首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Macrophages are the primary mediator of chronic inflammatory responses to implanted biomaterials, in cases when the material is either in particulate or bulk form. Chronic inflammation limits the performance and functional life of numerous implanted medical devices, and modulating macrophage interactions with biomaterials to mitigate this response would be beneficial. The integrin family of cell surface receptors mediates cell adhesion through binding to adhesive proteins nonspecifically adsorbed onto biomaterial surfaces. In this work, the roles of integrin Mac-1 (αMβ2) and RGD-binding integrins were investigated using model systems for both particulate and bulk biomaterials. Specifically, the macrophage functions of phagocytosis and inflammatory cytokine secretion in response to a model particulate material, polystyrene microparticles were investigated. Opsonizing proteins modulated microparticle uptake, and integrin Mac-1 and RGD-binding integrins were found to control microparticle uptake in an opsonin-dependent manner. The presence of adsorbed endotoxin did not affect microparticle uptake levels, but was required for the production of inflammatory cytokines in response to microparticles. Furthermore, it was demonstrated that integrin Mac-1 and RGD-binding integrins influence the in vivo foreign body response to a bulk biomaterial, subcutaneously implanted polyethylene terephthalate. A thinner foreign body capsule was formed when integrin Mac-1 was absent (∼30% thinner) or when RGD-binding integrins were blocked by controlled release of a blocking peptide (∼45% thinner). These findings indicate integrin Mac-1 and RGD-binding integrins are involved and may serve as therapeutic targets to mitigate macrophage inflammatory responses to both particulate and bulk biomaterials.  相似文献   

2.
Monocytes and macrophages play critical roles in inflammatory responses to implanted biomaterials. Monocyte adhesion may lead to macrophage activation and the foreign body response. We report that surface chemistry, preadsorbed proteins, and adhesion time all play important roles during monocyte adhesion in vitro. The surface chemistry of tissue culture polystyrene (TCPS), polystyrene, Primaria, and ultra low attachment (ULA) used for adhesion studies was characterized by electron spectroscopy for chemical analysis. Fibrinogen adsorption measured by (125)I-labeled fibrinogen was the lowest on ULA, higher on TCPS, and the highest on polystyrene or Primaria. Monocyte adhesion on protein preadsorbed surfaces for 2 h or 1 day was measured with a lactate-dehydrogenase method. Monocyte adhesion decreased over time. The ability of preadsorbed proteins to modulate monocyte adhesion was surface dependent. Adhesion was the lowest on ULA, higher and similar on TCPS or polystyrene, and the highest on Primaria. Monocyte adhesion on plasma or fibrinogen adsorbed surfaces correlated positively and linearly to the amount of adsorbed fibrinogen. Preadsorbed fibronectin, immunoglobulin G, plasma, or serum also promoted adhesion compared with albumin preadsorbed or uncoated surfaces. Overall, biomaterial surface chemistry, the type and amount of adsorbed proteins, and adhesion time all affected monocyte adhesion in vitro.  相似文献   

3.
Protein binding to implants is governed by the physicochemical properties of the biomaterial surface. The adhesion of a protein onto a solid surface is nonspecific. The aim of this study was to assess the adsorption process of fibrinogen at two different dental implants. The first biomaterial has a sand-blasted titanium surface, whereas the second one is covered by a calcium phosphate coating. After scanning electron microscopy and atomic force microscopy characterization of the implant surfaces, force spectroscopy has been used to determine the unbinding force of fibrinogen adsorbed at the two different substrates. Force-measurement findings indicate that the detachment force of fibrinogen adsorbed onto both surfaces varies as a function of the interaction time. The mean strength of the unbinding forces increases with the interaction time (100 and 1,000 ms, respectively). However, experimental data suggest that fibrinogen fixes to the two studied biomaterials by different mechanisms. Moreover, it appears that, after an interaction time of 1,000 ms, the detachment force of the adsorbed protein is quite larger for the titanium surface than for the calcium phosphate coating.  相似文献   

