首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Rat pups were injected intracisternally (i.c.) or intraperitoneally (i.p.) with 5,7-dihydroxytryptamine (5,7-DHT) or saline and challenged 2 and 14 weeks later with the 5-HT precursor 5-hydroxytryptophan (5-HTP), which evokes behavioral supersensitivity in adult rats, 5,7-DHT induced transient postinjection convulsions in rats injected i.c. but not i.p. Rats with either type of 5,7-DHT lesions displayed supersensitive behavioral responses to 5-HTP. However, rats lesioned by i.p. injections exhibited significantly greater shaking behavior (+1445%) in response to 5-HTP than their i.c. counterparts, who instead showed more forepaw myoclonus (+250%) and head weaving (+270%), the core features of the 5-HT syndrome. Differences in 5-HT syndrome behaviors were already present 2 weeks after lesioning, whereas the difference in shaking behavior was not. After 14 weeks, 5-HT was selectively depleted (-43 to -92%) in hippocampus, spinal cord, and frontal cortex, and differences between i.c. and i.p. 5,7-DHT routes were insignificant except in frontal cortex. Brainstem 5-HT concentrations were significantly increased (+35%) after i.p. 5,7-DHT injections in contrast to reduction (-89%) after i.c. 5,7-DHT; 5-hydroxyindole acetic acid/5-hydroxytryptamine (5-HIAA/5-HT) ratios were decreased (-20%) with either route. These data suggest that brainstem 5-HT hyperinnervation following i.p. 5,7-DHT injection modifies the functional consequences of injury in abating the 5-HT syndrome, but does not result in complete recovery since shaking behavior is enhanced. Loss of presynaptically mediated autoregulation or receptor dysregulation may play a major role in behavioral supersensitivity induced by 5-HTP in rats with 5,7-DHT lesions. To the extent that the 5-HT syndrome is mediated by 5-HT1A receptors and shaking behavior by 5-HT2 sites, differential responses to injury of 5-HT1A and 5-HT2 receptors may contribute to these behavioral differences.  相似文献   

2.
There have been few previous studies of the functional significance of 5,7-dihydroxytryptamine (5,7-DHT) lesions made in neonatal rats. To study the role of serotonin (5-HT) in recovery of function, rat pups and adult rats were injected intracisternally with 5,7-DHT or saline and challenged acutely with the 5-HT precursor 5-hydroxytryptophan (5-HTP) 4 weeks later as a test of behavioral supersensitivity. Compared to 5,7-DHT lesions in adults, neonatal lesions induced significantly greater 5-HT depletions in brainstem, but 5-HT depletions in other regions were not significantly different in the two groups. Rats with early 5,7-DHT lesions displayed supersensitive behavioral responses to 5-HTP, consisting of all the component myoclonic-serotonergic behaviors seen in rats with 5,7-DHT lesions made as adults. However, there was significantly less 5-HTP-evoked head weaving, truncal myoclonus and shaking behavior in rats treated with 5,7-DHT as neonates. Body weight was reduced both in rats with early and late 5,7-DHT lesions, but reduction persisted in rats with early lesions. These data indicate overall similarity with some differences between neurochemical and behavioral effects of early and late 5,7-DHT lesions made by the intracisternal route. They suggest that recovery mechanisms did not occur or failed to reverse the neurochemical or behavioral consequences of early 5,7-DHT lesions.  相似文献   

3.
To delineate the involvement of spinal 5-HT1C receptors in supersensitivity and recovery following neonatal 5,7-DHT lesions, we injected rats on postnatal days 2 and 5 with 5,7-DHT or vehicle by intraperitoneal (IP) or intracisternal (IC) injection. [3H]Mesulergine-labelled sites measured 4 or 14 weeks later exhibited a significant increase (+35% for IP and 27% for IC) in Bmax without changes in Kd or nH. Spinal 5-HT content was significantly reduced (-80 to 89%) by either route of 5,7-DHT injection. These data describe novel upregulation of spinal 5-HT1C receptors in rats with neonatal 5,7-DHT lesions. Spinal 5-HT1C receptor upregulation may contribute to the behavioral supersensitivity to L-5-hydroxytryptophan (L-5-HTP) in rats with 5,7-DHT lesions. It does not explain the behavioral recovery we found previously only after IP 5,7-DHT injection.  相似文献   

