structures was synthesized utilizing a design of experiment approach. The basic structure is that of a diblock, with each block being modified by the addition of co-monomer. The synthesized polymers exhibited a range of mechanical properties from a typical thermoplastic polymer to that approaching a good thermoplastic elastomer. 13C nuclear magnetic resonance analysis, size exclusion chromatography and differential scanning calorimetry measurements have been utilized to relate the observed range of mechanical properties to the structure. In addition, the elastomeric nature has been established with the use of creep and recovery measurements. Such elastomers may find a variety of biomedical applications, ranging from stent coatings to atrial septal defect occluders.  相似文献   

7.
The interface between micromachined neural microelectrodes and neural tissue plays an important role in chronic in vivo recording. Electrochemical polymerization was used to optimize the surface of the metal electrode sites. Electrically conductive polymers (polypyrrole) combined with biomolecules having cell adhesion functionality were deposited with great precision onto microelectrode sites of neural probes. The biomolecules used were a silk-like polymer having fibronectin fragments (SLPF) and nonapeptide CDPGYIGSR. The existence of protein polymers and peptides in the coatings was confirmed by reflective microfocusing Fourier transform infrared spectroscopy (FTIR). The morphology of the coating was rough and fuzzy, providing a high density of bioactive sites for interaction with neural cells. This high interfacial area also helped to lower the impedance of the electrode site and, consequently, to improve the signal transport. Impedance spectroscopy showed a lowered magnitude and phase of impedance around the biologically relevant frequency of 1 kHz. Cyclic voltammetry demonstrated the intrinsic redox reaction of the doped polypyrrole and the increased charge capacity of the coated electrodes. Rat glial cells and human neuroblastoma cells were seeded and cultured on neural probes with coated and uncoated electrodes. Glial cells appeared to attach better to polypyrrole/SLPF-coated electrodes than to uncoated gold electrodes. Neuroblastoma cells grew preferentially on and around the polypyrrole/CDPGYIGSR-coated electrode sites while the polypyrrole/CH(3)COO(-)-coated sites on the same probe did not show a preferential attraction to the cells. These results indicate that we can adjust the chemical composition, morphology, electronic transport, and bioactivity of polymer coatings on electrode surfaces on a multichannel micromachined neural probe by controlling electrochemical deposition conditions.  相似文献   

8.
《Acta biomaterialia》2014,10(6):2446-2454
Conducting polymers, especially poly(3,4-ethylenedioxythiophene) (PEDOT) based materials, are important for developing highly sensitive and microscale neural probes. In the present work, we show that the conductivity and stability of PEDOT can be significantly increased by switching the widely used counter anion poly(styrenesulfonate) (PSS) to the smaller tetrafluoroborate (TFB) anion during the electrodeposition of the polymer. Time-dependent impedance measurements of polymer modified implantable microwires were conducted in physiological buffer solutions under accelerated aging conditions and the relative stability of PEDOT:PSS and PEDOT:TFB modified microwires was compared over time. This study was also extended to carbon nanotube (CNT) incorporated PEDOT:PSS which, according to some reports, is claimed to enhance the stability and electrical performance of the polymer. However, no noticeable difference was observed between PEDOT:PSS and CNT:PEDOT:PSS in our measurements. At the biologically relevant frequency of 1 kHz, PEDOT:TFB modified microwires exhibit approximately one order of magnitude higher conductivity and demonstrate enhanced stability over both PEDOT:PSS and CNT:PEDOT:PSS modified microwires. In addition, PEDOT:TFB is not neurotoxic and we show the proof-of-concept for both in vitro and in vivo neuronal recordings using PEDOT:TFB modified microelectrode arrays and chronic electrodes, respectively. Our findings suggest that PEDOT:TFB is a promising conductive polymer coating for the recording of neural activities.  相似文献   