4.
L Tang  M S Sheu  T Chu  Y H Huang 《Biomaterials》1999,20(15):1365-1370
Implantable biomaterials often trigger a variety of adverse responses. Because polydimethyl siloxane surfaces have good hemo- and bio-compatibility, it is generally believed that surface biocompatibility may be improved by modifying biomaterial surfaces with silicone-like properties. For this, we developed a series of polycaprolactone-polydimethylsiloxane-polycaprolactone (PDMS-PCL) copolymers. By mixing the substrate material--polyvinyl chloride--with low concentrations (1.2 and 2.4%) of the PDMS-PCL copolymer, we generated materials with silicone-like surface properties as reflected by increased surface silicon content and surface contact angles. We assessed the biocompatibility of these surfaces in vitro and found that the addition of PDMS-PCL significantly reduced the percentages of surface-'denatured' fibrinogen, a critical element of genesis of many adverse responses to implanted biomaterials. Indeed, using an animal implantation model, we find that PDMS-PCL-blended materials triggered significantly weaker inflammatory responses than did polyvinyl chloride, the substrate control. The results from these experiments suggest that the use of PDMS-PCL additives (2.4%) in polymer blends is a useful means of camouflaging the substrate surface properties and improving the biocompatibility of biomaterials.  相似文献   

5.
Fibrinogen adsorbed to biomaterials plays a key role in mediating platelet interactions that can lead to blood clotting so its behavior on surfaces is of fundamental interest. In previous work showing that fibrinogen adsorbed to surfaces quickly becomes non-displaceable upon exposure to blood plasma, the fibrinogen was adsorbed from buffer, so we performed new studies in which the displaceability of fibrinogen adsorbed from plasma was characterized. Fibrinogen was adsorbed from 1% plasma to seven different surfaces for 1-64 min and then transferred to 100% plasma lacking radiolabeled fibrinogen and the amount adsorbed before and after transfer measured. The surfaces were glass, Silicone rubber, and five different polyurethanes. As adsorption time increased, the fibrinogen became increasingly resistant to displacement during the 100% plasma step, but the rate of increase in resistance varied greatly with surface type. Fibrinogen adsorbed from 1% plasma evidently undergoes rapid, surface dependent transitions. This work shows that the transitions that occur when the fibrinogen is adsorbed from blood plasma are similar to what we have previously observed for fibrinogen adsorbed from buffer.  相似文献   

6.
The nucleotide exchange factor cytohesin-1 was previously reported to interact with the cytoplasmic domains of the integrin β-chain common to all β(2) integrins such as LFA-1 and Mac-1. We show here that cytohesin-1, which contributes to fMLF-induced functional responses in PMNs through activation of Arf6, restrains the activation of the β(2) integrin Mac-1 (αMβ(2)) in PMNs or dcAMP-differentiated PLB-985 cells. We found that the cytohesin-1 inhibitor SecinH3 or siRNA increased cell adhesion to immobilized fibrinogen and fMLF-mediated conformational changes of Mac-1, monitored using mAb CBRM1/5, specific for the activation epitope of the αM subunit. In contrast, PLB-985 cells overexpressing cytohesin-1 showed little adhesion to fibrinogen. The use of SecinH3 and siRNA also revealed that interference with cytohesin-1 signaling also enhanced phagocytosis of zymosan particles and chemotaxis toward fMLF in transwell migration assays. These increments of phagocytosis and chemotaxis in cells treated with SecinH3 and cytohesin-1 siRNA were reversed by a blocking mAb to the integrin-αM subunit. We provide evidence for increased polymerized cortical actin in cells treated with SecinH3 and that altered signaling through cytohesin-1 increased cell surface expression of FPRL-1 and impairs the late calcium mobilization response elicited by fMLF. The data provide evidence that stimulation with fMLF initiates a signaling cascade that restrains Mac-1 activation in PMNs. Such crosstalk between FPRL-1 and Mac-1 involves cytohesin-1. We suggest that cytohesin-1 may coordinate activation of the β(2) integrins to regulate PMN adhesion, phagocytosis, and chemotaxis.  相似文献   

