首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Vascularization into a poly(vinyl alcohol) (PVA) sponge was investigated using basic fibroblast growth factor (bFGF). This growth factor was impregnated into biodegradable gelatin microspheres for its sustained release and then the bFGF-containing microspheres or free bFGF were incorporated into PVA sponges. Following subcutaneous implantation into the back of mice, the bFGF-containing gelatin microspheres induced vascularization in and around the sponge to a significantly greater extent than that of free bFGF from 3 days after implantation. Significant ingrowth of fibrous tissue into the sponge was also observed when bFGF-containing microspheres were added to the sponge in contrast to free bFGF. Tissue ingrowth occurred into the deeper portion of the sponge over time while it accompanied formation of new capillaries. Empty gelatin microspheres had no effect on vascularization and the level of fibrous tissue ingrowth into the sponge was similar to that of the control group. It was concluded that incorporation of gelatin microspheres containing bFGF into the PVA sponge was effective in prevascularization of the sponge pores.  相似文献   

2.
Kimura Y  Ozeki M  Inamoto T  Tabata Y 《Biomaterials》2003,24(14):2513-2521
Gelatin microspheres containing basic fibroblast growth factor (bFGF) were prepared for the controlled release of bFGF. Co-implantation with the gelatin microspheres enabled preadipocytes to induce adipose tissue formation at the implanted site. Preadipocytes isolated from human fat tissue were suspended with the gelatin microspheres containing bFGF and incorporated into a collagen sponge of cell scaffold. Following subcutaneous implantation of the collagen sponge incorporating human preadipocytes, and gelatin microspheres containing 1 microg of bFGF into the back of nude mice, adipose tissue was formed at the implanted site of collagen sponge within 6 weeks postoperatively although the extent depended on the number of preadipocytes transplanted and the bFGF dose. The formation of adipose tissue was significant compared with the implantation of collagen sponge incorporating human preadipocytes and 1 microg of free bFGF. The area of adipose tissue newly formed was increased with the number of preadipocytes transplanted until to 1.0 x 10(5) cells/site and thereafter leveled off. The maximum area was observed at the bFGF dose of 1 microg/site. The area was significantly smaller at the bFGF dose of 0.5 microg/site or larger than 1 microg/site. Immunohistochemical examination indicated that the adipose tissue newly formed was composed of human matured adipocytes. No adipogenesis was observed at the implanted site of collagen sponge incorporating either gelatin microspheres containing bFGF or human preadipocytes and the mixed gelatin microspheres containing bFGF and human preadipocytes. We conclude that combination of gelatin microspheres containing bFGF and preadipocytes with the collagen sponge is essential to achieve tissue engineering of fat tissue.  相似文献   

3.
We carried out an experimental study to evaluate the effect of basic fibroblast growth factor (bFGF)-containing collagen gel on vascularization in esophageal tissue engineering. We compared an acellular collagen sponge scaffold and an acellular collagen gel scaffold in combination with bFGF using a canine model. The construct was implanted in the cervical esophagus and the regenerated tissue was evaluated one month after surgery. Histological analysis confirmed a significantly large amount of blood vessels in the bFGF-containing collagen gel group as compared to the collagen gel group without bFGF (bFGF (-)). However, in the collagen sponge groups, no difference was observed between the bFGF (+) group and the bFGF (-) group. These results showed that bFGF-containing collagen gel is suitable not only for an acellular scaffold for tissue engineering but also for an effective tropic factor vehicle in vivo.  相似文献   

