首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
We have determined the distribution of the major UV-induced photoproducts in nucleosome core DNA using the 3'----5' exonuclease activity of T4 DNA polymerase, which has been shown to stop digestion immediately 3' to UV-induced pyrimidine dimers. This assay is extremely sensitive since all DNA fragments without photoproducts (background) are reduced to small oligonucleotides, which can be separated from those fragments containing photoproducts. The results show that the distribution of UV-induced photoproducts (primarily cyclobutane dipyrimidines) is not uniform throughout core DNA but displays a striking 10.3 (+/- 0.1) base periodicity. Furthermore, this characteristic distribution of photoproducts was obtained regardless of whether nucleosome core DNA was isolated from UV-irradiated intact chromatin fibers, histone H1-depleted chromatin fibers, isolated mononucleosomes, or cells in culture. The yield of pyrimidine dimers along the DNA seems to be modulated in a manner that reflects structural features of the nucleosome unit, possibly core histone-DNA interactions, since this pattern was not obtained for UV-irradiated core DNA either free in solution or bound tightly to calcium phosphate crystals. Based on their location relative to DNase I cutting sites, the sites of maximum pyrimidine dimer formation in core DNA mapped to positions where the phosphate backbone is farthest from the core histone surface. These results indicate that within the core region of nucleosomes, histone-DNA interactions significantly alter the quantum yield of cyclobutane dipyrimidines, possibly by restraining conformational changes in the DNA helix required for formation of these photoproducts.  相似文献   

2.
3.
Using zero-length covalent protein-DNA crosslinking, we have mapped the histone-DNA contacts in nucleosome core particles from which the C- and N-terminal domains of histone H2A were selectively trimmed by trypsin or clostripain. We found that the flexible trypsin-sensitive C-terminal domain of histone H2A contacts the dyad axis, whereas its globular domain contacts the end of DNA in the nucleosome core particle. The appearance of the histone H2A contact at the dyad axis occurs only in the absence of linker DNA and does not depend on the absence of linker histones. Our results show the ability of the histone H2A C-terminal domain to rearrange. This rearrangement might play a biological role in nucleosome disassembly and reassembly and the retention of the H2A-H2B dimer (or the whole octamer) during the passing of polymerases through the nucleosome.  相似文献   

4.
5.
We describe a method that permits the study of the state of cytosine methylation and of in vivo protein-DNA interactions in higher eukaryotes. This powerful technique is applicable to any gene of interest at the single-copy level. To study DNA methylation, the total uncloned genomic DNA, digested with a restriction endonuclease is subjected to a cytosine-specific hydrazine reaction and chemical cleavage. The DNA fragments of interest are linearly amplified with Taq polymerase and a sequence-specific radioactivity labeled synthetic primer. Following amplification, the DNA fragments are separated on a sequencing gel that is directly autoradiographed. To study protein-DNA interactions in vivo, we use a similar method, except that the DNA of interest is isolated from cells treated either with dimethyl sulfate or UV light. The resolution power of this technique is demonstrated by two examples, which have been studied previously by the conventional methods of genomic sequencing and "footprinting."  相似文献   

6.
A simple no-background assay was developed for high-resolution in vivo analysis of yeast chromatin. When applied to Saccharomyces cerevisiae 5S rRNA genes (5S rDNA), this analysis shows that nucleosomes completely cover this chromosomal region, occupying alternative positions characterized by a unique helical phase. This supports the notion that sequence-intrinsic rotational signals are the major determinant of nucleosome localization. Nucleosomal core particles reconstituted in vitro occupy the same positions and have the same helically phased distribution observed in vivo, as determined by mapping of exonuclease III-resistant borders, mapping by restriction cleavages, and by DNase I and hydroxyl-radical digestion patterns.  相似文献   

7.
Switches of the types of histones synthesized and incorporated into chromatin occur during sea urchin embryogenesis. In an attempt to define the possible effects of these variant histones on chromatin structure, I have isolated and characterized nucleosome core particles from Strongylocentrotus purpuratus blastula (nearly 100% early histones) and pluteus (75% late histones). Both particles contain 146-base-pair lengths of DNA wrapped around an octamer of H2A, H2B, H3, and H4. Although sharing these similarities with the canonical core particle, the nucleosome structures have certain features that differ from those of typical adult tissues. Both the reversible and the irreversible conformational transitions occurring on heating core particles are destabilized in the embryonic particles vs. "typical" core particles. The blastula core particle unfolds more easily than pluteus (or other) nucleosomes under the stress of low ionic strength. The rate of DNase I digestion of pluteus core particles is about half that of particles from blastula; certain cutting sites differ in their susceptibility between the two embryonic particles and between these two and the canonical core particle. The data demonstrate that the variant histones synthesized during early embryogenesis have demonstrable effects on chromatin structure, even at this basic level.  相似文献   