7.
Monocytes and macrophages play important roles in host responses to implanted biomedical devices. Monocyte and macrophage interactions with biomaterial surfaces are thought to be mediated by adsorbed adhesive proteins such as fibrinogen and fibronectin. Non-fouling surfaces that minimize protein adsorption may therefore minimize monocyte adhesion, activation, and the foreign body response. Radio-frequency glow discharge plasma deposition (RF-GDPD) of tetraethylene glycol dimethyl ether (tetraglyme) was used to produce polyethylene oxide (PEO)-like coatings on a fluorinated ethylene-propylene (FEP) surface. Electron spectroscopy for chemical analysis (ESCA) and static time of flight secondary ion mass spectrometry (ToF-SIMS) were used to characterize the surface chemistry of tetraglyme coating. Fibrinogen adsorption to the tetraglyme surface was measured with 125I-labeled fibrinogen and ToF-SIMS. Adsorption of fibrinogen to plasma deposited tetraglyme was less than 10 ng cm(-2), a 20-fold decrease compared to untreated FEP or tissue culture polystyrene (TCPS). Monocyte adhesion to plasma deposited tetraglyme was significantly lower than adhesion to FEP or TCPS. In addition, when the surfaces were preadsorbed with fibrinogen, fibronectin, or blood plasma, monocyte adhesion to plasma deposited tetraglyme after 2 h or 1 day was much lower than adhesion to FEP. RF-GDPD tetraglyme coating provides a promising approach to make non-fouling biomaterials that can inhibit non-specific material-host interactions and reduce the foreign body response.  相似文献   

8.
Biomaterial-mediated inflammatory responses often compromise the functions of implantable devices. The mechanism(s) involved in the inflammatory responses, which can be arbitrarily divided into phagocyte transmigration, chemotaxis, and adhesion to implant surfaces, are not totally understood. Because adhesion molecules have been shown to involved in phagocyte transmigration, this study was designed to investigate the participation of endothelial adhesion molecules in the pathogenesis of biomaterial-mediated inflammatory responses and fibrotic tissue formation. Using transgenic adhesion molecule knockout mice, we found that (1) deficiency of P-selectin reduced polymorphonuclear neutrophils (PMN) but not macrophages/monocytes (Mphi) transmigration and adhesion. (2) Furthermore, absence of both P- and E-selectin (P/E-deficient) dramatically diminished both PMN and Mphi recruitment to the peritoneal cavity and accumulation on implanted biomaterials. (3) Finally, the impairment of inflammatory responses in P/E-deficient mice significantly reduced the extent of subsequent biomaterial-mediated fibrotic responses. We conclude that P- and E-selectins are important for both biomaterial-mediated inflammatory and fibrotic reactions. Our results also indicate that the reduction of phagocyte accumulation might be responsible to the decrease of fibrotic tissue formation surrounding material implants. Better understanding of such sequence of events may help the rational design of biomaterials with desired tissue reactivity.  相似文献   

9.
Macrophages play a crucial role in the host response to biomaterials. Here we investigated the effect of adsorbed fibronectin (FN) and osteopontin (OPN), two important proteins for tissue repair, on macrophage adhesion and morphology. Since cell-biomaterial interactions are modulated via proteins adsorbed onto biomaterial surfaces, FN and OPN were adsorbed on model self-assembled monolayers (SAMs) of alkanethiols on gold with different functional terminal groups (CH(3), OH and tetra(ethylene-glycol)). The initial interaction of inflammatory cells with a biomaterial is crucial for the ensuing phases of an inflammatory reaction. For this reason short-term cultures of primary human macrophages were performed. To account for the competitive adsorption of other proteins serum was added to the culture medium and the effect compared with serum-free medium cultures. In the presence of serum hydrophilic surfaces increased macrophage adhesion. In particular, FN induced a higher cell density, while OPN tended to decrease it. In serum-free medium cell adhesion was greater on hydrophobic surfaces, except for OPN-coated SAMs. Importantly, FN no longer enhanced macrophage adhesion, while OPN maintained its inhibitory effect. Cell polarization studies indicated that macrophage morphology variations induced by surface chemistry are overcome by pre-adsorbed OPN. Taken together our results show that in the presence of serum macrophage adhesion is promoted by FN hydrophilic surfaces, but impaired on OPN-coated surfaces. The effects of inhibited macrophage adhesion on macrophage fusion, and its relevance to the initial stages of the inflammatory response to biomaterials are discussed.  相似文献   