4.
This study is an investigation to evaluate in situ adipose tissue regeneration in fat pads. Gelatin microspheres with different water contents were prepared for the controlled release of basic fibroblast growth factor (bFGF). After a collagen sponge scaffold was incorporated by the microspheres containing 0, 0.01, 0.1, 1, and 10 microg of bFGF with or without syngeneic rat preadipocytes (1 x 10(5) cells/site) into a defect of rat fat pad, adipogenesis at the implanted site of scaffold was evaluated histologically. in situ formation of adipose tissue accompanied with angiogenesis was observed in the scaffold implanted with the microspheres containing 1.0 microg of bFGF, although the extent was less at the lower and higher bFGF doses. The in situ formation induced by the microspheres containing bFGF was significantly higher than that induced by free bFGF of the same dose. Adipogenesis was enhanced with time after implantation up to 4 weeks and thereafter leveled off. Such in situ adipogenesis was reproducibly induced by implantation of collagen scaffold incorporating gelatin microspheres containing 1 microg of bFGF, whereas addition of rat syngeneic preadipocytes did not promote the adipogenesis. The degradation of microspheres and the consequent FGF release became faster with an increase in the water content of gelatin microspheres. Less in situ formation of adipose tissue was observed at the lower water content of microspheres, which showed longer-term bFGF release. We conclude that combination of scaffold collagen with an appropriate controlled release of bFGF was essential to achieve the in situ formation of adipose tissue even without preadipocytes.  相似文献   

5.
Controlled release of basic fibroblast growth factor (bFGF) from gelatin microspheres achieved de novo adipogenesis at the implanted site of a basement membrane extract (Matrigel). Following subcutaneous co-implantation of Matrigel and gelatin microspheres incorporating 0.1 microg of bFGF into the back of mice, adipose tissue was formed at the implanted site after 4 weeks postoperatively although the extent increased with implantation time. Formation of adipose tissue was significantly faster than the co-implantation of Matrigel, and 0.1 microg of free bFGF while a larger volume of the adipose tissue formed was retained 15 weeks later. When measured in Matrigel co-implanted with the gelatin microspheres incorporating bFGF, the number of cells infiltrated into Matrigel increased to a significantly high extent compared with the bFGF co-implantation. Matrigel alone was much less effective in inducing formation of adipose tissue. We conclude that gelatin microspheres incorporating bFGF enable Matrigel to efficiently induce de novo adipogenesis at the implanted site in respect to the formation rate and volume of adipose tissue.  相似文献   

6.
Biodegradable microspheres were prepared through glutaraldehyde cross-linking of gelatin without using any surfactants as a carrier matrix of basic fibroblast growth factor (bFGF). In the in vitro system, bFGF was sorbed to microspheres of acidic gelatin with an isoelectric point (IEP) of 5.0, but not to those of basic gelatin with an IEP of 9.0. The rate of bFGF sorption to the acidic gelatin microsphere in phosphate-buffered saline solution (pH 7.4) was smaller than that in water. Following incorporation of bFGF into the microspheres at 4 degrees C for 12 h, bFGF release from the bFGF-incorporating microspheres was studied. Approximately 30% of incorporated bFGF was released from the acidic gelatin microsphere within the initial 3 h, followed by no substantial release, whereas the basic gelatin microsphere released almost completely the incorporated bFGF within 1 day. It is likely that when basic bFGF molecules were immobilized to the acidic gelatin constituting microspheres through polyion complexation, they were not readily released under the in vitro nondegradation condition of gelatin. Incorporation of anionic carboxylmethyl cellulose (CMC) into the acidic gelatin microspheres reduced the amount of bFGF desorbed initially. This indicates that the initial burst is ascribed to free bFGF which is not ionically interacted with the acidic gelatin. CMC will function as a bFGF sorbent to suppress the initial leakage from the microspheres. When injected subcutaneously into the mouse back, bFGF-incorporating acidic gelatin microspheres were degraded over time and induced neovascularization around the injection site, in marked contrast to bFGF in the solution form. CMC incorporation slowed down the biodegradation and vascularization effect of bFGF-incorporating gelatin microspheres. It was concluded that the gelatin microsphere was a promising carrier matrix of bFGF to enhance the vascularization effect.  相似文献   

