首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Mitochondrial genomes in organisms from diverse phylogenetic groups vary in both size and molecular form. Although the types of mitochondrial genome appear very dissimilar, several lines of evidence argue that they do not differ radically. This would imply that interconversion between different types of mitochondrial genome might have occurred via relatively simple mechanisms. We exemplify this scenario on patterns accompanying evolution of mitochondrial telomeres. We propose that mitochondrial telomeres are derived from mobile elements (transposons or plasmids) that invaded mitochondria, integrated into circular or polydisperse linear mitochondrial DNAs (mtDNAs) and subsequently enabled precise resolution of the linear genophore. Simply, the selfish elements generated a problem — how to maintain the ends of a linear DNA — and, at the same time, made themselves essential by providing its solution. This scenario implies that insertion or deletion of such resolution elements may represent relatively simple routes for interconversion between different forms of the mitochondrial genome.Communicated by M. Brunner  相似文献   

2.
The mitochondrial genomes of haplotypes of the Irish potato famine pathogen, Phytophthora infestans, were sequenced. The genome sizes were 37,922, 39,870 and 39,840 bp for the type Ia, IIa and IIb mitochondrial DNA (mtDNA) haplotypes, respectively. The mitochondrial genome size for the type Ib haplotype, previously sequenced by others, was 37,957 bp. More than 90% of the genome contained coding regions. The GC content was 22.3%. A total of 18 genes involved in electron transport, 2 RNA-encoding genes, 16 ribosomal protein genes and 25 transfer RNA genes were coded on both strands with a conserved arrangement among the haplotypes. The type I haplotypes contained six unique open reading frames (ORFs) of unknown function while the type II haplotypes contained 13 ORFs of unknown function. Polymorphisms were observed in both coding and non-coding regions although the highest variation was in non-coding regions. The type I haplotypes (Ia and Ib) differed by only 14 polymorphic sites, whereas the type II haplotypes (IIa and IIb) differed by 50 polymorphic sites. The largest number (152) of polymorphic sites was found between the type IIb and Ia haplotypes. A large spacer flanked by the genes coding for tRNA-Tyr (trnY) and the small subunit RNA (rns) contained the largest number of polymorphic sites and corresponds to the region where a large indel that differentiates type II from type I haplotypes is located. The size of this region was 785, 2,666 and 2,670 bp in type Ia, IIa and IIb haplotypes, respectively. Among the four haplotypes, 81 mutations were identified. Phylogenetic and coalescent analysis revealed that although the type I and II haplotypes shared a common ancestor, they clearly formed two independent lineages that evolved independently. The type II haplotypes diverged earlier than the type I haplotypes. Thus our data do not support the previous hypothesis that the type II lineages evolved from the type I lineages. The type I haplotypes diverged more recently and the mutations associated with the evolution of the Ia and Ib types were identified. Electronic Supplementary Material Supplementary material is available for this article at  相似文献   

3.
Watson‐Crick base‐pair changes, or single‐nucleotide variants (SNV), have long been known as a source of mutations. However, the extent to which DNA structural variation, including duplication and deletion copy number variants (CNV) and copy number neutral inversions and translocations, contribute to human genome variation and disease has been appreciated only recently. Moreover, the potential complexity of structural variants (SV) was not envisioned; thus, the frequency of complex genomic rearrangements and how such events form remained a mystery. The concept of genomic disorders, diseases due to genomic rearrangements and not sequence‐based changes for which genomic architecture incite genomic instability, delineated a new category of conditions distinct from chromosomal syndromes and single‐gene Mendelian diseases. Nevertheless, it is the mechanistic understanding of CNV/SV formation that has promoted further understanding of human biology and disease and provided insights into human genome and gene evolution. Environ. Mol. Mutagen. 56:419–436, 2015. © 2015 Wiley Periodicals, Inc.  相似文献   

