首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
目的 探讨不同浓度泛影葡胺及不同CT扫描条件对PET/CT图像质量和标准摄取值的影响.材料与方法 分别将2%、5%、10%、15%、30%的泛影葡胺溶液置入一圆桶模型中进行PET/CT显像,同时采用CT及37Cs两种衰减方法进行校正.比较不同管电压(90kV、120kV、140kV) CT扫描条件下各浓度泛影葡胺充盈区CT衰减校正(CTAC)和137Cs衰减校正(CsAC)的标准摄取值差异及图像差异.结果 不同管电压CT扫描条件下的CT衰减校正的标准摄取值均随泛影葡胺浓度增加而增加(r=0.977、0.979、0.985,P<0.01),而137Cs衰减校正的标准摄取值则与泛影葡胺浓度无明显相关性(r=0.386,P> 0.05);在本底区、清水充盈区及浓度为2%的泛影葡胺充盈区,各CT衰减校正和137Cs衰减校正的标准摄取值间差异无统计学意义(F=1.222、0.912、0.721,P>0.05);在浓度为5%、10%、15%、30%的泛影葡胺充盈区,CT衰减校正的标准摄取值明显高于137Cs衰减校正值(F=82.571、348.211、569.630、992.746,P<0.01),管电压越高CT衰减校正的标准摄取值越小.在浓度为15%、30%的泛影葡胺充盈区,不同管电压CT扫描条件下的图像均出现18F-FDG高摄取伪影,以140kV下的图像“热区”范围及强度最小,而相同区域的137Cs衰减校正及无衰减校正图像均表现为圆形“冷区”.结论 高浓度(≥5%)的泛影葡胺可使PET图像出现高摄取伪影或标准摄取值的高估,增加CT扫描管电压值可以减轻图像伪影并减小标准摄取值的误差.  相似文献   

2.
Recent studies have shown increased artifacts in CT attenuation-corrected (CTAC) PET images acquired with oral contrast agents because of misclassification of contrast as bone. We have developed an algorithm, segmented contrast correction (SCC), to properly transform CT numbers in the contrast regions from CT energies (40-140 keV) to PET energy at 511 keV. METHODS: A bilinear transformation, equivalent to that supplied by the PET/CT scanner manufacturer, for the conversion of linear attenuation coefficients of normal tissues from CT to PET energies was optimized for BaSO(4) contrast agent. This transformation was validated by comparison with the linear attenuation coefficients measured for BaSO(4) at concentrations ranging from 0% to 80% at 511 keV for PET transmission images acquired with (68)Ge rod sources. In the CT images, the contrast regions were contoured to exclude bony structures and then segmented on the basis of a minimum threshold CT number (300 Hounsfield units). The CT number in each pixel identified with contrast was transformed into the corresponding effective bone CT number to produce the correct attenuation coefficient when the data were translated by the manufacturer software into PET energy during the process of CT attenuation correction. CT images were then used for attenuation correction of PET emission data. The algorithm was validated with a phantom in which a lesion was simulated within a volume of BaSO(4) contrast and in the presence of a human vertebral bony structure. Regions of interest in the lesion, bone, and contrast on emission PET images reconstructed with and without the SCC algorithm were analyzed. The results were compared with those for images obtained with (68)Ge-based transmission attenuation-corrected PET. RESULTS: The SCC algorithm was able to correct for contrast artifacts in CTAC PET images. In the phantom studies, the use of SCC resulted in an approximate 32% reduction in the apparent activity concentration in the lesion compared with data obtained from PET images without SCC and a <7.6% reduction compared with data obtained from (68)Ge-based attenuation-corrected PET images. In one clinical study, maximum standardized uptake value (SUV(max)) measurements for the lesion, bladder, and bowel were, respectively, 14.52, 13.63, and 13.34 g/mL in CTAC PET images, 59.45, 26.71, and 37.22 g/mL in (68)Ge-based attenuation-corrected PET images, and 11.05, 6.66, and 6.33 g/mL in CTAC PET images with SCC. CONCLUSION: Correction of oral contrast artifacts in PET images obtained by combined PET/CT yielded more accurate quantitation of the lesion and other, normal structures. The algorithm was tested in a clinical case, in which SUV(max) measurements showed discrepancies of 2%, 1.3%, and 5% between (68)Ge-based attenuation-corrected PET images and CTAC PET images with SCC for the lesion, bladder, and bowel, respectively. These values correspond to 6.5%, 62%, and 66% differences between CTAC-based measurements and (68)Ge-based ones.  相似文献   