7.
Artificial dermis (AD) has been used to regenerate dermis-like tissues in the treatment of full-thickness skin defects, but it takes 2 or 3 weeks to complete dermal regeneration. Our previous study demonstrated that injection of basic fibroblast growth factor (bFGF)-impregnated gelatin microspheres (MS) into the AD accelerates the regeneration of dermis-like tissue. However, injection of gelatin MS before clinical use is complicated and time consuming. This study investigated a new scaffold, in which collagen and gelatin are integrated, and which is capable of sustained bFGF release. We produced collagen/gelatin sponges with a gelatin concentration of 0wt%, 10wt%, 30wt%, and 50wt%. The mean pore size in each sponge decreased with the gelatin concentration. In an in vitro study, proliferation of fibroblasts in each sponge was not significantly different over 7 days of culture. As for in vivo sustained release of bFGF, a radioisotope study demonstrated that retention of bFGF in gelatin 10wt% and 30wt% sponges was significantly larger than that in gelatin 0wt% sponge. The collagen/gelatin sponges were grafted on full-thickness skin defects created on a rabbit ear, and we evaluated regeneration of dermis-like tissue by measuring the amount of hemoglobin and size of dermis-like tissue on histological sections. Seven days after implantation, the amount of hemoglobin in dermis-like tissue in gelatin 10wt% sponge was significantly larger than those in control and gelatin 50wt% sponge. Twenty-eight days after implantation, the area of dermis-like tissue in gelatin 10wt% sponge was significantly larger than those in the other specimens. We conclude that the collagen sponge integrated with 10wt% gelatin has the most potential for sustained release of bFGF and that the combination of collagen/gelatin 10wt% sponge and bFGF is a promising therapeutic modality for the treatment of full-thickness skin defects.  相似文献   

8.
The objective of this study was to evaluate the effect of incorporation of basic fibroblast growth factor (bFGF)-impregnated gelatin microspheres into an artificial dermis on the regeneration of dermis-like tissues. When used in the free form in vivo, bFGF cannot induce sufficient wound healing activity, because of its short half-life. Therefore, sustained release of bFGF was achieved by impregnation into biodegradable gelatin microspheres. A radioisotope study revealed that incorporation of bFGF-impregnated gelatin microspheres significantly prolonged in vivo retention of bFGF in the artificial dermis. Artificial dermis with incorporated bFGF-impregnated gelatin microspheres or bFGF in solution was implanted into full-thickness skin defects on the back of guinea pigs (1.5 cm x 1.5 cm) (n = 4). Incorporation of bFGF into the artificial dermis accelerated fibroblast proliferation and capillary formation in a dose-dependent manner. However, the accelerated effects were more significant with the incorporation of bFGF-impregnated gelatin microspheres than with free bFGF at doses of 50 microg or higher. We conclude that the gelatin microsphere is a promising tool to accelerate bFGF-induced tissue regeneration in artificial dermis.  相似文献   

9.
Basic fibroblast growth factor (b-FGF) may have a role in tissue-engineered chondrogenesis. However, when applied in solution, b-FGF rapidly diffuses from the implant site. In another approach for tissue engineering, poly-lactide-based copolymers have shown promise as scaffolds for chondrocytes used to tissue engineer auricular cartilage in the shape of an ear. This study evaluated the effectiveness of b-FGF impregnated in gelatin microspheres to achieve slow growth factor release for augmenting the in vivo chondrogenic response. Whereas 125I-labeled b-FGF injected in solution showed rapid in vivo clearance from the injection site (only 3% residual after 24 h), when incorporated into gelatin microspheres, 44% and 18% of the b-FGF remained at 3 and 14 days, respectively. Canine chondrocytes were isolated and grown in vitro onto ear-shaped poly-lactide/caprolactone copolymers for 1 week, then implanted into the dorsal subcutaneous tissue of nude mice; implants contained b-FGF either in free solution or in gelatin microspheres. A third group underwent preinjection of b-FGF in gelatin microspheres 4 days before chondrocyte-copolymer implantation. The implants with b-FGF-incorporated microspheres showed the greatest chondrogenic characteristics at 5 and 10 weeks postoperatively: good shape and biomechanical trait retention, strong (histologic) metachromasia, rich vascularization of surrounding tissues, and increased gene expression for type II collagen (cartilage marker) and factor VIII-related antigen (vascular marker). In the case of implant site preadministration with b-FGF-impregnated microspheres, the implant architecture was not maintained as well, and reduced vascularization and metachromasia was also apparent. In conclusion, these findings indicate that a sustained release of b-FGF augments neovascularization and chondrogenesis in a tissue-engineered cartilage construct.  相似文献   