10.
应用实验室自行研制的自动扫描式表面激元共振(SPR)生物传感器对三种聚氨酯材料进行了血液蛋白质吸附实验,以传感片上的金膜作为对照材料。同时应用原子力显微镜对金膜和聚氨酯材料的超微结构与材料表面上所吸附的蛋白质进行了表征。实验结果显示,四种材料对纤维蛋白原和IgG的吸附量顺序均为:金膜>H50—0>H50—50>H50—100。T—检验结果表明,金膜对纤维蛋白原和IgG吸附量与三种聚氨酯材料均有显著差别。该结果表明聚氨酯材料的血液相容性明显好于金膜对照材料。  相似文献   

11.
The monocyte-derived macrophage (MDM), present at biomaterial implantations, can increase, decrease or redirect the inflammatory and subsequent wound healing process associated with the presence of a biomaterial. Understanding MDM responses to biomaterials is important for improved prediction and design of biomaterials for tissue engineering. This study analyzed the direct differentiation of monocytes on intact, native collagen. Human monocytes were differentiated on decellularized bovine pericardium (DBP), polydimethylsiloxane (PDMS) or polystyrene (TCPS) for 14?d. MDMs on all surfaces released high amounts of MMP-9 compared to MMP-2 and relatively little MMP-1. MDMs differentiated on DBP released more MMP-2, but less acid phosphatase activity. MDMs on all three surfaces released low amounts of cytokines, although substrate differences were found: MDMs on DBP released higher amounts of IL-6, IL-8, and MCP-1 but lower amounts of IL-10 and IL-1ra. This research provides evidence that MDMs on decellularized matrices may not be stimulated towards an activated, inflammatory phenotype, supporting the potential of decellularized matrices for tissue engineering. This study also demonstrated that the differentiation surface affects MDM phenotype and therefore study design of macrophage interactions with biomaterials should scrutinize the specific macrophage culture method utilized and its effects on macrophage phenotype.  相似文献   

12.
The adhesion and activation of monocytes and macrophages are thought to affect the foreign body response to implanted medical devices. However, these cells interact with devices indirectly, because of the prior adsorption of proteins. Therefore, we preadsorbed several "model" biomaterial surfaces with proteins and then measured foreign body giant cell (FBGC) formation, tumor necrosis factor alpha (TNFalpha) release, and procoagulant activity. The model surfaces were tissue culture polystyrene (TCPS), untreated polystyrene (PS), and Primaria, whereas the proteins used were albumin, fibronectin, fibrinogen, and immunoglobulin. FBGC formation, TNFalpha release, and procoagulant activity of monocytes were the highest for surfaces preadsorbed with IgG. FBGC formation was lower on surfaces with adsorbed fibrinogen and fibronectin than on uncoated surfaces. TNFalpha release and procoagulant activity of monocytes were similar on surface adsorbed with fibrinogen, fibronectin, or albumin. Monocyte activation was also affected by the surface chemistry of the substrates, because FBGC formation was the highest on PS and the lowest on TCPS. Monocyte procoagulant activity was the highest on Primaria. Adsorbed proteins and surface chemistry were found to have strong effects on FBGC formation, monocyte TNFalpha release, and procoagulant activity in vitro, providing support for the idea that these same variables could affect macrophage-mediated foreign body response to biomaterials in vivo.  相似文献   

13.
Characterization of biomaterial surfaces requires analytical techniques that are capable of detecting a wide concentration range of adsorbed protein. This range includes detection of low amounts of adsorbed protein (<10 ng/cm2) that may be present on non-fouling biomaterials. X-ray Photoelectron Spectroscopy (XPS) and Time of Flight Secondary Ion Mass Spectrometry (ToF-SIMS) are surface sensitive techniques capable of detecting adsorbed proteins. We have investigated the lower limits of detection of both XPS and ToF-SIMS on four model substrates each presenting unique challenges for analysis by XPS and ToF-SIMS: mica, poly(tetrafluoroethylene), allyl amine plasma polymer and heptyl amine plasma polymer. The detection limit for XPS ranged from 10 ng/cm2 of fibrinogen (on mica) to 200 ng/cm2 (on allyl amine plasma polymers). The detection limit for ToF-SIMS ranged from 0.1 ng/cm2 of fibrinogen to 100 ng/cm2, depending on the substrate and data analysis. Optimal conditions provided detection limits between 0.1 ng/cm2 and 15 ng/cm2 on all of the substrates used in this study. While both techniques were shown to be effective in detecting protein, the sensitivity of both XPS and ToF-SIMS was shown to be dependent on substrate surface chemistry and the organization of the adsorbed protein film. This study specifically highlights the applicability of ToF-SIMS in the characterization of low level protein adsorption.  相似文献   