3.
BACKGROUND: Attenuation correction is generally used to PET images to achieve count rate values independent from tissue densities. The goal of this study was to provide a qualitative comparison of attenuation corrected PET images produced by a PET-CT device (CT, 120 kV, 40 mAs, FOV 600 mm) with and without segmentation of transmission data (ACseg+ and ACseg-respectively). Methods: The reconstructed images were compared to attenuation corrected images obtained with a high-energy transmission source (Cs-137 - 662 keV).Thirty oncologic patients were studied using CT and 137Cs for attenuation correction. All image data were acquired using the Gemini PET-CT scanner (Philips Medical Systems). It is an open PET-CT system that consists of the MX8000 multislice CT and the Allegro PET scanner arranged in a separable configuration. Images with ACseg+ and ACseg- were analyzed simultaneously in coronal, sagittal and transaxial planes. Two nuclear medicine physicians reviewed the image sets. Results: The image quality in the area of metal implants was better with ACseg+ than ACseg-, without metal induced artifacts generally observed in CT corrected images. Further the images with ACseg+ were qualitatively comparable to those obtained with 137Cs attenuation correction. Conclusions: In case of metal implants, PET studies corrected by CT should preferably use the ACseg+ method to avoid the image artifacts.  相似文献   

4.
In patients with oral head and neck cancer, the presence of metallic dental implants produces streak artifacts in the CT images. These artifacts negate the utility of CT for the spatial localization of PET findings and may propagate through the CT-based attenuation correction into the PET images. In this study, we evaluated the efficacy of an algorithm that reduces metallic artifacts in CT images and the impact of this approach on the quantification of PET images. METHODS: Fifty-one patients with and 9 without dental implants underwent a PET/CT study. CT images through the patient's dental implants were reconstructed using both standard CT reconstruction and an algorithm that reduces metallic artifacts. Attenuation correction factors were calculated from both sets of CT images and applied to the PET data. The CT images were evaluated for any reduction of the artifacts. The PET images were assessed for any quantitative change introduced by metallic artifact reduction. RESULTS: For each reconstruction, 2 regions of interest were defined in areas where the standard CT reconstruction overestimated the Hounsfield units (HU), 2 were defined in underestimated areas, and 1 was defined in a region unaffected by the artifacts. The 5 regions of interest were transferred to the other 3 reconstructions. Mean HU or mean Bq/cm(3) were obtained for all regions. In the CT reconstructions, metallic artifact reduction decreased the overestimated HUs by approximately 60% and increased the underestimated HUs by approximately 90%. There was no change in quantification in the PET images between the 2 algorithms (Spearman coefficient of rank correlation, 0.99). Although the distribution of attenuation (HU) changed considerably in the CT images, the distribution of activity did not change in the PET images. CONCLUSION: Our study demonstrated that the algorithm can enhance the structural and spatial content of CT images in the presence of metallic artifacts. The CT artifacts do not propagate through the CT-based attenuation correction into the PET images, confirming the robustness of CT-based attenuation correction in the presence of metallic artifacts. The study also demonstrated that considerable changes in CT images do not change the PET images.  相似文献   