4.
"Denervation supersensitivity" of serotonin (5-HT) receptors has been proposed to explain the behavioral supersensitivity to 5-hydroxytryptophan (5-HTP) which develops after lesions of indoleamine neurons with 5,7-dihydroxytryptamine (5,7-DHT). To examine the possible role of receptor recognition sites and second messenger activity in supersensitivity, we measured regional 5-HT2 receptor ligand binding and 5-HT-stimulated phosphoinositide turnover in adult rats with 5,7-DHT lesions made by intracisternal injection and their saline-treated controls. In [3H]ketanserin binding studies of fresh brain tissue two weeks after 5,7-DHT injection, there were no significant changes in frontal cortex, brainstem, or spinal cord in Bmax, Kd, or nH of 5-HT2 receptors, 5,7-DHT lesions did not affect basal levels of [3H]inositol phosphate (IP) accumulation but significantly increased 5-HT-stimulated [3H]IP accumulation in the brainstem (+27%) and cortex (+23%). Because brainstem rather than cortex is involved in 5-HTP-evoked myoclonus, increased 5-HT-stimulated phosphoinositide hydrolysis in brainstem following 5,7-DHT lesions in the rat may be relevant to serotonergic behavioral supersensitivity.  相似文献   

5.
Depletion of 5-hydroxytryptamine (5-HT) in mice was produced by intracerebroventricular injection of 5,7-dihydroxytryptamine (5,7-DHT, 80 micrograms) or by systemic injections of p-chloroamphetamine (PCA, 3 X 40 or 4 X 40 mg/kg), p-chlorophenylalanine (PCPA, 5 X 400 or 14 X 400 mg/kg) or combined PCA (3 X 40 mg/kg) + PCPA (11 X 400 mg/kg). Neither of the pretreatments altered nociception in the increasing temperature hot-plate test, whereas hyperalgesia was demonstrated in 5,7-DHT lesioned animals in the tail-flick test. 5,7-DHT-pretreatment enhanced the antinociceptive effect of the 5-HT agonists 5-methoxy-N,N-dimethyltryptamine (5-MeODMT), 8-hydroxy-2-(di-n-propylamino)tetralin (8-OH-DPAT) and 5-hydroxytryptophan (5-HTP). This effect was observed after 2, 5 and 8 days in the tail-flick test and after 5 and 8 days in the hot-plate test. However, pretreatment with PCPA or PCA failed to alter the antinociception elicited by the 5-HT agonists, although a tendency towards enhancement of antinociception was found after combined treatment with PCA and PCPA. It is suggested that the injection of 5,7-DHT induces denervation supersensitivity of post-synaptic 5-HT receptors. The lack of such supersensitivity after PCPA-pretreatment which induces similar 5-HT depletion to 5,7-DHT, may suggest that other factors than the absence of 5-HT may contribute to the development of denervation supersensitivity. Alternatively, the three 5-HT depleting agents may produce a qualitatively different reduction of 5-HT.  相似文献   