14.
The inflammatory reaction after cell contact with polymer materials is primarily mediated by activated neutrophils and may, in some cases, lead to exhaustion of neutrophil cell function. A direct consequence of this can be impairment of local or even systemic host defense mechanisms, which in turn can result in foreign body infections. Neutrophil activation, as indicated by the up-regulation of the Mac-1 adhesion receptor, is a reliable parameter for estimating the inflammatory risk due to implanted biomaterials. Because at blood contact, biomaterials immediately acquire a material-specific layer of blood proteins on their surface, including fibrinogen, complement, and immunoglobulin G, it is generally believed that after biomaterial contact, neutrophil activation primarily occurs by interaction with this protein layer. In this study, using our recently established polymer bead in vitro assay, we investigated whether complement inhibition alone can reduce biomaterial-mediated neutrophil activation, independent of the type of polymer and, hence, also its surface chemistry. Complement inhibition was achieved by using Compstatin, a recently developed complement inhibitor that binds to the complement component C3 preventing C3 convertase formation. We revealed significantly reduced (p < or = 0.025) Mac-1 receptor expression levels after 45 min of blood contact with the following polymers (without and with Compstatin): 1. polyurethane, 98.3%, 13.6%; 2. polymethylmetacrylate, 88.5%, 11.0%; and poly-D,L-lactide, 71.8%, 8.4%. Although these three polymer types acquire material-specific protein layers because of their different surface chemistry, complement inhibition by Compstatin alone proved to be sufficient to reduce neutrophil activation after surface contact, thus reducing the risk of biomaterial-mediated inflammatory reaction.  相似文献   

15.
Stimulation of monoblastic U937 cells with transforming growth factor beta 1 and 1,25-(OH)2 vitamin D3 (TGF-beta 1/D3) upregulates urokinase receptor (uPAR) and confers urokinase-dependent adhesiveness to the cells for serum- or vitronectin-coated surfaces. Recent studies show that uPAR itself is a high-affinity adhesion receptor for vitronectin and that urokinase (uPA) is an activator of this adhesive function. In the course of exploring possible G-protein involvement in this adhesion it was observed that TGF-beta 1/D3-primed U937 cells became adhesive to vitronectin in an uPAR-dependent manner when exposed to pertussis toxin (PTX). The adherent response is concentration- and time-dependent, and was not due to the ADP-ribosyltransferase activity of the toxin because the purified B-subunit of PTX was equally effective. Although promoting adhesion to serum- or vitronectin-coated surfaces, PTX blocked spontaneous cell adhesion to fibrinogen, an endogenous ligand for the Mac-1 receptor (CD11b/CD18). Flow cytometry study showed that expression of the alpha-subunit of Mac-1 (CD11b) on primed cells was increased by nearly threefold. Monoclonal antibody to CD11b abolished the PTX-induced cell adhesion and the binding of the primed cells to PTX-coated plates. Activation of Mac-1 receptor by its endogenous ligand fibrinogen induced cell adherent response similar to PTX. PTX, but not uPA, triggered a rapid rise in [Ca2+]i in primed U937 cells, and PTX-induced adhesion was significantly attenuated by 1,2-bis-(2-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid/acetoxy-methyl ester (BAPTA/AM), a selective membrane-permeant [Ca2+]i chelator. PTX-induced cell adhesion was also prevented by antibodies to uPAR and by conditioned medium containing soluble uPAR. Together these data indicate that PTX B-subunit may bind to Mac-1 integrin, which leads to a rapid rise in [Ca2+]i and subsequent activation of uPAR for adherence to vitronectin, suggesting a functional link between Mac-1 and activation of uPAR important to cellular trafficking and host defence in response to Bordetella pertussis infection.  相似文献   