5.
OBJECTIVES: CT data can be used for both anatomical image and attenuation correction (CTAC) of PET data in PET-CT scanners. The CTAC method is useful for attenuation correction, because the CT scan time is much shorter than the external radionuclide (e.g., (68)Ge) transmission scan time. However, the energy of the X-rays from CT is not monoenergetic and is much lower than that of the external radionuclide source. In this study, we evaluated the differences between emission PET images reconstructed with CT-based and (68)Ge-based attenuation correction. METHODS: CT scans and (68)Ge-Transmission scans were acquired and used for attenuation correction (CTAC, MAC, and SAC). The PET emission scan time was 4 min. CT scans were acquired at 10, 20, 40, 80, and 160 mA. (68)Ge-Transmission scans were acquired at 1, 3, 5, 10, 20, 40, 60, and 300 min. The attenuation-corrected emission image using MAC on a 300 min transmission scan was defined as the reference image. Seven cylinders (30 mm diameter) were filled with (18)F-FDG placed in a heart-liver phantom with simulated pulmonary mass lesions. The PET value [counts/cc] was measured in circular regions of interest (ROI) over the cylindrical mass lesion. Averages [counts/cc], coefficients of variation [C.V.(%)], and ratios of difference [%Diff] from the reference value were calculated for all conditions. RESULTS: In the CT-Transmission, analysis of variance revealed no significant effect of CT current on the average and the C.V. In the (68)Ge-Transmission, the average and the C.V. changed in dependence on the acquisition time. All %Diff using CT-Transmission were small. It was shown that CT-Transmission is more appropriate than (68)Ge-Transmission.  相似文献   

6.
OBJECTIVE: Coregistration of positron emission tomography (PET) and CT images results in significantly improved localization of abnormal FDG uptake compared with PET images alone. For delineation of intestinal structures, application of oral contrast media is a standard procedure in CT. The influence of oral contrast agents in PET imaging using CT data for attenuation correction was evaluated in a comparative study on an in-line PET-CT system. SUBJECTS AND METHODS: Sixty patients referred for PET-CT were evaluated in two groups. One group of 30 patients received oral Gastrografin 45 min before data acquisition. The second group received no contrast medium. PET images were reconstructed, using CT data for attenuation correction. Image analysis was performed by two reviewers in consensus, using a 4-point scale comparing FDG-uptake in the gastrointestinal tract in PET images of both groups. Furthermore, correlation of FDG uptake and localization of contrast media in the intestinal tract in CT images were determined. RESULTS: No significant difference in FDG uptake in PET images in all regions of the gastrointestinal tract except the ascending colon was seen in both groups. No correlation was found in the location of increased FDG uptake and contrast media in the CT images. CONCLUSION: An oral contrast agent can be used for coregistered PET-CT without the introduction of artifacts in PET.  相似文献   

7.
The introduction of combined PET/CT systems has a number of advantages, including the utilisation of CT images for PET attenuation correction (AC). The potential advantage compared with existing methodology is less noisy transmission maps within shorter times of acquisition. The objective of our investigation was to assess the accuracy of CT attenuation correction (CTAC) and to study resulting bias and signal to noise ratio (SNR) in image-derived semi-quantitative uptake indices. A combined PET/CT system (GE Discovery LS) was used. Different size phantoms containing variable density components were used to assess the inherent accuracy of a bilinear transformation in the conversion of CT images to 511 keV attenuation maps. This was followed by a phantom study simulating tumour imaging conditions, with a tumour to background ratio of 5:1. An additional variable was the inclusion of contrast agent at different concentration levels. A CT scan was carried out followed by 5 min emission with 1-h and 3-min transmission frames. Clinical data were acquired in 50 patients, who had a CT scan under normal breathing conditions (CTAC(nb)) or under breath-hold with inspiration (CTAC(insp)) or expiration (CTAC(exp)), followed by a PET scan of 5 and 3 min per bed position for the emission and transmission scans respectively. Phantom and patient studies were reconstructed using segmented AC (SAC) and CTAC. In addition, measured AC (MAC) was performed for the phantom study using the 1-h transmission frame. Comparing the attenuation coefficients obtained using the CT- and the rod source-based attenuation maps, differences of 3% and <6% were recorded before and after segmentation of the measured transmission maps. Differences of up to 6% and 8% were found in the average count density (SUV(avg)) between the phantom images reconstructed with MAC and those reconstructed with CTAC and SAC respectively. In the case of CTAC, the difference increased up to 27% with the presence of contrast agent. The presence of metallic implants led to underestimation in the surrounding SUV(avg) and increasing non-uniformity in the proximity of the implant. The patient study revealed no statistically significant differences in the SUV(avg) between either CTAC(nb) or CTAC(exp) and SAC-reconstructed images. The larger differences were recorded in the lung. Both the phantom and the patient studies revealed an average increase of approximately 25% in the SNR for the CTAC-reconstructed emission images compared with the SAC-reconstructed images. In conclusion, CTAC(nb) or CTAC(exp) is a viable alternative to SAC for whole-body studies. With CTAC, careful consideration should be given to interpretation of images and use of SUVs in the presence of oral contrast and in the proximity of metallic implants.  相似文献   