6.
This study evaluated the behavioral elements of three 5-HT-related syndromes (intraperitoneal 5-hydroxytryptophan after intracisternal 5,7-dihydroxytryptamine (DHT), p-chloroamphetamine (PCA), fenfluramine (FF), or combinations of drugs) scored from video-tapes and their relationship to locomotor activity (LMA) photocell recording, regional monoamine concentration and S-1 receptor binding. Rearing was eliminated by drugs which produce the myoclonic syndrome and was the single best indicator of control treatments (saline or 5-HTP in unlesioned rats and saline in DHT-lesioned rats). Global 'abnormality', hunching (rigid arching of back), hindlimb abduction, forepaw myoclonus, stereotyped lateral head movements, backing, and immobility occurred significantly only in drug-treated rats. Multiple forms of myoclonus (appendicular and truncal) and convulsions were dose-dependent drug effects. Both 5-HTP (after DHT) and PCA increased LMA significantly, but hyperactivity induced by PCA could be blocked by giving 5-HTP concomitantly. Substantial 5-HT presynaptic destruction by DHT prevented backing but not other behavioral or locomotor effects of FF and PCA. Drug combinations did not produce additive behavioral effects. Backing, immobility, and locomotor activity best differentiated between drug treatments, and could be used to correctly allocate animals to drug groups. Drug treatments also could be differentiated by reducing the number of behavioral variables into summary variables (principal components) and by discriminant analysis. Only forepaw myoclonus and total behavioral score were correlated with 5-HT concentrations (brainstem), indicating behavioral heterogeneity. Our study suggests that there is a common core 'myoclonic-serotonergic' syndrome (forepaw myoclonus, head weaving, hindlimb abduction, hunching) of stimulation of 5-HT receptors plus additional drug-specific elements (backing, LMA). Although brainstem receptors appear to be an important locus for some of these behaviors, S-1 receptors do not explain the behavioral supersensitivity to 5-HTP in our DHT-lesioned rats.  相似文献   

7.
Intracisternal injection of 5,7-dihydroxytryptamine (5,7-DHT) following treatment with desmethylimipramine induced development of behavioral supersensitivity to the intraperitoneally administered serotonin precursor 5-hydroxytryptophan (5-HTP) in the mouse. This behavioral syndrome, characterized by tremor and muscle twitches (myoclonus), showed a clear dose-response relationship with 5,7-DHT as well as with 5-HTP. Mice lesioned with a low dose of 5,7-DHT (20 micrograms) or a placebo were treated repeatedly with a protein synthesis inhibitor, sycloheximide (45 mg/kg, s.c., every 12 h for up to 10 days). This treatment resulted in a reversible decrease of cerebral protein synthesis varying between 70 and 20% with time between treatments. The myoclonic response to 5-HTP in animals pretreated with 5,7-DHT and by cycloheximide showed a decrease in intensity within 24 h when evaluated quantitatively by an electronic activity monitor, the results of which were confirmed by direct observation. Cycloheximide also exerted a similar, though smaller, effect following full development of sensitivity to 5-HTP over 10 days. These effects may de mediated by inhibition of rapidly turning over serotonin receptor proteins, although their interpretation is somewhat obscured by possible toxic effects of cycloheximide.  相似文献   

8.
We studied changes in the spinal segmental reflex and serotonergic (5-HT) responses in rats after spinal cord injury (SCI) produced by the weight-dropping method at the T8 level. The spinal monosynaptic reflex amplitude (MSR) was recorded from the L5 ventral root following stimulation of the ipsilateral L5 dorsal root. The 5-HT precursor l-5-hydroxytryptophan (L-5-HTP) depressed MSR in the spinal cord injured rats but not in normal rats. We investigated whether the SCI-specific depression of MSR by L-5-HTP was attributable to postsynaptic supersensitivity of 5-HT receptors or presynaptic loss of the 5-HT uptake system. Sumatriptan, a selective 5-HT(1B/1D) receptor agonist that is not taken up by 5-HT transporters, depressed the MSR similarly in both SCI and normal rats, suggesting that SCI resulted in the loss of 5-HT terminals and not postsynaptic supersensitivity of 5-HT receptors.  相似文献   

