首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 21 毫秒
1.
Intensity-modulated arc therapy (IMAT) is a radiation therapy delivery technique that combines gantry rotation with dynamic multi-leaf collimation (MLC). With IMAT, the benefits of rotational IMRT can be realized using a conventional linear accelerator and a conventional MLC. Thus far, the advantages of IMAT have gone largely unrealized due to the lack of robust automated planning tools capable of producing efficient IMAT treatment plans. This work describes an inverse treatment planning algorithm, called 'direct aperture optimization' (DAO) that can be used to generate inverse treatment plans for IMAT. In contrast to traditional inverse planning techniques where the relative weights of a series of pencil beams are optimized, DAO optimizes the leaf positions and weights of the apertures in the plan. This technique allows any delivery constraints to be enforced during the optimization, eliminating the need for a leaf-sequencing step. It is this feature that enables DAO to easily create inverse plans for IMAT. To illustrate the feasibility of DAO applied to IMAT, several cases are presented, including a cylindrical phantom, a head and neck patient and a prostate patient.  相似文献   

2.
Intensity-modulated arc therapy (IMAT), a technique which combines beam rotation and dynamic multileaf collimation, has been implemented in our clinic. Dosimetric errors can be created by the inability of the planning system to accurately account for the effects of tissue inhomogeneities and physical characteristics of the multileaf collimator (MLC). The objective of this study is to explore the use of Monte Carlo (MC) simulation for IMAT dose verification. The BEAM/DOSXYZ Monte Carlo system was implemented to perform dose verification for the IMAT treatment. The implementation includes the simulation of the linac head/MLC (Elekta SL20), the conversion of patient CT images and beam arrangement for 3D dose calculation, the calculation of gantry rotation and leaf motion by a series of static beams and the development of software to automate the entire MC process. The MC calculations were verified by measurements for conventional beam settings. The agreement was within 2%. The IMAT dose distributions generated by a commercial forward planning system (RenderPlan. Elekta) were compared with those calculated by the MC package. For the cases studied, discrepancies of over 10% were found between the MC and the RenderPlan dose calculations. These discrepancies were due in part to the inaccurate dose calculation of the RenderPlan system. The computation time for the IMAT MC calculation was in the range of 20-80 min on 15 Pentium-Ill computers. The MC method was also useful in verifying the beam apertures used in the IMAT treatments.  相似文献   

3.
In inverse planning for intensity-modulated radiotherapy (IMRT), the fluence distribution of each treatment beam is usually calculated in an optimization process. The delivery of the resulting treatment plan using multileaf collimators (MLCs) is performed either in the step-and-shoot or sliding window technique. For step-and-shoot delivery, the arbitrary beam fluence distributions have to be transformed into an applicable sequence of subsegments. In a stratification step the complexity of the fluence maps is reduced by assigning each beamlet to discrete intensity values, followed by the sequencing step that generates the subsegments. In this work, we concentrate on the stratification for step-and-shoot delivery. Different concepts of stratification are formally introduced. In addition to already used strategies that minimize the difference between original and stratified beam intensities, we propose an original stratification principle that minimizes the error of the resulting dose distribution. It could be shown that for a comparable total number of subsegments the dose-oriented stratification results in a better approximation of the original, unsequenced plan. The presented algorithm can replace the stratification routine in existing sequencer programs and can also be applied to interpolated plans that are generated in an interactive decision making process of multicriteria inverse planning programs.  相似文献   

4.
5.
Arc-modulated radiation therapy (AMRT) is a novel rotational intensity-modulated radiation therapy (IMRT) technique developed for a clinical linear accelerator that aims to deliver highly conformal radiation treatment using just one arc of gantry rotation. Compared to fixed-gantry IMRT and the multiple-arc intensity-modulated arc therapy (IMAT) techniques, AMRT promises the same treatment quality with a single-arc delivery. In this paper, we present a treatment planning scheme for AMRT, which addresses the challenges in inverse planning, leaf sequencing and dose calculation. The feasibility and performance of this AMRT treatment planning scheme have been verified with multiple clinical cases of various sites on Varian linear accelerators.  相似文献   