8.
We investigated the effect of CT truncation in whole-body (WB) PET/CT imaging of large patients, and we evaluated the efficacy of an extended field-of-view (eFOV) correction technique. METHODS: Two uniform phantoms simulating a "torso" and an "arms-up" setup were filled with (18)F-FDG/water. A third, nonuniform "body phantom was prepared with hot and cold lesions. All 3 phantoms were positioned in the center of the PET/CT gantry with >or=10% of their volume extending beyond the maximum CT FOV. An eFOV algorithm was used to estimate complete CT projections from nonlinear extrapolation of the truncated projections. CT-based attenuation correction (CT AC) of the phantom data was performed using CT images reconstructed from truncated and extended projections. For clinical validation, we processed truncated datasets from 10 PET/CT patients with and without eFOV correction. RESULTS: When using truncated CT images for CT AC, PET tracer distribution was suppressed outside the transverse CT FOV in phantom and patient studies. PET activity concentration in the truncated regions was only 10%-32% of the true value but increased to 84%-100% when using the extended CT images for CT AC. At the same time, the contour of phantoms and patients was recovered to the anatomically correct shape from the uncorrected emission images, and the apparent distortion of lesions near the maximum CT FOV was reduced. CONCLUSION: Truncation artifacts in WB PET/CT led to visual and quantitative distortions of the CT and attenuation-corrected PET images in the area of truncation. These artifacts can be corrected to improve the accuracy of PET/CT for diagnosis and therapy response evaluation.  相似文献   

9.
Artifacts related to metallic implants are an established limitation of CT-based attenuation correction (CT-AC) in PET/CT. However, the impact of metallic components of pacemaker leads and implantable cardioverter defibrillator (ICD) leads on the accuracy of cardiac PET has not been evaluated. The goal of this study was to investigate the magnitude of artifacts related to pacing and defibrillation leads in both phantom and patient studies. METHODS: Images were acquired on a PET/CT scanner using CT-AC and were compared with those obtained on a dedicated PET scanner using transmission source-based attenuation correction. Phantoms consisting of pacemaker leads and ICD leads submerged in uniform background activity solution were imaged, and regions were analyzed to measure radionuclide concentrations at known lead locations relative to background. In addition, 15 cardiac 18F-FDG patients (having either pacing leads, defibrillation leads, or both) were imaged on both PET/CT and PET scanners. Images were visually and quantitatively assessed to determine whether artifact related to the implanted leads was present and, if so, its severity relative to surrounding myocardium. RESULTS: In phantom studies, artifacts caused by pacing lead electrodes were barely noticeable, but artifacts arising from highly radioopaque ICD shock coil electrodes were clearly apparent. In the patient studies, no artifacts from pacing leads were identified. However, significant artifact was observed in 50% of the patient studies with ICD leads. In the affected areas, local myocardial uptake in PET/CT images using CT-AC was, on average, 30% higher than that in the corresponding PET images. CONCLUSION: Although pacemaker leads do not appear to cause artifact in cardiac PET/CT images, ICD leads frequently do result in artifacts of sufficient magnitude to impact clinical image interpretation. Accordingly, software-based corrections in CT-AC algorithms appear necessary for accurate cardiac imaging with PET/CT.  相似文献   