9.
Menahem Segal 《Brain research》1978,139(2):263-275
The serotonin precursor, 5-hydroxytryptophan (5-HTP), can induce a behavioral syndrome characterized by rigidity, splayed feet, tremor, head weaving, salivation and forepaw treading. This response to 5-HTP was markedly potentiated in adult rats treated intracisternally with 5,7-dihydroxytryptamine (5,7-DHT) during development. Prevention of the 5,7-DHT-induced reduction of brain norepinephrine with pargyline or desipramine did not diminish the potentiation of 5-HTP, suggesting that noradrenergic fibers are not contributing to the altered 5-HTP response. It was also found that treatments with 5,7-DHT potentiated the release of prolactin and the disruption of responding in a fixed-ratio operant task induced by 5-HTP. Other experiments indicated that 5,7-DHT treatments potentiated 5-HTP without affecting the action of L-dihydroxyphenylalanine. In addition, administration of the decarboxylase inhibitor, R0-4-4602, at a dose that inhibits enzyme activity in brain, blocked the 5-HTP-induced behavioral syndrome in 5,7-DHT-treated rats, indicating that 5-HTP must be converted to serotonin for 5-HTP to alter behavior. Thus, the present studies indicate that destruction of serotonergic fibers during development can produce permanent changes in central serotonergic mechanisms.  相似文献   

10.
The role of 5-HT (serotonin) in regulating lordosis was investigated by combining peripheral administration of the 5-HT agonists 8-OH-DPAT (8-hydroxy-2-[di-N-propylamino]tetralin) or TFMPP (1-[m-trifluoromethylphenyl]piperazine), with intrahypothalamic application of the 5-HT neurotoxin 5,7-DHT (5,7-dihydroxytryptamine). The 5-HT1A agonist, 8-OH-DPAT, significantly inhibited lordosis in 5,7-DHT-treated and non-treated rats. TFMPP, an agonist at 5-HT1B and 5-HT1C receptors, significantly facilitated lordosis in 5,7-DHT-treated and non-treated rats. Our results show that both inhibitory and facilitatory influences of hypothalamic 5-HT on lordosis, are modulated via postsynaptic receptors.  相似文献   

11.
We previously found different effects on behavior, serotonin (5-HT) concentrations, 5-HT uptake sites, and 5-HT1A binding sites of neonatal 5,7-dihydroxytryptamine (5,7-DHT) lesions depending on the route of 5,7-DHT injection. To study the impact of early lesions on 5-HT1B sites as putative 5-HT terminal autoreceptors, we labelled them autoradiographically with [3H]5-HT 4 months after intraperitoneal (i.p.) or intracisternal (i.c.) 5,7-DHT injection during the first postnatal week and quantitated specific binding in 22 brain regions. Changes were confined to the subiculum and substantia nigra, regions with the most 5-HT1B-specific binding and projection areas of structures with high mRNA expression. Both routes of 5,7-DHT injection were associated with increases in specific binding in subiculum (24% for i.p. and 47% for i.c. route). In contrast, there was a 32% increase in specific binding in the substantia nigra in rats with lesions made i.c. but not i.p. No significant differences were found in nucleus accumbens, caudate-putamen or other brain areas. In saturation homogenate binding studies of 5-HT1B sites using [125I]iodocyanopindolol 1 month after i.p. injections, neonatal 5,7-DHT lesions did not significantly alter Bmax or Kd in the neocortex, striatum, diencephalon or brainstem. These data indicate the differential effects of the route of neonatal 5,7-DHT injections on plasticity of 5-HT1B receptor recognition sites and suggest the presence of a subpopulation of post-synaptically located 5-HT1B sites which increases in response to denervation. The data also suggest that sprouting of 5-HT neurons after neonatal 5,7-DHT lesions does not involve 5-HT1B sites.  相似文献   

12.
In animal models of depression, the 5-HT1A agonists, 8-hydroxy-2-(di-n-propylamino)tetralin (8-OH-DPAT), buspirone, gepirone and ipsapirone administered i.p. have been shown to mimic the behavioural effects of antidepressants. For instance, in the present study, using the learned helplessness paradigm, 8-OH-DPAT dose-dependently reversed helpless behaviour. To assess the possible role of pre- or postsynaptic 5-HT1A receptors in this effect, the ability of 8-OH-DPAT to reduce helpless behaviour was investigated following (1) i.p. administration (0.125 or 0.25 mg/kg/day) in rats whose ascending 5-HT neurons were partially destroyed by previous 5,7-dihydroxytryptamine (5,7-DHT) injection (5 micrograms free base in 0.6 microliter) into the raphe nuclei or (2) after local microinjection (0.1 or 1.0 microgram in 0.5 microliter) into the raphe nuclei or into the septum. The reversal of helpless behaviour by 8-OH-DPAT (i.p.) was still observed in 5,7-DHT-treated rats with telencephalic 5-HT uptake reduced by 50-75% depending on the region. 8-OH-DPAT microinjected into the raphe nuclei did not reverse helpless behaviour; in contrast, 8-OH-DPAT microinjected into the septum reversed helpless behaviour. These results suggest that the ability of 8-OH-DPAT to reverse helpless behaviour probably involved the stimulation of postsynaptic rather than presynaptic 5-HT1A receptors.  相似文献   