6.
目的:通过对肺癌固定剂量率旋转调强放疗(IMAT)计划和容积旋转调强放疗(VMAT)计划的剂量学分析,为临床应用中肺癌VMAT放疗剂量率方式的选取提供参考。 方法:取11例肺癌患者,用RayStation计划系统设计IMAT和VMAT计划,比较其剂量学、机器跳数(MU)和治疗时间的差异。 结果:(1)11例肺癌患者的双弧IMAT和VMAT计划均能满足临床要求,IMAT和VMAT计划的靶区最小剂量D98%、最大剂量D2%、平均剂量(Dmean)、靶区均匀性指数、靶区适形度指数相近,无明显差异。靶区覆盖率VMAT计划好于IMAT计划。(2)危及器官受量:全肺的V5、V10、V20、Dmean和心脏的V20,VMAT计划比IMAT计划低。全肺的V30、心脏的V30、脊髓的最大剂量D1%,两种计划之间无明显差异。(3)正常组织在低剂量部分V5、V10、V15和Dmean,VMAT计划低于IMAT计划;V20、V25两种计划无明显差异;接近处方剂量部分V30、V35、V40,VMAT计划高于IMAT计划。(4)出束时间和MU:VMAT计划相比于IMAT计划,治疗出束时间大大减少,VMAT计划出束时间仅为IMAT计划出束时间的62%。两者的MU无明显差异。(5)两种计划的剂量验证通过率均大于95%,达到98.72%以上,能满足治疗要求。VMAT计划的剂量验证通过率略低于IMAT计划,相差约0.44%。 结论:VMAT技术相较于IMAT技术,其计划调制能力更强,可得到更优的靶区剂量分布,提高治疗效率,可以更好地保护危及器官,尤其是减少肺的低剂量照射体积。因此,在肺癌的旋转调强放射治疗中,VMAT技术相较于IMAT技术存在较大的优势。  相似文献   

7.
Iori M  Cagni E  Nahum AE  Borasi G 《Medical physics》2007,34(7):2759-2773
Dynamic-gantry multi-leaf collimator (MLC)-based, intensity-modulated radiotherapy (IMAT) has been proposed as an alternative to tomotherapy. In contrast to fixed-gantry, MLC-based intensity-modulated radiotherapy (IMRT), where commercial treatment planning systems (TPS) or dosimetric analysis software currently provide many automatic tools enabling two-dimensional (2D) detectors (matrix or electronic portal imaging devices) to be used as measurement systems, for the planning and delivery of IMAT these tools are generally not available. A new dosimetric method is proposed to overcome some of these limitations. By converting the MLC files of IMAT beams from arc to fixed gantry-angle modality, while keeping the leaf trajectories equal, IMAT plans can be both simulated in the TPS and executed as fixed-gantry, sliding-window DMLC treatments. In support of this idea, measurements of six IMAT plans, in their double form of original arcs and converted fixed-gantry DMLC beams (IMAT-SIM), have been compared among themselves and with their corresponding IMAT-SIM TPS calculations. Radiographic films and a 2D matrix ionization chamber detector rigidly attached to the accelerator gantry and set into a cubic plastic phantom have been used for these measurements. Finally, the TPS calculation-algorithm implementations of both conformal dynamic MLC arc (CD-ARC) modalities, used for clinical IMAT calculations, and DMLC modalities (IMAT-SIM), proposed as references for validating IMAT plan dose-distributions, have been compared. The comparisons between IMAT and IMAT-SIM delivered beams have shown very good agreement with similar shapes of the measured dose profiles which can achieve a mean deviation (+/-2sigma) of (0.35+/-0.16) mm and (0.37+/-0.14)%, with maximum deviations of 1.5 mm and 3%. Matching the IMAT measurements with their corresponding IMAT-SIM data calculated by the TPS, these deviations remain in the range of (1.01+/-0.28) mm and (-1.76+/-0.42)%, with maximums of 3 mm and 5%, limits generally accepted for IMRT plan dose validation. Differences in the algorithm implementations have been found, but by correcting CD-ARC calculations for the leaf-end transmission offset (LTO) effect the IMAT and IMAT-SIM simulations agree well in terms of final dose distributions. The differences found between IMAT and the IMAT-SIM beam measurements are due to the different controls of leaf motion (via electron gun delay in the latter) that cannot be used in the former to correct possible speed variations in the rotation of the gantry. As the IMAT delivered beams are identical to what the patient will receive during the treatment, and the IMAT-SIM beam calculations made by the TPS reproduce exactly the treatment plans of that patient, the accuracy of this new dosimetric method is comparable to that which is currently used for static IMRT. This new approach of 2D-detector dosimetry, together with the commissioning, quality-assurance, and preclinical dosimetric procedures currently used for IMRT techniques, can be applied and extended to any kind of dynamic-gantry MLC-based treatment modality either CD-ARC or IMAT.  相似文献   