10.
Objective  The objective of this study was to investigate the effects of computed tomography (CT) artifacts caused by dental metal prostheses on positron emission tomography (PET) images. Methods  A dental arch cast was fixed in a cylindrical water-bath phantom. A spherical phantom positioned in the vicinity of the dental arch cast was used to simulate a tumor. To simulate the tumor imaging, the ratio of the 18F-fluoro-deoxy-glucose radioactivity concentration of the spherical phantom to that of the water-bath phantom was set at 2.5. A dental bridge composed of a gold–silver–palladium alloy on the right mandibular side was prepared. A spherical phantom was set in the white artifact area on the CT images (site A), in a slightly remote area from the white artifact (site B), and in a black artifact area (site C). A PET/CT scan was performed with and without the metal bridge at each simulated tumor site, and the artifactual influence was evaluated on the axial attenuation-corrected (AC) PET images, in which the simulated tumor produced the strongest accumulation. Measurements were performed using three types of PET/CT scanners (scanners 1 and 2 with CT-based attenuation correction, and 3 with Cesium-137 (137Cs)-based attenuation correction). The influence of the metal bridge was evaluated using the change rate of the SUVmean with and without the metal bridge. Results  At site A, an overestimation was shown (scanner 1: +5.0% and scanner 2: +2.5%), while scanner 3 showed an underestimation of −31.8%. At site B, an overestimation was shown (scanner 1: +2.1% and scanner 2: +2.0%), while scanner 3 showed an underestimation of −2.6%. However, at site C, an underestimation was shown (scanner 1: −25.0%, scanner 2: −32.4%, and scanner 3: −8.4%). Conclusions  When CT is used for attenuation correction in patients with dental metal prostheses, an underestimation of radioactivity of accumulated tracer is anticipated in the dark streak artifact area on the CT images. In this study, the dark streak artifacts of the CT caused by metallic dental prostheses may cause false negative finding of PET/CT in detecting small and/or low uptake tumor in the oral cavity.  相似文献   

11.
Purpose  Oral contrast is usually administered in most X-ray computed tomography (CT) examinations of the abdomen and the pelvis as it allows more accurate identification of the bowel and facilitates the interpretation of abdominal and pelvic CT studies. However, the misclassification of contrast medium with high-density bone in CT-based attenuation correction (CTAC) is known to generate artifacts in the attenuation map (μmap), thus resulting in overcorrection for attenuation of positron emission tomography (PET) images. In this study, we developed an automated algorithm for segmentation and classification of regions containing oral contrast medium to correct for artifacts in CT-attenuation-corrected PET images using the segmented contrast correction (SCC) algorithm. Methods  The proposed algorithm consists of two steps: first, high CT number object segmentation using combined region- and boundary-based segmentation and second, object classification to bone and contrast agent using a knowledge-based nonlinear fuzzy classifier. Thereafter, the CT numbers of pixels belonging to the region classified as contrast medium are substituted with their equivalent effective bone CT numbers using the SCC algorithm. The generated CT images are then down-sampled followed by Gaussian smoothing to match the resolution of PET images. A piecewise calibration curve was then used to convert CT pixel values to linear attenuation coefficients at 511 keV. Results  The visual assessment of segmented regions performed by an experienced radiologist confirmed the accuracy of the segmentation and classification algorithms for delineation of contrast-enhanced regions in clinical CT images. The quantitative analysis of generated μmaps of 21 clinical CT colonoscopy datasets showed an overestimation ranging between 24.4% and 37.3% in the 3D-classified regions depending on their volume and the concentration of contrast medium. Two PET/CT studies known to be problematic demonstrated the applicability of the technique in clinical setting. More importantly, correction of oral contrast artifacts improved the readability and interpretation of the PET scan and showed substantial decrease of the SUV (104.3%) after correction. Conclusions  An automated segmentation algorithm for classification of irregular shapes of regions containing contrast medium was developed for wider applicability of the SCC algorithm for correction of oral contrast artifacts during the CTAC procedure. The algorithm is being refined and further validated in clinical setting.  相似文献   