10.
De novo adipogenesis at the implanted site of a basement membrane extract (Matrigel) was induced through controlled release of basic fibroblast growth factor (bFGF). bFGF was incorporated into biodegradable gelatin microspheres for its controlled release. When the mixture of Matrigel and bFGF-incorporated gelatin microspheres was implanted subcutaneously into the back of mice, a clearly visible fat pad was formed at the implanted site 6 weeks later. Histologic examination revealed that the de novo formation of adipose tissue accompanied with angiogenesis was observed in the implanted Matrigel at bFGF doses of 0.01, 0.1, and 1 microg/site, the lower and higher doses being less effective. The de novo formation induced by the bFGF-incorporated microspheres was significantly higher than that induced by free bFGF of the same dose. The mRNA of a lipogenesis marker protein, glycerophosphate dehydrogenase, was detected in the formed adipose tissues, biochemically indicating de novo adipogenesis. Free bFGF, the bFGF-incorporated gelatin microspheres, or Marigel alone and bFGF-free gelatin microspheres with or without Matrigel did not induce formation of adipose tissue. This de novo adipogenesis by mixture of Matrigel and the bFGF-incorporated gelatin microspheres will provide a new idea for tissue engineering of adipose tissue.  相似文献   

11.
The objective of this study is to examine whether or not bone formation at a skull bone defect induced by gelatin microspheres incorporating transforming growth factor (TGF)-beta1 is promoted by prevention of fibrous tissues into the defect. The 6-mm diameter bone defect of rabbit skulls was applied with gelatin microspheres incorporating TGF-beta1 or free TGF-beta1 and physically covered by a barrier membrane. When the bone formation at the defect was assessed 6 weeks postoperatively, combinational application of gelatin microspheres incorporating 0.1 microg of TGF-beta1 with the barrier membrane induced bone formation at the skull defect, in marked contrast to that of 0.1 microg of free TGF-beta1 and empty gelatin microspheres. Complete defect closure was histologically observed by the newly formed bone tissue. Without the barrier membrane, gelatin microspheres incorporating TGF-beta1 were less effective in inducing bone formation, whereas free TGF-beta1 and empty gelatin microspheres were ineffective. The skull defect was occupied by fibrous tissue infiltrated in place of bone tissue. The bone mineral density at the skull defect applied with gelatin microspheres incorporating TGF-beta1 plus the membrane was significantly higher than that of gelatin microspheres incorporating TGF-beta1 alone. The present data indicated that physical protection from the soft tissue infiltration enabled gelatin microspheres incorporating TGF-beta1 to synergistically enhance the osteoinductive ability at the skull defect.  相似文献   

12.
The objective of this study is to examine whether or not bone formation at a skull bone defect induced by gelatin microspheres incorporating transforming growth factor (TGF)-β1 is promoted by prevention of fibrous tissues into the defect. The 6-mm diameter bone defect of rabbit skulls was applied with gelatin microspheres incorporating TGF-β1 or free TGF-β1 and physically covered by a barrier membrane. When the bone formation at the defect was assessed 6 weeks postoperatively, combinational application of gelatin microspheres incorporating 0.1 μg of TGF-β1 with the barrier membrane induced bone formation at the skull defect, in marked contrast to that of 0.1 μg of free TGF-β1 and empty gelatin microspheres. Complete defect closure was histologically observed by the newly formed bone tissue. Without the barrier membrane, gelatin microspheres incorporating TGF-β1 were less effective in inducing bone formation, whereas free TGF-β1 and empty gelatin microspheres were ineffective. The skull defect was occupied by fibrous tissue infiltrated in place of bone tissue. The bone mineral density at the skull defect applied with gelatin microspheres incorporating TGF-β1 plus the membrane was significantly higher than that of gelatin microspheres incorporating TGF-β1 alone. The present data indicated that physical protection from the soft tissue infiltration enabled gelatin microspheres incorporating TGF-β1 to synergistically enhance the osteoinductive ability at the skull defect.  相似文献   