13.
D,L-5-Hydroxytryptophan and 5-HT agonists administered systemically, stimulate motoneuronal discharges as measured by the spontaneous EMG activity of the hindlimbs in paraplegic rats. Denervation supersensitivity is observed after surgical section of the spinal cord or after treatment with 5,7-dihydroxytryptamine (5,7-DHT). Such denervation supersensitivity, however, cannot be reproduced by equivalent depletion of 5-HT by synthesis inhibition or reversed by chronic intrathecal administration of 5-HT agonists. These results suggest that in the anterior horn of the spinal cord, the trigger of denervation supersensitivity to serotonin is not the absence of the neurotransmitter itself but the absence of the terminals or some other compound contained therein.  相似文献   

14.
The responsiveness of hippocampal CA3 pyramidal neurons to microiontophoretic applications of serotonin (5-HT), norepinephrine (NE), γ-aminobutyric acid (GABA) and isoproterenol (ISO) was assessed in rats following 5,7-dihydroxy-tryptamine (5,7-DHT) and 6-hydroxydopamine (6-OHDA) pretreatments and bilateral locus coeruleus lesions. The intraventricular administration of 200 μg (free base) of 5,7-DHT and of 6-OHDA produced 89% and 93% decreases of 5-HT and NE respectively. None of these pretreatments modified the initial responsiveness to, or recovery from iontophoretic application of 5-HT. In 6-OHDA pretreated and locus-lesioned rats, the initial effectiveness of NE was not altered but its effect was markedly prolonged. However, there was no such prolongation of the effect of ISO which is not a substrate for the high affinity NE reuptake. The effect of GABA was not affected by these pretreatments. Acute pharmacological blockade of the NE reuptake with desipramine (5 mg/kg, i.p.) similarly induced a prolongation of the effect of iontophoretically applied NE, while fluoxetine (10 mg/kg, i.p.) a 5-HT reuptake blocker, failed to alter the recovery of pyramidal cells from iontophoretic application of 5-HT.

It is concluded that 5-HT denervation induces neither pre- nor postsynaptic types of supersensitivity in hippocampal pyramidal cells, contrasting with the previously shown supersensitivity of ventral lateral geniculate and amygdaloid neurons following 5-HT denervation. NE denervation fails to induce a postsynaptic type of supersensitivity but leads to a marked prolongation of the response to NE indicative of a presynaptic mechanism. These results underscore the necessity for regional studies of neurotransmitters and drug action.  相似文献   


15.
The neurotransmitter serotonin (5-hydroxytryptamine, 5-HT) may play an important role in learning and memory. It has also been suggested that 5-HT abnormalities may mediate some aspects of the cognitive disorders associated with Korsakoff syndrome and Alzheimer's Disease. The effect of intracisternally applied 5-HT neurotoxin, 5,7-dihydroxytryptamine (5,7-DHT) on learning and memory in rodents was evaluated. Three-day-old rat pups were treated with pargyline (40 mg/kg, i.p.) followed by 5,7-DHT (50 micrograms/pup) and returned to the dam for a month. At 75 days of age, rats were tested on a learning set problem in the Morris water maze for 5 days followed by 30 days of testing in a 12-arm radial maze with 8 of the 12 arms baited. In the Morris water maze, the latency to locate the hidden platform did not differ significantly for 5,7-DHT treated and control rats (F less than 1.0). Similarly, 5,7-DHT treated rats performed comparably to controls on the 12-arm radial maze (F less than 1.0). At 106 days of age the assay of tryptophan hydroxylase activity in the dorsal raphe nuclei and hippocampus showed marked reduction (86%, 78%, respectively) in 5,7-DHT treated animals compared to vehicle injected controls. Immunocytochemical analysis was consistent with the biochemical results. In 5,7-DHT treated animals there was severe loss of neurons that bind 5-HT antibody in the dorsal and medial raphe nuclei.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