8.
The purpose of this study is to extend an algorithm proposed for beam orientation optimization in classical conformal radiotherapy to intensity-modulated radiation therapy (IMRT) and to evaluate the algorithm's performance in IMRT scenarios. In addition, the effect of the candidate pool of beam orientations, in terms of beam orientation resolution and starting orientation, on the optimized beam configuration, plan quality and optimization time is also explored. The algorithm is based on the technique of mixed integer linear programming in which binary and positive float variables are employed to represent candidates for beam orientation and beamlet weights in beam intensity maps. Both beam orientations and beam intensity maps are simultaneously optimized in the algorithm with a deterministic method. Several different clinical cases were used to test the algorithm and the results show that both target coverage and critical structures sparing were significantly improved for the plans with optimized beam orientations compared to those with equi-spaced beam orientations. The calculation time was less than an hour for the cases with 36 binary variables on a PC with a Pentium IV 2.66 GHz processor. It is also found that decreasing beam orientation resolution to 10 degrees greatly reduced the size of the candidate pool of beam orientations without significant influence on the optimized beam configuration and plan quality, while selecting different starting orientations had large influence. Our study demonstrates that the algorithm can be applied to IMRT scenarios, and better beam orientation configurations can be obtained using this algorithm. Furthermore, the optimization efficiency can be greatly increased through proper selection of beam orientation resolution and starting beam orientation while guaranteeing the optimized beam configurations and plan quality.  相似文献   

9.
目的:比较容积旋转调强放疗(VMAT)和适形调强放疗(IMRT)技术在非小细胞肺癌靶区和危及器官(OAR)的剂量学差异。 方法:选取首程接受放射治疗的20例非小细胞肺癌患者,分别设计5野IMRT(5F-IMRT)、7野IMRT(7F-IMRT)、双弧VMAT(D-VMAT)和部分弧VMAT(P-VMAT)计划,比较靶区剂量分布、OAR剂量体积参数。 结果:4种计划中计划靶区的Dmean比较差异无统计学意义(P>0.05);两种VMAT计划中计划靶区的均匀性指数和适形度指数均优于两种IMRT(P<0.05);4种计划中D-VMAT肺平均剂量高于其余3种计划(P<0.05);P-VMAT的双肺V5、V10稍好于D-VMAT(P<0.05),但两种VMAT计划均高于两种IMRT计划(P<0.05);4种计划中P-VMAT的双肺V20最优,且4种计划相互间比较差异有统计学意义(P<0.05);D-VMAT与P-VMAT双肺的V30相当(P>0.05),但均优于两种IMRT计划(P<0.05);4种计划双肺V40和心脏的V30、V40比较差异无统计学意义(P>0.05)。P-VMAT计划的脊髓Dmax最低,与其余计划相比差异均有统计学意义(P<0.05)。 结论:非小细胞肺癌靶区剂量分布D-VMAT和P-VMAT好于IMRT计划。P-VMAT在OAR的保护方面体现的优势更多。综合考虑,非小细胞肺癌的放疗优先推荐P-VMAT,但对于重点考虑肺低剂量区,而次要考虑靶区剂量分布的病例推荐7F-IMRT。  相似文献   

10.
目的:比较容积旋转调强(VMAT)和固定野动态调强放疗(DIMRT)技术在术前宫颈癌放疗中的剂量学差别。 方法:选取10例接受放疗的术前宫颈癌患者,勾画靶区,用Eclipse 11.0计划系统设计双弧VMAT计划和5野DIMRT计划,比较两者靶区的适形度指数(CI)和均匀性指数(HI)、危及器官的剂量学差别、加速器跳数和照射时间。 结果:双弧VMAT计划与5野DIMRT计划的CI(0.78±0.05,0.84±0.03; P>0.05)和HI(0.05±0.00, 0.05±0.00; P>0.05)统计学无显著性差异,膀胱的V40、V45、V50和小肠的V20、股骨头、骨盆剂量有显著性差异之外,其它指标未有显著性差异。 结论:VMAT和DIMRT技术两者均能很好达到临床剂量学的要求,但在保护正常器官方面,VMAT比DIMRT技术更优或相当,VMAT技术在减少加速器跳数和照射时间方面优势明显。  相似文献   