13.
Three-dimensional regenerative tissue with a certain bulk cannot survive without sufficient blood perfusion in vivo, so construction of a vascular system in regenerative tissue is a key technology in tissue engineering. In order to construct such a vascular system, we attempted to create a scaffold material that induces neovascular growth from the recipient bed into the material. This material, an ion complex gel matrix (IC gel) consisting of collagen and a citric acid derivative, enabled it to associate with basic fibroblast growth factor (bFGF). The IC gel was implanted in the subfascial space of the rat rectus muscle and excised 5 days later. Cross-sections of the excised samples were stained for von Willebrand factor, and then neovascular development into the gel was observed and also quantified by image analysis. These data showed that the IC gel markedly induced growth of vascular-rich tissue into the inside of the gel by day 5, which surpassed that after implantation of Matrigel® or gelated collagen. Further, combination with bFGF significantly enhanced the vascularization ability of IC gel. These findings suggest that IC gel functioned as a scaffold material for neovascular ingrowth and a reservoir of bFGF.  相似文献   

14.
Vascularization is critical to the survival of engineered tissues. This study combined biophysical and bioactive approaches to induce neovascularization in vivo. Further, we tested the effects of engineered vascularization on adipose tissue grafts. Hydrogel cylinders were fabricated from poly(ethylene glycol) diacrylate (PEG) in four configurations: PEG alone, PEG with basic fibroblast growth factor (bFGF), microchanneled PEG, or both bFGF-adsorbed and microchanneled PEG. In vivo implantation revealed no neovascularization in PEG, but substantial angiogenesis in bFGF-adsorbed and/or microchanneled PEG. The infiltrating host tissue consisted of erythrocyte-filled blood vessels lined by endothelial cells, and immunolocalized to vascular endothelial growth factor (VEGF). Human mesenchymal stem cells were differentiated into adipogenic cells, and encapsulated in PEG with both microchanneled and adsorbed bFGF. Upon in vivo implantation subcutaneously in immunodeficient mice, oil red O positive adipose tissue was present and interspersed with interstitial fibrous (IF) capsules. VEGF was immunolocalized in the IF capsules surrounding the engineered adipose tissue. These findings suggest that bioactive cues and/or microchannels promote the genesis of vascularized tissue phenotypes such as the tested adipose tissue grafts. Especially, engineered microchannels may provide a generic approach for modifying existing biomaterials by providing conduits for vascularization and/or diffusion.  相似文献   

15.
To regenerate periodontal tissues, a sandwich membrane composed of a collagen sponge scaffold and gelatin microspheres containing basic fibroblast growth factor (bFGF) in a controlled-release system was developed according to the new concept of "in situ tissue engineering." A three-walled alveolar bone defect (3 x 4 x 4 mm) was made bilaterally in edentulous regions created mesially to the canines in both the maxilla and mandible of nine beagle dogs. A sandwich membrane with or without bFGF (100 microg) was implanted in each defect (each group, n = 18). During weeks 1, 2, and 4, histologic evaluation and histometric analyses were performed on three dogs. Throughout the 4 weeks, vascularization and osteogenesis were active only in the bFGF-treated group (p < 0.01). New cementum was formed (2.4 +/- 0.9 mm) on the exposed root surface at 4 weeks, and functional recovery of the periodontal ligament was indicated in part by the perpendicular orientation of regenerated collagen fibers. In the control group, epithelial downgrowth and root resorption occurred and the defects were filled with connective tissue. Thus, our sandwich membrane induced successful regeneration of the periodontal tissues in a short period of time.  相似文献   