12.
Germanium-68 based attenuation correction (PET(Ge68)) is performed in positron emission tomography (PET) imaging for quantitative measurements. With the recent introduction of combined in-line PET/CT scanners, CT data can be used for attenuation correction. Since dental implants can cause artefacts in CT images, CT-based attenuation correction (PET(CT)) may induce artefacts in PET images. The purpose of this study was to evaluate the influence of dental metallic artwork on the quality of PET images by comparing non-corrected images and images attenuation corrected by PET(Ge68) and PET(CT). Imaging was performed on a novel in-line PET/CT system using a 40-mAs scan for PET(CT) in 41 consecutive patients with high suspicion of malignant or inflammatory disease. In 17 patients, additional PET(Ge68) images were acquired in the same imaging session. Visual analysis of fluorine-18 fluorodeoxyglucose (FDG) distribution in several regions of the head and neck was scored on a 4-point scale in comparison with normal grey matter of the brain in the corresponding PET images. In addition, artefacts adjacent to dental metallic artwork were evaluated. A significant difference in image quality scoring was found only for the lips and the tip of the nose, which appeared darker on non-corrected than on corrected PET images. In 33 patients, artefacts were seen on CT, and in 28 of these patients, artefacts were also seen on PET imaging. In eight patients without implants, artefacts were seen neither on CT nor on PET images. Direct comparison of PET(Ge68) and PET(CT) images showed a different appearance of artefacts in 3 of 17 patients. Malignant lesions were equally well visible using both transmission correction methods. Dental implants, non-removable bridgework etc. can cause artefacts in attenuation-corrected images using either a conventional 68Ge transmission source or the CT scan obtained with a combined PET/CT camera. We recommend that the non-attenuation-corrected PET images also be evaluated in patients undergoing PET of the head and neck.  相似文献   

13.
Cardiac PET combined with CT is rapidly expanding despite artifactual defects and false-positive results due to misregistration of PET and CT attenuation correction data-the frequency, cause, and correction of which remain undetermined. METHODS: Two hundred fifty-nine consecutive patients underwent diagnostic rest-dipyridamole myocardial perfusion PET/CT using (82)Rb, a 16-slice PET/CT scanner, helical CT attenuation correction with breathing and also at end-expiratory breath-hold, and averaged cine CT data during breathing. Misregistration on superimposed PET/CT fusion images was objectively measured in millimeters and correlated with associated quantitative size and severity of PET defects. Misregistration artifacts were defined as PET defects with corresponding misregistration on helical CT-PET fusion images that resolved after correct coregistration using a repeat CT scan, cine CT averaged attenuation during normal breathing, or shifted cine CT data that coregistered with PET data. RESULTS: Misregistration of standard helical CT PET images caused artifactual PET defects in 103 of 259 (40%) patients that were moderate to severe in 59 (23%) (P = 0.0000) and quantitatively normalized on cine or shifted cine CT PET (P = 0.0000). Quantitative misregistration was a powerful predictor of artifact size and severity (P = 0.0000), particularly for transaxial misregistration >6 mm occurring in anterior or lateral areas in 76%, in inferior areas in 16%, and at the apex in 8% of 103 artifactual defects. CONCLUSION: Misregistration of helical CT attenuation and PET emission images causes artifactual defects with false-positive results in 40% of patients that normalize on cine CT PET using averaged CT attenuation data during normal breathing comparable to normal breathing during PET emission scanning and shifting cine CT images to coregister visually with PET.  相似文献   

14.
PET-CT常见伪影   总被引:1,自引:0,他引:1  
PET-CT实现了PET和CT的同机图像融合,但由于CT用于衰减校正以及PET和CT图像采集的非完全同时性,PET-CT图像存在一定伪影,临床中这些伪影的存在会干扰医师对图像的判读,带来假阳性或假阴性.本文主要介绍PET-CT的有关伪影,分析其产生原因,并探讨其可能的预防措施.  相似文献   

15.
PET-CT常见伪影   总被引:1,自引:0,他引:1  
PET-CT实现了PET和CT的同机图像融合,但由于CT用于衰减校正以及PET和CT图像采集的非完全同时性,PET-CT图像存在一定伪影,临床中这些伪影的存在会干扰医师对图像的判读,带来假阳性或假阴性。本文主要介绍PET-CT的有关伪影,分析其产生原因,并探讨其可能的预防措施。  相似文献   