11.
Intensity-modulated photon-electron radiation therapy (IMPERT) takes advantage of the high conformity of photon intensity-modulated radiation therapy (IMRT) and low distal dose of electrons to reduce the total energy delivered to healthy tissue, potentially reducing serious side effects including secondary malignancies. This theoretical study was undertaken to elucidate basic principles of IMPERT planning and to help quantify the advantage of IMPERT over photon IMRT. Plans using 6 MV x-rays alone (IMRT) or in combination with 6-21 MeV electron beams (IMPERT) were developed for digital cylindrical water phantoms that included an organ at risk (OAR) situated 0.25 cm below a 5 cm thick planning target volume (PTV), with the top of the PTV positioned up to 4 cm below the surface. Electron beam energy and percentage dose contribution of the electron beam to the total dose were investigated with a flat-bottom PTV. The effect of target shape was investigated with a concave- or convex-bottom PTV positioned at the surface. Air or bone cavities were embedded in the PTV to investigate the effect of tissue inhomogeneity. Dose variations in the electron dose distribution due to tissue inhomogeneity were accurately calculated with Monte Carlo simulation. The preferred electron dose contribution was approximately 50% of the total dose. For all the PTV-OAR scenarios, IMPERT was able to achieve comparable PTV coverage and OAR sparing as IMRT while reducing the energy deposited to the healthy tissue by 6-25%. The IMPERT technique is a clinically viable approach for reducing serious side effects in radiotherapy.  相似文献   

12.
A novel, anatomic beam orientation optimization (A-BOO) algorithm is proposed to significantly improve conventional intensity-modulated radiation therapy (IMRT). The A-BOO algorithm vectorially analyses polygonal surface mesh data of contoured patient anatomy. Five optimal (5-opt) deliverable beam orientations are selected based on (1) tangential orientation bisecting the target and adjacent organ's-at-risk (OARs) to produce precipitous dose gradients between them and (2) parallel incidence with polygon features of the target volume to facilitate conformal coverage. The 5-opt plans were compared to standard five, seven, and nine equiangular-spaced beam plans (5-equi, 7-equi, 9-equi) for: (1) gastric, (2) Radiation Therapy Oncology Group (RTOG) P-0126 prostate, and (3) RTOG H-0022 oropharyngeal (stage-III, IV) cancer patients. In the gastric case, the noncoplanar 5-opt plan reduced the right kidney V 20 Gy by 32.2%, 23.2%, and 20.6% compared to plans with five, seven, and nine equiangular-spaced beams. In the prostate case, the coplanar 5-opt plan produced similar rectal sparing as the 7-equi and 9-equi plans with a reduction of the V 75, V 70, V 65, and V 60 Gy of 2.4%, 5.3%, 7.0%, and 9.5% compared to the 5-equi plan. In the stage-III and IV oropharyngeal cases, the noncoplanar 5-opt plan substantially reduced the V 30 Gy and mean dose to the contralateral parotid compared to plans with five, seven, and nine equiangular-spaced beams: (stage-III) 7.1%, 5.2%, 6.8%, and 5.1, 3.5, 3.7 Gy and (stage-IV) 10.2%, 10.2%, 9.8% and 7.0, 7.1, 7.2 Gy. The geometry-based A-BOO algorithm has been demonstrated to be robust for application to a variety of IMRT treatment sites. Beam orientations producing significant improvements in OAR sparing over conventional IMRT can be automatically produced in minutes compared to hours with existing dose-based beam orientation optimization methods.  相似文献   

13.
Polymer gel dosimetry was used to assess an intensity-modulated arc therapy (IMAT) treatment for whole abdominopelvic radiotherapy. Prior to the actual dosimetry experiment, a uniformity study on an unirradiated anthropomorphic phantom was carried out. A correction was performed to minimize deviations in the R2 maps due to radiofrequency non-uniformities. In addition, compensation strategies were implemented to limit R2 deviations caused by temperature drift during scanning. Inter- and intra-slice R2 deviations in the phantom were thereby significantly reduced. This was verified in an investigative study where the same phantom was irradiated with two rectangular superimposed beams: structural deviations between gel measurements and computational results remained below 3% outside high dose gradient regions; the spatial shift in those regions was within 2.5 mm. When comparing gel measurements with computational results for the IMAT treatment, dose deviations were noted in the liver and right kidney, but the dose-volume constraints were met. Root-mean-square differences between both dose distributions were within 5% with spatial deviations not more than 2.5 mm. Dose fluctuations due to gantry angle discretization in the dose computation algorithm were particularly noticeable in the low-dose region.  相似文献   