16.
To investigate the development of denervation supersensitivity to serotonin (5-hydroxytryptamine, 5-HT) in the amygdala (AMYG) and the ventral lateral geniculate nucleus (vLGN), single cell recordings, microiontophoretic, histochemical and biochemical techniques were used in the present study. 5-HT projections to the vLGN and the AMYG were destroyed by 5,7-dihydroxytryptamine (5,7-DHT, a relatively selective toxin for 5-HT neurons) injected directly into the lateral ventricle or the ascending 5-HT pathway in the ventromedial tegmentum area. Enhanced responsiveness of cells to the inhibitory effect of microiontophoretically applied 5-HT (ionto-5-HT) began to develop within 24 h and approached a maximum 7 days after 5,7-DHT pretreatment. In general, the time courses for the reduction in both the density of 5-HT fluorescent varicosities and synaptosomal 5-HT uptake activity paralleled the time course for the development of denervation supersensitivity to 5-HT. During the first 2 days after 5,7-DHT, the enhanced sensitivity was selective for 5-HT; responses to D-lysergic acid diethylamide (LSD), norepinephrine (NE) and gamma-aminobutyric acid (GABA) were unchanged. Seven or more days after 5,7-DHT there was a marked increase of the responsiveness of neurons in the vLGN and the AMYG to both 5-HT and LSD (a 5-HT agonist which is not a substrate for the high affinity 5-HT uptake system). At these later times, the responsiveness of cells in the AMYG to NE and to a lesser extent GABA was also increased. In contrast to the marked supersensitivity seen after 5,7-DHT induced denervation, chronic administration of parachlorophenylalanine, a 5-HT synthesis inhibitor, failed to induce 5-HT supersensitivity.  相似文献   

17.
Summary In order to establish whether the 5-HT1A or the 5HT1B agonists, 8-OH-DPAT or TFMPP, produce their facilitatory or inhibitory actions on masculine sexual behaviour via a mechanism involving: (a) the serotonin synthesis or release; (b) the stimulation of presynaptic receptors, or (c) the stimulation of somatodendritic receptors, three series of experiments were performed. The administration of the serotonin synthesis inhibitor, p-chlorophenylalanine (p-CPA, 300mg/kg×3 days), facilitated sexual behaviour but does not interfere neither with the inhibitory nor with the facilitatory effects of TFMPP (0.5mg/kg) or 8-OH-DPAT (0.5 mg/kg), respectively. The icv or the intraraphé administration of the serotonergic neurotoxin, 5,7-dihydroxytryptamine (5,7-DHT), slightly stimulated masculine sexual behaviour and produced a decrease in serotonin and its metabolite levels. In lesioned animals TFMPP (0.5 mg/kg) resulted in an inhibitory effect reflected as a prolongation of the ejaculation latency. The inhibitory effect of this drug on mounting behaviour was not observed in 5,7-DHT treated rats. In lesioned animals 8-OH-DPAT (0.5 mg/kg) produced the same facilitatory effect. Present data indicate that serotonergic postsynaptic receptors mediate both the inhibitory and the facilitatory actions of TFMPP or 8-OH-DPAT in copulation. All data further support the idea that endogenous serotonin acts via the stimulation of 5-HT1B receptors to induce its inhibitory effects on masculine sexual behaviour.  相似文献   