9.
We report on the development of a microtube electrode array as a neural interface device. To combine the desired properties for the neural interface device, such as low invasiveness with a small needle and a good signal-to-noise ratio in neural recordings, we applied the structure of a glass pipette electrode to each microtube electrode. The device was fabricated as sub-5-μm-diameter out-of-plane silicon dioxide microtube arrays using silicon microneedle templates, which are grown by the selective vapor–liquid–solid method. The microtubes had inner diameters of 1.9–6.4 μm and a length of 25 μm. Impedances ranged from 220 kΩ to 1.55 MΩ, which are less than those for conventional microneedles. In addition, the microtube electrodes had less signal attenuation than conventional microneedle electrodes. We confirmed that the effects of parasitic capacitances between neighboring microtubes and channels were sufficiently small using a test signal. Finally, neural responses evoked from a rat peripheral nerve were recorded in vivo using a microtube electrode to confirm that this type of electrode can be used for both electrophysiological measurements and as a neural interface device.  相似文献   

10.
Recordings of neural information for use as feedback in functional electrical stimulation are often contaminated with interfering signals from muscles and from stimulus pulses. The cuff electrode used for the neural recording can be optimized to improve the S/I ratio. In this work, we evaluate a model of both the nerve signal and the interfering signals recorded by a cuff, and subsequently use this model to study the signal to interference ratio of different cuff designs and to evaluate a recently introduced short-circuited tripolar cuff configuration. The results of the model showed good agreement with results from measurements in rabbits and confirmed the superior performance of the short-circuited tripolar configuration as compared with the traditionally used tripolar configuration.  相似文献   

11.
The cuff electrode provides a stable interface with peripheral nerves, which has been widely used in basic research and clinical practice. Currently, the cuff electrodes are limited by the planar processing of microfabrication. This paper presents a novel cuff electrode using high-aspect ratio carbon nanotubes (CNTs) integrated on a flexible biocompatible parylene. The microfabrication process unites the high quality vertical CNTs grown at high temperature with the heat sensitive parylene substrate in a highly controllable manner. The fabricated cuff electrodes have been utilized for extracellular nerve stimulation in rats. The experimental results demonstrate the proposed CNT electrode has a better performance than Pt electrode in nerve stimulation. Moreover, the effect of electrode position and stimulation frequency is demonstrated in this paper. This preliminary data indicates that flexible 3D CNTs cuff electrode provides an excellent platform for functional electrical stimulation.  相似文献   

12.
The synthesis, characterization and in vitro cytocompatibility of a new family of photo-cross-linked amorphous poly(diol-tricarballylate) (PDT) biodegradable elastomeric polyesters are reported. The synthesis was based on the polycondensation reaction between tricarballylic acid and alkylene diols, followed by acrylation. The prepared and acrylated poly(diol-tricarballylate) (APDT) was characterized by means of FT-IR, 1H-NMR, GPC and DSC. Liquid-to-solid photo-curing was carried out by exposing the APDT to visible light in the presence of camphorquinone as a photoinitiator. The thermal properties, mechanical characteristics, sol content, long-term in vitro degradation and cytocompatibility of the prepared PDT elastomers were also reported. The mechanical and degradation properties of this new photocurable elastomer can be precisely controlled by varying the density of acrylate moieties in the matrix of the polymer, and through changes in the pre-polymer chain length. The use of visible light cross-linking, possibility of solventless drug loading, controllable mechanical properties and cytocompatibility of these new elastomers make them excellent candidates for use in controlled implantable drug-delivery systems of protein drugs and other biomedical applications.  相似文献   

13.
Bio-electrodes have traditionally been made of materials such as metal and silicon that are much stiffer than the tissue from which they record or stimulate. This difference in mechanical compliance can cause incomplete or ineffective contact with the tissue. The electrode stiffness has also been hypothesized to cause chronic low-grade injury and scar-tissue encapsulation, reducing stimulation and recording efficiency. As an initial step to resolve these issues with electrode performance, we have developed and characterized electrically-functional, low-Young’s modulus, microcable-shaped neuroelectrodes and demonstrated electrophysiological recording functionality. The microcable geometry gives the electrodes a similar footprint to traditional wire and microwire neuroelectrodes, while reducing the difference in Young’s modulus from nervous tissue by orders of magnitude. The electrodes are composed of PDMS and thin-film gold, affording them a high-level of compliance that is well suited for in vivo applications. The composite Young’s modulus of the electrode was experimentally determined to be 1.81 ± 0.01 MPa. By incorporating a high-tear-strength silicone, Sylgard 186, the load at failure was increased by 92%, relative to that of the commonly used Sylgard 184. The microcable electrodes were also electromechanically tested, with measurable conductivity (220 kΩ) at an average 8% strain (n = 2) after the application of 200% strain. Electrophysiological recording is demonstrated by wrapping the electrode around a peripheral nerve, utilizing the compliance and string-like profile of the electrode for effective recording in nerve tissue.  相似文献   