16.
Characterization of biomaterial surfaces requires analytical techniques that are capable of detecting a wide concentration range of adsorbed protein. This range includes detection of low amounts of adsorbed protein (<10 ng/cm2) that may be present on non-fouling biomaterials. X-ray Photoelectron Spectroscopy (XPS) and Time of Flight Secondary Ion Mass Spectrometry (ToF-SIMS) are surface sensitive techniques capable of detecting adsorbed proteins. We have investigated the lower limits of detection of both XPS and ToF-SIMS on four model substrates each presenting unique challenges for analysis by XPS and ToF-SIMS: mica, poly(tetrafluoroethylene), allyl amine plasma polymer and heptyl amine plasma polymer. The detection limit for XPS ranged from 10 ng/cm2 of fibrinogen (on mica) to 200 ng/cm2 (on allyl amine plasma polymers). The detection limit for ToF-SIMS ranged from 0.1 ng/cm2 of fibrinogen to 100 ng/cm2, depending on the substrate and data analysis. Optimal conditions provided detection limits between 0.1 ng/cm2 and 15 ng/cm2 on all of the substrates used in this study. While both techniques were shown to be effective in detecting protein, the sensitivity of both XPS and ToF-SIMS was shown to be dependent on substrate surface chemistry and the organization of the adsorbed protein film. This study specifically highlights the applicability of ToF-SIMS in the characterization of low level protein adsorption.  相似文献   

17.
It has generally been accepted that biomaterials adsorbing the least amount of the plasma protein fibrinogen following exposure to blood will support less platelet adhesion and therefore exhibit less thrombogenicity. Several studies suggest, however, that the conformation or orientation of immobilized fibrinogen rather than the total amount adsorbed plays an important role in determining the blood compatibility of biomaterials. The purpose of this study was to investigate time-dependent functional changes in fibrinogen adsorbed to polytetrafluoroethylene (PTFE), polyethylene (PE), and silicone rubber (SR). Fibrinogen was adsorbed to these materials for 1 min and then allowed to 'reside" on the surfaces for up to 2 h prior to assessing its biological activity. Changes in fibrinogen reactivity were determined by measuring the adhesion of 51Cr-labeled platelets, the binding of a monoclonal antibody (mAb) directed against an important functional region of the fibrinogen molecule (the gamma-chain dodecapeptide sequence 400-411), and the ability of blood plasma to displace previously adsorbed fibrinogen. Platelet adhesion differed among the polymeric materials studied, and PTFE and PE samples exhibited a small decrease in adhesion with increasing fibrinogen residence time. Platelet adhesion to SR was the least among all materials studied and showed no variation with residence time. When using PTFE and SR as substrates, mAb recognition of adsorbed fibrinogen did not change with residence time whereas that on PE decreased slightly. The mAb binding was least to fibrinogen adsorbed to SR, which is in agreement with the platelet adhesion results. Finally, the ability of plasma to displace previously adsorbed fibrinogen decreased dramatically with increasing residence time on all materials. These in vitro studies support the hypothesis that fibrinogen undergoes biologically significant conformational changes upon adsorption to polymeric biomaterials, a phenomenon that may contribute to the hemocompatibility of the materials following implantation in the body.  相似文献   