18.
Central serotonergic fiber systems of the rat were selectively lesioned by intraventricular injection of the neurotoxin 5,7-dihydroxytryptamine (5,7-DHT). At various times thereafter, the sensitivity of rostral cortical neurons to microiontophoretically administered serotonin (5-HT) was compared in groups of lesioned and sham-operated animals pretreated with the 5-HT uptake inhibitor CGP 6085. Twenty-four hours after the injection of 5,7-DHT, at which time the cortical 5-HT and 5-hydroxyindoleacetic acid (5-HIAA) levels were both reduced by 40%, there was no significant difference in the sensitivity of cortical neurons to 5-HT. However, 3 days after such treatment, when the cortical 5-HT and 5-HIAA levels were reduced by 52% and 53% respectively, pronounced supersensitivity to 5-HT was noted. The depressant action of 5-HT on neuronal firing was potentiated with regard to both maximal firing depression and duration of the firing inhibition. A similar potentiation of the 5-HT responses was observed 7 days after lesioning. Supersensitivity thus appears to develop between 1 and 3 days after the injection of 5,7-DHT. Seven days after lesioning, the sensitivity of rostral cortical neurons to gamma-aminobutyric acid was unchanged compared to that observed in sham-operated animals.  相似文献   

19.
5,7-Dihydroxytryptamine (5,7-DHT) is unique as a serotonin (5-HT) neurotoxin in that i.p. injection of neonatal rats increases concentrations of 5-HT in brainstem while depleting 5-HT in cortex, hippocampus and spinal cord. To study the mechanism of this effect we measured the 5-HT transporter or uptake site, a presynaptic marker, using [3H]paroxetine binding. There were significant regional differences in Bmax of vehicle-injected rats: brainstem, diencephalon > striatum, cortex, spinal cord > hippocampus, cerebellum. There were also regional differences in the ontogeny of bindings sites: at postnatal day 7, [3H]paroxetine sites were 39% of adult levels in cortex compared to 63% in brainstem. Thirty days after 100 mg/kg 5,7-DHT i.p., Bmax of [3H]paroxetine binding was significantly increased in brainstem (+67%) and diencephalon (+136%), whereas it decreased in cortex (-59%), hippocampus (-94%) and spinal cord (-99%), striatum (-41%) and cerebellum (-37%). KD remained unaltered. In dose-response studies (0-200 mg/kg), 50 mg/kg was the threshold dose for Bmax effects and 200 mg/kg was lethal. In weekly time-course studies, changes were apparent 1 week after 5,7-DHT lesions. Binding site increases in diencephalon and brainstem were not maximal until 3 weeks after injection, whereas percent decreases in cortical sites remained unchanged at each week studied. Lesion effects on the ontogeny of [3H]paroxetine binding sites were region-dependent: cortical sites continued to increase with age but spinal sites did not. There was no significant recovery in spinal cord.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

20.
The effect of intravenous infusion of fentanyl (an opiate receptor agonist, 0.55 microgram kg-1 min-1) on the control of the circumflex coronary circulation was examined in unsedated dogs at rest and during baroreceptor stimulation evoked by acute rises in aortic pressure (balloon inflation in thoracic aorta). Circumflex flow was measured using Doppler flow transducers in dogs with experimental complete heart block and with ventricles paced at a constant rate. Studies were also performed before and one week after intracisternal injection of the neurotoxin 5,7-dihydroxytryptamine (5,7-DHT), to examine the role of CNS 5-hydroxytryptamine (5-HT) in any sympathetic vasoconstrictive effects. Fentanyl infusion caused after a few minutes a progressive rise in resting aortic pressure and a significant fall in circumflex conductance; circumflex flow usually fell. Atrial rate also fell. The gain of the baroreflex control of circumflex conductance was enhanced by fentanyl. One week after intracisternal 5,7-DHT, the gain of the baroreflex in each dog was diminished. When fentanyl was infused into these preparations, no consistent changes in resting atrial rate, aortic pressure and circumflex conductance could be observed, but all dogs showed a recovery of the coronary baroreflex gain towards values observed before intracisternal 5,7-DHT. These data suggest that the gain control of coronary baroreflexes is influenced by CNS opiate and 5-HT dependent mechanisms.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号