14.
Conventional metal electrodes generate electrochemical byproducts during stimulation of nerve or muscle. These byproducts may cause tissue damage, especially with the long-term stimulation necessary with neural prosthetic devices. To prevent the possibility of such damage, completely insulated electrodes have been devised which deliver current pulses by capacitive charging of the electrode surface, not involving electrochemical reactions. Anodised discs of porous tantalum, 1·0 mm in diameter and 0·25 mm thick, can deliver 0·5 ms, 5 mA pulses. Such electrodes are available as components of commercial capacitors and are easily adapted for biological use. The design may be optimised by mathematical analysis of an equivalent electrical circuit.In vitro tests demonstrate a clear advantage of these electrodes over capacitively coupled platinum-iridium electrodes in preventing oxidation-reduction reactions. The electrodes are stable on chronic implantation and should provide a safer interface between neural prosthetic devices and human tissue.  相似文献   

15.
We implanted polymer-based longitudinal intrafascicular electrodes (polyLIFEs) in feline dorsal rootlets acutely and for periods of two to six months to evaluate their electrical properties and biocompatibility. A total of 38 implanted electrodes were analyzed. Some 25 of the 38 electrodes were implanted with an insulative flexible polymer cuff, which was required for recording of afferent activity in situ. Electrode impedances remained stable for the duration of the experiments. The distributions of axons were measured at three levels of the implanted rootlets: the implant level, 1–2 mm proximal to the implant with respect to the cell body, and 1–2 mm distal to the implant with respect to the cell body. Similar measurements were made in five samples of fascicles neighboring an implant and six samples of control tissue from animals in which no implants were placed. The polyLIFEs demonstrated a high degree of biocompatibility, as no adverse effects on axon size were observed in either the implanted fascicle or neighboring neural tissue. However, the insulative cuffs were found to be a source of compression, resulting in necrosis of the neural tissue. © 1998 Biomedical Engineering Society. PAC98: 8790+y, 8722-q  相似文献   

16.
In this paper, we describe interactions between neural cells and the conducting polymer poly(3,4-ethylenedioxythiophene) (PEDOT) toward development of electrically conductive biomaterials intended for direct, functional contact with electrically active tissues such as the nervous system, heart, and skeletal muscle. We introduce a process for polymerizing PEDOT around living cells and describe a neural cell-templated conducting polymer coating for microelectrodes and a hybrid conducting polymer-live neural cell electrode. We found that neural cells could be exposed to working concentrations (0.01 m) of the EDOT monomer for as long as 72 h while maintaining 80% cell viability. PEDOT could be electrochemically deposited around neurons cultured on electrodes using 0.5-1 microA/mm(2) galvanostatic current. PEDOT polymerized on the electrode and surrounded the cells, covering cell processes. The polymerization was impeded in regions where cells were well adhered to the substrate. The cells could be removed from the PEDOT matrix to generate a neural cell-templated biomimetic conductive substrate with cell-shaped features that were cell attracting. Live cells embedded within the conductive polymer matrix remained viable for at least 120 h following polymerization. Dying cells primarily underwent apoptotic cell death. PEDOT, PEDOT+live neurons, and neuron-templated PEDOT coatings on electrodes significantly enhanced the electrical properties as compared to the bare electrode as indicated by decreased electrical impedance of 1-1.5 orders of magnitude at 0.01-1 kHz and significantly increased charge transfer capacity. PEDOT coatings showed a decrease of the phase angle of the impedance from roughly 80 degrees for the bare electrode to 5-35 degrees at frequencies >0.1 kHz. Equivalent circuit modeling indicated that PEDOT-coated electrodes were best described by R(C(RT)) circuit. We found that an RC parallel circuit must be added to the model for PEDOT+live neuron and neuron-templated PEDOT coatings.  相似文献   