16.
A synergy of positron emission tomography (PET)/computed tomography (CT) scanners is the use of the CT data for x-ray-based attenuation correction of the PET emission data. Current methods of measuring transmission use positron sources, gamma-ray sources, or x-ray sources. Each of the types of transmission scans involves different trade-offs of noise versus bias, with positron transmission scans having the highest noise but lowest bias, whereas x-ray scans have negligible noise but the potential for increased quantitative errors. The use of x-ray-based attenuation correction, however, has other advantages, including a lack of bias introduced from post-injection transmission scanning, which is an important practical consideration for clinical scanners, as well as reduced scan times. The sensitivity of x-ray-based attenuation correction to artifacts and quantitative errors depends on the method of translating the CT image from the effective x-ray energy of approximately 70 keV to attenuation coefficients at the PET energy of 511 keV. These translation methods are usually based on segmentation and/or scaling techniques. Errors in the PET emission image arise from positional mismatches caused by patient motion or respiration differences between the PET and CT scans; incorrect calculation of attenuation coefficients for CT contrast agents or metallic implants; or keeping the patient's arms in the field of view, which leads to truncation and/or beam-hardening (or x-ray scatter) artifacts. Proper interpretation of PET emission images corrected for attenuation by using the CT image relies on an understanding of the potential artifacts. In cases where an artifact or bias is suspected, careful inspection of all three available images (CT and PET emission with and without attenuation correction) is recommended.  相似文献   

17.
BACKGROUND: The advent of dual-modality positron emission tomography/computed tomography (PET/CT) imaging has revolutionized the practice of clinical oncology by improving lesion localization and facilitating treatment planning for radiation therapy. In addition, the use of CT images for CT-based attenuation correction (CTAC) allows the overall scanning time to be decreased and a noise-free attenuation map (micromap) to be created. The most common procedure requires a piecewise linear calibration curve acquired under standard imaging conditions to convert the patient's CT image from low effective CT energy into an attenuation map at 511 keV. AIM: To evaluate the effect of the tube voltage on the accuracy of CTAC. METHODS: As different tube voltages are employed in current PET/CT scanning protocols, depending on the size of the patient and the region under study, the impact of using a single calibration curve on the accuracy of CTAC for images acquired at different tube voltages was investigated through quantitative analysis of the created micromaps, generated attenuation correction factors and reconstructed neurological PET data using anthropomorphic experimental phantom and clinical studies. RESULTS: For CT images acquired at 80 and 140 kVp, average relative differences of -2.9% and 0.7%, respectively, from the images acquired at 120 kVp were observed for the absolute activity concentrations in five regions of the anthropomorphic striatal phantom when CT images were converted using a single calibration curve derived at 120 kVp. Likewise, average relative differences of 1.9% and -0.6% were observed when CT images were acquired at 120 kVp and CTAC used calibration curves derived at 80 and 140 kVp, respectively. CONCLUSION: The use of a single calibration curve acquired under standard imaging conditions does not affect, to a visible or measurable extent, neurological PET images reconstructed using CTAC when CT images are acquired in different conditions.  相似文献   

18.
The goal of this study was to assess the effect of diaphragmatic respiratory motion on inferior wall cold artifact in myocardial SPECT and to assess the ability of attenuation correction (AC) to correct for this artifact in the presence of diaphragmatic motion. METHODS: We used an anthropomorphic phantom with ventricular wall activity, variable ventricular caudal tilt, attenuating liver and spleen cold inserts, and variable vertical (diaphragmatic) motion amplitude and pattern. Cardiac SPECT images were acquired on a gamma camera with dual scanning transmission line sources and commercially available AC software (with scatter correction and iterative reconstruction). The acquired data were processed either using filtered backprojection or with the AC software. The resulting myocardial activity maps were processed with polar plots and with standardized inferior-to-anterior and anterior-to-lateral wall ratios. RESULTS: Subdiaphragmatic attenuation reduces inferior wall counts and this component of inferior wall artifact is fully corrected by AC relative to anterior wall counts both with and without diaphragmatic respiratory motion. In the phantom, diaphragmatic motion artifact manifests as reduction in relative count density in both the anterior wall and the inferior wall relative to the lateral wall, which is not corrected by AC. This artifact becomes more marked with increasing respiratory amplitude and its symmetry depends on the pattern of diaphragmatic motion. CONCLUSION: Images with AC acquired at small respiratory amplitudes (approximately 2 cm) in the phantom resemble images with AC found in published normal patient databases. These results support a clinical need for respiratory gating of myocardial SPECT images.  相似文献   

19.