8.
The "UV footprinting" technique has been used to detect contacts between EcoRI endonuclease and its recognition sequence at single nucleotide resolution. Comparison of the UV-footprinting results to the published crystal structure of the EcoRI endonuclease-DNA complex allows us to determine how UV light detects protein-DNA contacts. We find that kinking of the DNA helix in the complex greatly enhances the UV photoreactivity of DNA at the site of the kink. In contrast to kinking, contacts between the endonuclease and the DNA bases inhibit the UV photoreactivity of DNA. Similar analysis of a proteolytically modified endonuclease that exhibits the same sequence specificity as wild-type enzyme but that does not cleave DNA supports these conclusions. Furthermore, detection of enhanced photoreactivity at the same kink in the modified enzyme-DNA complex allows us to conclude that the loss of cleavage activity by the modified endonuclease is not due to its failure to kink DNA.  相似文献   

9.
Organization of spacer DNA in chromatin.   总被引:17,自引:0,他引:17       下载免费PDF全文
Detailed analysis of the DNA fragment patterns produced by DNase I digestion of yeast, HeLa, and chicken erythrocyte nuclei reveals surprising features of nucleosome phasing. First, the spacer regions in phased yeast chromatin must be of lengths (10m + 5) base pairs, where m = 0, 1, 2,....This feature is not seen in parallel studies of chicken erythrocyte chromatin. The 5-base pair increment in the yeast spacer imposes interesting restraints on the higher order structure of yeast chromatin. Second, we have been able to simulate the DNase I cutting patterns and get good agreement with the observed yeast patterns. Third, three different chromatins show a long range periodicity in the DNase I digest pattern, with a period half that of the staphylococcal nuclease repeat. These results suggest that the amount of chromatin observed in discrete extended-ladder bands is a minimum estimate of phasing and in fact phasing may be a more general feature.  相似文献   

10.
11.
The four core histones (H2A, H2B, H3, and H4) and DNA were assembled into nucleosome-like particles at physiological ionic strengths either by an extract of chromatin rich in nicking-closing activity or by the purified nicking-closing enzyme itself. When histone-DNA complexes were assembled in vitro from relaxed circular DNA, nearly physiological numbers of superhelical turns were induced in the DNA molecule. Electron microscopy of the complexes assembled by the chromatin extract revealed a beaded structure and a reduction of the contour length compared to free DNA. Micrococcal nuclease digestion of the histone-DNA complexes yielded 145-base-pair DNA fragments typical of nucleosome core particles and shorter subnucleosomal DNA fragments of discrete length.  相似文献   

12.
Crosslinked histone octamer as a model of the nucleosome core.   总被引:9,自引:0,他引:9       下载免费PDF全文
When histones in chromatin core particles were crosslinked with dimethylsuberimidate, the resulting particles had properties closely similar to those of native core particles. A crosslinked octameric histone complex was isolated from these particles under nondenaturing conditions. Upon reaction with DNA, this octameric protein folded the DNA into a structure closely resembling that of native core particles as verified by various techniques; protein denaturants were necessary for reassociation. The histone octamer is useful as a model of the nucleosome protein core and for studying histone-DNA interactions that occur in nucleosomes.  相似文献   

13.
Increased acetylation at specific N-terminal lysines of core histones is a hallmark of active chromatin in vivo, yet the structural consequences of acetylation leading to increased gene activity are only poorly defined. We employed a new approach to characterize the effects of histone acetylation: A Drosophila embryo-derived cell-free system for chromatin reconstitution under physiological conditions was programmed with exogenous histones to assemble hyperacetylated or matching control chromatin of high complexity. Hyperacetylated chromatin resembled unmodified chromatin at similar nucleosome density with respect to its sensitivity toward microccal nuclease, its nucleosomal repeat length, and the incorporation of the linker histone H1. In contrast, DNA in acetylated chromatin showed an increased sensitivity toward DNase I and a surprisingly high degree of conformational flexibility upon temperature shift pointing to profound alterations of DNA/histone interactions. This successful reconstitution of accessible and flexible chromatin outside of a nucleus paves the way for a thorough analysis of the causal relationship between histone acetylation and gene function.  相似文献   