18.
Fibrinogen readily adsorbs to the surface of biomaterials and, because of its demonstrated ability to support platelet adhesion and aggregation, plays a role in thrombotic events associated with the implantation of synthetic materials in the human body. Thus, understanding the factors influencing the interactions of fibrinogen with biomaterials, and how platelet responses are affected, is crucial for the development of synthetic materials exhibiting improved blood compatibility. In this study, the effects of fibrinogen residence time and shear rate on the procoagulant activity of adherent platelets, along with their morphologic status, as deduced from scanning electron microscopy, were investigated. To examine whether adherent platelets promoted the generation of thrombin, polymeric materials (polytetrafluoroethylene, polyethylene, and silicone rubber) preadsorbed with fibrinogen were exposed to platelet suspensions at different wall shear rates and then incubated with clotting factors for 5 minutes under static conditions. The amount of thrombin generated per platelet was calculated from the optical density of the color developed by adding substrate S-2238. Scanning electron microscopy images of the platelets revealed that the platelets exhibited different morphologies, depending on the shear rate and residence time of the adsorbed fibrinogen. Platelets ranged from their normal discoid shape observed primarily under static conditions, to that of fully spread platelets. Results from this study show that platelets, in the presence of shear forces, undergo activation on exposure to surfaces on which adsorbed fibrinogen has resided for short residence times rather than long residence times. Interestingly, studies examining the procoagulant responses of such adherent platelets demonstrated that the platelets attached to the fibrinogen coated materials did not promote significant thrombin generation. Such low prothrombinase activity of adherent platelets suggests that adsorbed fibrinogen, while capable of supporting platelet adhesion and spreading on biomaterials, does not necessarily enhance the procoagulant activity of adherent platelets.  相似文献   

19.
The complement system is an important inflammatory mediator during procedures such as cardiopulmonary bypass and hemodialysis when blood is exposed to large areas of biomaterial surface. This contact between blood and the biomaterials of implants and extracorporeal circuits leads to an inflammatory response mediated by the complement system. The aim of this study was to assess the ability of a complement regulator (factor H) immobilised on a biomaterial surface to inhibit complement cascade mediated inflammatory responses. The cross-linker N-succinimidyl 3-(2-pyridyldithio) propionate was used to immobilise factor H on a model biomaterial surface without affecting the biological activity of the inhibitor. Binding of factor H was then characterised using quartz crystal microbalance-dissipation (QCM-D) and enzyme immunoassays for products of complement activation: bound C3 fragments and soluble C3a, sC5b-9, and C1s-C1INA. Immobilised factor H reduced the amount C3 fragments deposited on the biomaterial surface after incubation with serum, plasma. or whole blood. In addition, lower levels of soluble C3a and sC5b-9 were generated after incubation with whole blood. In summary, we have demonstrated that complement activation on a highly activating model surface can be inhibited by immobilised factor H and have defined prerequisites for the preparation of future biomaterial surfaces with immobilised regulators of complement activation.  相似文献   

20.
The conformation adopted by the plasma protein fibrinogen upon its adsorption onto synthetic surfaces has been implicated to play an important role in determining the blood compatibility of biomaterials. It has recently been shown that adsorbed fibrinogen undergoes biologically significant conformational changes with increasing residence time on the surface of selected biomaterials. The purpose of this study was to examine the effects of co-adsorbed proteins and shear forces on such time-dependent functional changes in fibrinogen adsorbed onto polyethylene (PE), polytetrafluoroethylene (PTFE), and silicone rubber (SR). Fibrinogen was adsorbed onto these materials for 1 min and then allowed to 'reside' on these surfaces for up to 2 h prior to assessing its biological activity. Changes in fibrinogen reactivity were determined by measuring the adhesion of 51Cr-labeled platelets and the ability of blood plasma to displace previously adsorbed fibrinogen. The magnitude of platelet adhesion to substrates adsorbed with pure fibrinogen increased in the presence of shear, compared with static conditions; at the lowest shear rate of 200 s(-1), samples exhibited a 20-fold increase in adhered platelet levels. In contrast, at a higher shear rate of 1000 s(-1), the three polymers supported minimal levels of platelet attachment. Surfaces pre-adsorbed with 10% plasma did not promote a significant increase in the number of adherent platelets with increasing shear when compared with the pure fibrinogen-coated substrates. The presence of shear also significantly altered the materials' ability to retain fibrinogen. Under static conditions, the amount of fibrinogen retained following incubation in blood plasma increased on all materials with increasing fibrinogen residence time. However, the materials varied distinctly in their ability to retain adsorbed fibrinogen with increasing fibrinogen residence time, shear rate, and nature of the co-adsorbed proteins. Thus, the results from this study indicate that fluid shear, residence time of the adsorbed protein, nature of the co-adsorbed proteins, and surface chemistry of the material all play important roles in influencing platelet-surface interactions and that they act in a complex manner to influence the biocompatibility of a material.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号