Background

To determine if metal artefact reduction (MAR) combined with a priori knowledge of prosthesis material composition can be applied to obtain CT-based attenuation maps with sufficient accuracy for quantitative assessment of 18F-fluorodeoxyglucose uptake in lesions near metallic prostheses.

Methods

A custom hip prosthesis phantom with a lesion-sized cavity filled with 0.2 ml 18F-FDG solution having an activity of 3.367 MBq adjacent to a prosthesis bore was imaged twice with a chrome–cobalt steel hip prosthesis and a plastic replica, respectively. Scanning was performed on a clinical hybrid PET/CT system equipped with an additional external 137Cs transmission source. PET emission images were reconstructed from both phantom configurations with CT-based attenuation correction (CTAC) and with CT-based attenuation correction using MAR (MARCTAC). To compare results with the attenuation-correction method extant prior to the advent of PET/CT, we also carried out attenuation correction with 137Cs transmission-based attenuation correction (TXAC). CTAC and MARCTAC images were scaled to attenuation coefficients at 511 keV using a trilinear function that mapped the highest CT values to the prosthesis alloy attenuation coefficient. Accuracy and spatial distribution of the lesion activity was compared between the three reconstruction schemes.

Results

Compared to the reference activity of 3.37 MBq, the estimated activity quantified from the PET image corrected by TXAC was 3.41 MBq. The activity estimated from PET images corrected by MARCTAC was similar in accuracy at 3.32 MBq. CTAC corrected PET images resulted in nearly 40 % overestimation of lesion activity at 4.70 MBq. Comparison of PET images obtained with the plastic and metal prostheses in place showed that CTAC resulted in a marked distortion of the 18F-FDG distribution within the lesion, whereas application of MARCTAC and TXAC resulted in lesion distributions similar to those observed with the plastic replica.

Conclusions

MAR combined with a trilinear CT number mapping for PET attenuation correction resulted in estimates of lesion activity comparable in accuracy to that obtained with 137Cs transmission-based attenuation correction, and far superior to estimates made without attenuation correction or with a standard CT attenuation map. The ability to use CT images for attenuation correction is a potentially important development because it obviates the need for a 137Cs transmission source, which entails extra scan time, logistical complexity and expense.  相似文献   

20.
In combined PET/CT studies, x-ray attenuation information from the CT scan is generally used for PET attenuation correction. Iodine-containing contrast agents may induce artifacts in the CT-generated attenuation map and lead to an erroneous radioactivity distribution on the corrected PET images. This study evaluated 2 methods of thresholding the CT data to correct these contrast agent-related artifacts. METHODS: PET emission and attenuation data (acquired with and without a contrast agent) were simulated using a cardiac torso software phantom and were obtained from patients. Seven patients with known coronary artery disease underwent 2 electrocardiography-gated CT scans of the heart, the first without a contrast agent and the second with intravenous injection of an iodine-containing contrast agent. A 20-min PET scan (single bed position) covering the same axial range as the CT scans was then obtained 1 h after intravenous injection of (18)F-FDG. For both the simulated data and the patient data, the unenhanced and contrast-enhanced attenuation datasets were used for attenuation correction of the PET data. Additionally, 2 threshold methods (one requiring user interaction) aimed at compensating for the effect of the contrast agent were applied to the contrast-enhanced attenuation data before PET attenuation correction. All PET images were compared by quantitative analysis. RESULTS: Regional radioactivity values in the heart were overestimated when the contrast-enhanced data were used for attenuation correction. For patients, the mean decrease in the left ventricular wall was 23%. Use of either of the proposed compensation methods reduced the quantification error to less than 5%. The required time for postprocessing was minimal for the user-independent method. CONCLUSION: The use of contrast-enhanced CT images for attenuation correction in cardiac PET/CT significantly impairs PET quantification of tracer uptake. The proposed CT correction methods markedly reduced these artifacts; additionally, the user-independent method was time-efficient.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号