14.
15.
Shuttling multileaf collimators (SMLCs) can increase the MU efficiency of intensity-modulated radiation therapy compared with the multiple-static-field (MSF-MLC) technique or dynamic MLC (DMLC) technique with conventional MLCs. In a previous paper (Phys. Med. Biol. 45 3343-58) a particular SMLC was shown, for highly modulated intensity distributions, to increase the MU efficiency compared with the MSF-MLC technique. In this companion paper, two new arrangements similar to that described in the earlier paper, but with less mechanical complexity, are shown to be constructionally simpler but less MU efficient. Additionally another new concept of SMLC is shown which also increases the MU efficiency compared with the MSF-MLC technique and often improves the MU efficiency compared with the previously reported SMLC for highly modulated intensity distributions. It also leads to zero tongue-and-groove underdose in the direction orthogonal to that of the shuttling elements (so-called across-the-rows).  相似文献   

16.
A method of modelling the dynamic motion of multileaf collimators (MLCs) for intensity-modulated radiation therapy (IMRT) was developed and implemented into the Monte Carlo simulation. The simulation of the dynamic MLCs (DMLCs) was based on randomizing leaf positions during a simulation so that the number of particle histories being simulated for each possible leaf position was proportional to the monitor units delivered to that position. This approach was incorporated into an EGS4 Monte Carlo program, and was evaluated in simulating the DMLCs for Varian accelerators (Varian Medical Systems, Palo Alto. CA, USA). The MU index of each segment, which was specified in the DMLC-control data, was used to compute the cumulative probability distribution function (CPDF) for the leaf positions. This CPDF was then used to sample the leaf positions during a real-time simulation, which allowed for either the step-shoot or sweeping-leaf motion in the beam delivery. Dose intensity maps for IMRT fields were computed using the above Monte Carlo method, with its accuracy verified by film measurements. The DMLC simulation improved the operational efficiency by eliminating the need to simulate multiple segments individually. More importantly, the dynamic motion of the leaves could be simulated more faithfully by using the above leaf-position sampling technique in the Monte Carlo simulation.  相似文献   

17.
We present a new dose delivery scheme utilizing sub-conformal dynamic arc (sub-CD-ARC) with a dynamic multileaf collimator (dMLC) modulation in a single rotation. In sub-conformal delivery, a MLC aperture conforms not to the whole target but to its portion, simultaneously completely avoiding organs at risk (OARs). In CD-ARC therapy, the dose deposition level depends on the target width and distance to the axis of rotation, and therefore the use of multiple arcs is necessary to achieve a uniform dose within the target in 3D. In our delivery scheme, the dose deposition variations symptomatic of non-modulating sub-CD-ARC are compensated for in 3D by a quasi-periodic monotonic dMLC modulation. For this reason, we call this scheme sub-conformal dynamic modulated arc (sub-CD-MARC) therapy. The advantage of using such a modulation is that MLC leaf motion has just a few control points, and that an inverse planning problem is reduced to a linear equation problem with a few unknown parameters, which have clear physical meaning. We show the general dosimetric properties of sub-CD-ARC and sub-CD-MARC for a specific geometry of the target and OARs (rotational symmetry with varying inner and outer radii along the axis of rotation). In addition, we present numerical results of sub-CD-MARC inverse planning optimization.  相似文献   

18.
19.
An amorphous silicon (a-Si) electronic portal imaging device (EPID) was implemented to perform transit in vivo dosimetry for dynamic conformal arc therapy (DCAT). A set of images was acquired for each arc irradiation using the EPID cine acquisition mode, that supplies a frame acquisition rate of one image every 1.66 s, with a monitor unit rate equal to 100 UM/min. In these conditions good signal stability, ±1% (2SD) evaluated during 3 months, signal reproducibility within ±0.8% (2SD) and linearity with dose and dose rate within ±1% (2SD) were obtained. The transit signal, S t, due to the transmitted radiotherapy beam below a solid phantom, measured by the EPID cine acquisition mode was used to determine, (1) a set of correlation functions, F(w, L), defined as the ratio between S t and the dose at half thickness, D m, measured in solid water phantoms of different thicknesses, w and with square fields of side L, (2) a set of factors, f(d, L), that take into account the different x-ray scatter contribution from the phantom to the S t signal as a function of the variation, d, of the air gap between the phantom and the EPID. The reconstruction of the isocenter dose, D iso, for DCAT was obtained convolving the transit signal values, obtained at different gantry angles, with the respective reconstruction factors determined by a house-made software. The method was applied to a first patient and the results show that the reconstructed D iso values can be obtained with an accuracy within ±5%. In conclusion, it was assessed that an a-Si EPID with the cine acquisition mode is suitable to perform transit in vivo dosimetry for the DCAT therapy.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号