16.
This study is a trial to promote repairing of the rabbit skull bone gap between an autologous bone flap and the intact bone with biodegradable gelatin microspheres containing transforming growth factor-beta1 (TGF-beta1). A 10-mm diameter bone defect was prepared in rabbit skulls by drilling out a bone flap of 6 mm in diameter. After a surrounding gap defect of 2 mm was created and treated with 0.5 microg of free TGF-beta1 and gelatin microspheres containing 0.5 microg of free TGF-beta1, the circular autologous bone flap was placed in the center. Significant bone healing at the gap defect was observed 3 weeks after implantation of the TGF-beta1-containing gelatin microspheres. The bone mineral density (BMD) was significantly higher than that of other experimental groups. On the contrary, when applied with free TGF-beta1, a fibrous tissue initially infiltrated into the gap defect, resulting in impairing bone healing. The tissue response was similar to that at the defect implanted with empty gelatin microspheres and TGF-beta1-free phosphate-buffered saline solution alone. There was more space in the gap-filling bone in the 16-week view than the 3-week view. It is possible that this was an intermediate step along the way toward normal healing and formation of cancellous bone. We conclude that gelatin microspheres containing TGF-beta1 show promise as an agent to promote bone regeneration of subcritical size defects between surgically positioned autologous bone flaps and surrounding host bone.  相似文献   

17.
This study is an investigation to evaluate how the controlled release of basic fibroblast growth factor (bFGF) affects the hair follicle growth of mice in different hair cycle stages: second anagen and second telogen. bFGF was incorporated into biodegradable gelatin hydrogels for its controlled release. After subcutaneous implantation of gelatin hydrogels incorporating 0, 0.7, 7, and 70 microg of bFGF or injection of 0 and 70 microg of free bFGF into the backs of mice, hair follicle growth was evaluated photometrically and histologically on the basis of three parameters: skin color of the reverse side of the implanted or injected site, skin thickness, and area occupied by hair follicle tissue. For mice in second anagen, the darkness of the reverse side of skin implanted with gelatin hydrogel incorporating 7 microg of bFGF was significantly higher than that of skin injected with 70 microg of bFGF 10 days after bFGF application. Implantation of gelatin hydrogel incorporating bFGF enabled the hair follicles to increase the area occupied in skin tissue to a significantly greater extent than in other groups, whereas no effect on skin thickness was observed. bFGF-free, empty gelatin hydrogels did not affect hair follicle growth. Moreover, hair shaft length was significantly elongated by gelatin hydrogel incorporating 7 microg of bFGF, in marked contrast to other agents. The skin of telogen mice receiving gelatin hydrogel incorporating 7 microg of bFGF did not show any change in darkness of reverse skin side or skin thickness, but a significant increase in the size of hair follicles 10 days later. These results indicate that the controlled release of bFGF positively affects the hair growth cycle of mice.  相似文献   

18.
One of the major obstacles for engineering large tissue or organs such as the liver in vitro is the insufficient supply of nutrients and oxygen to the cells growing inside the scaffold, which reduces cell viability significantly. Therefore, vascularization of the scaffolding system is necessary for successful engineering of such tissues. In this study, we investigated the use of gelatin microsphere as scaffold to culture human umbilical vein endothelial cells, which is considered to be the basis and premise for the formation of blood vessels. The gelatin microspheres were crosslinked with different concentrations of glutaraldehyde to study the effects of crosslinking extent on the growth of endothelial cells. The swelling ratios of the gelatin microspheres decreased from 5.9 +/- 0.8 to 3.9 +/- 0.6 with the increase of the crosslinking extent. Basic fibroblast growth factors (bFGFs), which can improve endothelial cell proliferation as well as stimulate the formation of capillary vessels, were incorporated into the gelatin microspheres through ionic complexation. Sustained delivery of the growth factors was achieved for at least 2 weeks. The proliferation of the cells cultured on the bFGF-encapsulated microspheres was improved by about two times as compared to control and about 1.3 times as compared to blank microspheres, which indicated that the bioactivity of bFGF was well maintained, and the delivery of the growth factors directly to the cells significantly improved the success of this tissue engineering system.  相似文献   