17.
We have developed two new types of bipolar cuff microelectrodes (volume size, 2-3 mm(3)) using electro-conductive rubber or water-absorbent polymer, either of which can be applied to measure sympathetic nerve activity in small animals. A renal nerve bundle of an anesthetized rat was inserted into the center hole of the electrode (diameter, 0.15 mm) through a slit and had good contact with the electrodes. Renal sympathetic nerve activity, which was verified by sympathetic ganglionic blockade, could be recorded using either type of implantable cuff electrode.  相似文献   

18.
The degradation, tissue compatibility, and toxicology of a novel class of alternate poly(ester-anhydrides) were assessed in rats. It was observed that the degradation rate of the polymers in vivo was slower than that in vitro. In addition, erosion and intact zone were observed for all the polymers. IR and SEM analysis of the outer erosion and inner intact zone revealed that the outer zone degraded more rapidly than the inner zone. Such results were similar to that in vitro. All the studied poly(ester-anhydrides) produced mild inflammatory reactions and tissue encapsulation by layers of fibroblastic cells in vivo. Observation of liver and kidney tissue by light microscopy suggested the hydrolytic products of the studied poly(ester-anhydrides) had no harmful effects on the normal tissue/organs. In addition, the polymer and the breakdown products were found to be non-mutagenic by examination of micronucleus in bone marrow.  相似文献   

19.
Citric-acid-derived thermally cross-linked biodegradable elastomers (CABEs) have recently received significant attention in various biomedical applications, including tissue-engineering orthopedic devices, bioimaging and implant coatings. However, citric-acid-derived photo-cross-linked biodegradable elastomers are rarely reported. Herein, we report a novel photo-cross-linked biodegradable elastomer, referred to as poly(octamethylene maleate citrate) (POMC), which preserves pendant hydroxyl and carboxylic functionalities after cross-linking for the potential conjugation of biologically active molecules. Pre-POMC is a low-molecular-mass pre-polymer with an average molecular mass between 701 and 1291 Da. POMC networks are soft and elastic with an initial modulus of 0.07 to 1.3 MPa and an elongation-at-break between 38 and 382%. FT-IR–ATR results confirmed the successful surface immobilization of type-I collagen onto POMC films, which enhanced in vitro cellular attachment and proliferation. Photo-polymerized POMC films implanted subcutaneously into Sprague–Dawley rats demonstrated minimal in vivo inflammatory responses. The development of POMC enriches the family of citric-acid-derived biodegradable elastomers and expands the available biodegradable polymers for versatile needs in biomedical applications.  相似文献   

20.
目的 电刺激中枢神经系统已用于治疗一些神经病、精神病和感觉障碍.尽管在一些应用里相当成功,但现有的刺激技术不能精确地控制激活靶向神经元.提出一种形状自适应的新型螺旋电极,实现选择性刺激视神经.方法 应用COMSOL Multiphysics建立视神经和新型螺旋电极的几何模型;新型电极由起支撑和绝缘隔离作用的硅橡胶螺旋支架和嵌入支架内的铂金触点组成.引入激活函数来表征刺激效果,应用COMSOL仿真分析新型螺旋电极对视神经纤维选择性刺激的能力,并考虑电极触点位置的变化对选择性的影响.结果 假定激活函数的归一化阈值为0.1 V/m2,新型螺旋电极和传统袖套电极激活函数大于阈值的比例差异仅为1.2410%.当新型螺旋电极两端的电极触点靠近中间触点时,可以先激活细视神经纤维束,后激活粗纤维束.结论 仿真结果表明新型螺旋电极可以达到传统袖套电极的刺激效果.改变新型螺旋电极的触点位置可以实现选择性激活视神经纤维束.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号