14.
We have examined the consequences of DNA distortion and specific histone-DNA contacts within the nucleosome for integration mediated by the human immunodeficiency virus (HIV)-encoded integrase enzyme. We find that sites of high-frequency integration cluster in the most severely deformed, kinked DNA regions within the nucleosome core. This may reflect either a preference for a wide major groove for association of the integrase or a requirement for target DNA distortion in the DNA strand transfer mechanism. Both the distortion and folding of the target DNA through packaging into nucleosomes may influence the selection of HIV integration sites within the chromosome.  相似文献   

15.
16.
17.
18.
DNase I-hypersensitive sites are observed in the promoter regions of actively expressed genes, potentially active genes, and genes that were once active. We have developed an approach that greatly increases the resolution for mapping these sites by electrophoresing genomic DNA on native polyacrylamide gels prior to electroblotting and hybridization. This improved method has been used to scan the promoter and coding region of a cell-cycle-dependent human histone H4 gene with an accuracy of +/-5-10 base pairs. Protein-DNA interactions can be seen in the autoradiograph as light areas and DNase I-hypersensitive sites as dark bands. Therefore, this method provides a rapid and relatively simple means to accurately localize protein-DNA interactions as well as DNase I-hypersensitive sites, thus directly displaying DNase I hypersensitivity and protein-DNA complexes on one autoradiograph. It also potentially allows the analysis of small changes in DNase I-hypersensitive sites under various biological conditions. With this technique rather large regions of DNA can be screened to determine areas that should be analyzed by more sophisticated methods, such as genomic sequencing or gel retardation assays.  相似文献   

19.
Extracts of Drosophila embryos mediate chromatin assembly in vitro.   总被引:15,自引:1,他引:14       下载免费PDF全文
Extracts of Drosophila embryos can mediate the assembly of a chromatinlike structure from histones and DNA under physiological conditions. The histone-DNA complex formed in vitro contains micrococcal nuclease-sensitive sites spaced at 200-base pair intervals. More extensive digestion of the complex by micrococcal nuclease generates 11S particles which cosediment with nucleosome core particles isolated from native chromatin. These particles contain 140-base pair DNA fragments which upon further cleavage with micrococcal nuclease give rise to a pattern of discretely sized DNA fragments characteristic of nucleosome core particles. We have assayed the chromatin assembly process both qualitatively by measuring the induction of supertwists into a relaxed circular DNA (a process requiring a nicking-closing enzyme) and quantitatively by measuring the formation of micrococcal nuclease-resistant DNA fragments from radioactively labeled linear DNA. The amount of chromatin formed depends primarily on the amount of histones, whereas the rate of assembly depends on the amount of extract protein added. The factors in the extract that mediate chromatin assembly appear to interact first with the DNA because preincubation of the DNA with the extract markedly increases the extent of assembly.  相似文献   

20.
The regulated binding of effector proteins to the nucleosome plays a central role in the activation and silencing of eukaryotic genes. How this binding changes the properties of chromatin to mediate gene activation or silencing is not fully understood. Here we provide evidence that association of the budding yeast silent information regulator 3 (Sir3) silencing protein with the nucleosome induces a conformational change in the amino terminus of histone H4 that promotes interactions between the conserved H4 arginines 17 and 19 (R17 and R19) and nucleosomal DNA. Substitutions of H4R17 and R19 with alanine abolish silencing in vivo, but have little or no effect on binding of Sir3 to nucleosomes or histone H4 peptides in vitro. Furthermore, in both the previously reported crystal structure of the Sir3-bromo adjacent homology (BAH) domain bound to the Xenopus laevis nucleosome core particle and the crystal structure of the Sir3-BAH domain bound to the yeast nucleosome core particle described here, H4R17 and R19 make contacts with nucleosomal DNA rather than with Sir3. These results suggest that Sir3 binding generates a more stable nucleosome by clamping H4R17 and R19 to nucleosomal DNA, and raise the possibility that such induced changes in histone–DNA contacts play major roles in the regulation of chromatin structure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号