19.
Y Tabata  Y Ikada 《Biomaterials》1999,20(22):2169-2175
Biodegradable gelatin hydrogels were prepared through the glutaraldehyde crosslinking of acidic gelatin with an isoelectric point (IEP) of 5.0 and the basic gelatin with an IEP of 9.0. The hydrogel water content was changed by the concentration of both gelatin and glutaraldehyde, used for hydrogel preparation. An aqueous solution of basic fibroblast growth factor (bFGF) was sorbed into the gelatin hydrogel freeze-dried to obtain a bFGF-incorporating gelatin hydrogel. Irrespective of the hydrogel water content, approximately 30% of the incorporated bFGF was released from the bFGF-incorporating acidic gelatin hydrogel, within the first day into phosphate-buffered saline solution at 37 degrees C, followed by no substantial release. Probably, the basic bFGF complexed with the acidic gelatin through poly-ion complexation would not be released under the in vitro non-degradation condition of gelatin. On the contrary, almost 100% of the incorporated bFGF was initially released from all types of basic gelatin hydrogels. This is due to the simple diffusion of bFGF because of no complexation between bFGF and the basic gelatin. When implanted subcutaneously into the mouse back, bFGF-incorporating acidic and basic gelatin hydrogels with higher water contents were degraded with time faster than those with lower water contents. Significant neovascularization was induced around the implanted site of the bFGF-incorporating acidic gelatin hydrogel. The induction period prolonged with the decrease in hydrogel water content. On the other hand, such a prolonged vascularization effect was not achieved by the bFGF-incorporating basic gelatin hydrogel and the hydrogel initially exhibited less enhanced effect, irrespective of the water content. These findings indicate that the controlled release of biologically active bFGF is caused by biodegradation of the acidic gelatin hydrogel, resulting in induction of vascularization effect dependent on the water content. It is possible that only the transient vascularization by the basic gelatin hydrogel is due to the initial large burst in bFGF release, probably because of the down regulation of bFGF receptor.  相似文献   

20.
Bone marrow stromal cells (MSCs) are a useful source of cells because of their abundant supply and few associated ethical problems. We have previously reported that neural progenitor cells (NS-MSCs) can be effectively induced from MSCs and differentiate into neurons to contribute to functional recovery when transplanted into the rat stroke model. In this study, we attempted to enhance the therapeutic effects of NS-MSCs with a collagen sponge and basic fibroblast growth factor (bFGF) releasing microspheres. NS-MSCs were generated from MSCs by transfection of Notch-1 intracellular domain followed by culturing the cells in a free-floating culture system. The resulting NS-MSCs were transplanted into the rats with induced brain ischemia by using collagen sponges as scaffolds for transplanted cells, and with bFGF incorporated into gelatin microspheres to aid neovascularization around the transplanted region and proliferation of neural stem cells/neural progenitor cells. In culture, NS-MSCs successfully formed spheres containing cells highly expressing neural progenitor markers. Cell survival, neovascularization, and proliferation of host neural stem cells/neural progenitor cells were improved in animals that received NS-MSCs together with these biomaterials. Behavioral analysis also revealed significant functional recovery. These observations demonstrate that transplantation of NS-MSCs in combination with a collagen sponge and bFGF releasing microspheres significantly improves histological and functional recovery in the rat stroke model. When used with these biomaterials, NS-MSCs would be a promising cell source for treating stroke and neurodegenerative diseases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号