4.
Non‐alcoholic fatty liver disease (NAFLD) is associated with mitochondrial dysfunction, a decreased liver mitochondrial DNA (mtDNA) content, and impaired energy metabolism. To understand the clinical implications of mtDNA diversity in the biology of NAFLD, we applied deep‐coverage whole sequencing of the liver mitochondrial genomes. We used a multistage study design, including a discovery phase, a phenotype‐oriented study to assess the mutational burden in patients with steatohepatitis at different stages of liver fibrosis, and a replication study to validate findings in loci of interest. We also assessed the potential protein‐level impact of the observed mutations. To determine whether the observed changes are tissue‐specific, we compared the liver and the corresponding peripheral blood entire mitochondrial genomes. The nuclear genes POLG and POLG2 (mitochondrial DNA polymerase‐γ) were also sequenced. We observed that the liver mtDNA of patients with NAFLD harbours complex genomes with a significantly higher mutational (1.28‐fold) rate and degree of heteroplasmy than in controls. The analysis of liver mitochondrial genomes of patients with different degrees of fibrosis revealed that the disease severity is associated with an overall 1.4‐fold increase in mutation rate, including mutations in genes of the oxidative phosphorylation (OXPHOS) chain. Significant differences in gene and protein expression patterns were observed in association with the cumulative number of OXPHOS polymorphic sites. We observed a high degree of homology (~98%) between the blood and liver mitochondrial genomes. A missense POLG p.Gln1236His variant was associated with liver mtDNA copy number. In conclusion, we have demonstrated that OXPHOS genes contain the highest number of hotspot positions associated with a more severe phenotype. The variability of the mitochondrial genomes probably originates from a common germline source; hence, it may explain a fraction of the ‘missing heritability’ of NAFLD. Copyright © 2016 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.  相似文献   

5.
6.
Given the extraordinarily high mutation rate of viruses, particularly those with RNA genomes, it is not surprising that new viruses are continually evolving. However, the symptomatology of old viral diseases has remained stable for centuries. The combination of genetic and ecological factors that constrain as well as facilitate the emergence of new viruses is analyzed.  相似文献   

7.
We have sequenced the genome of a second Drosophila species, Drosophila pseudoobscura, and compared this to the genome sequence of Drosophila melanogaster, a primary model organism. Throughout evolution the vast majority of Drosophila genes have remained on the same chromosome arm, but within each arm gene order has been extensively reshuffled, leading to a minimum of 921 syntenic blocks shared between the species. A repetitive sequence is found in the D. pseudoobscura genome at many junctions between adjacent syntenic blocks. Analysis of this novel repetitive element family suggests that recombination between offset elements may have given rise to many paracentric inversions, thereby contributing to the shuffling of gene order in the D. pseudoobscura lineage. Based on sequence similarity and synteny, 10,516 putative orthologs have been identified as a core gene set conserved over 25–55 million years (Myr) since the pseudoobscura/melanogaster divergence. Genes expressed in the testes had higher amino acid sequence divergence than the genome-wide average, consistent with the rapid evolution of sex-specific proteins. Cis-regulatory sequences are more conserved than random and nearby sequences between the species—but the difference is slight, suggesting that the evolution of cis-regulatory elements is flexible. Overall, a pattern of repeat-mediated chromosomal rearrangement, and high coadaptation of both male genes and cis-regulatory sequences emerges as important themes of genome divergence between these species of Drosophila.  相似文献   

8.
Summary. The capsid-coding (P1) and 3A regions of foot-and-mouth disease virus (FMDV) type A field isolates including two vaccine strains collected during 1977–2000 were analyzed. In the phylogenies, the isolates were distributed into two previously identified genotypes VI and VII, with multiple sub-genotypes that are temporally clustered. Comparison of the antigenic relationships of field isolates with the two vaccine strains (IND 17/77 and IND 490/97) and the reference strains of the genotypes VI (IND 233/99) and VII (IND 40/00) indicated two broad antigenic groups that correlate with the phylogenetic groupings (genotypes VI and VII), and are highly divergent from the vaccine strains. The maximum likelihood method of selection analysis identified a number of amino acid sites within the P1 region to be under weak positive selection. Some of the positively selected sites were mapped at/near the antigenically critical amino acid sites of the P1 region, indicating host immune pressure as one of the important driving force behind the observed genetic and antigenic diversity in FMDV. A small number of selected sites are located in the heparan sulphate-binding pocket of the virus, suggesting a fitness advantage for cell entry of the virus. No positive selection was detected in the 3A dataset.  相似文献   

9.
10.
Maintenance of the mitochondrial genome is a major challenge for cells, particularly as they begin to age. Although it is established that organelles possess regular DNA repair pathways, many aspects of these complex processes and of their regulation remain to be investigated. Mitochondrial transfection of isolated organelles and in whole cells with customized DNA synthesized to contain defined lesions has wide prospects for deciphering repair mechanisms in a physiological context. We document here the strategies currently developed to transfer DNA of interest into mitochondria. Methodologies with isolated mitochondria claim to exploit the protein import pathway or the natural competence of the organelles, to permeate the membranes or to use conjugal transfer from bacteria. Besides biolistics, which remains restricted to yeast and Chlamydomonas reinhardtii, nanocarriers or fusion proteins have been explored as methods to target custom DNA into mitochondria in intact cells. In further approaches, whole mitochondria have been transferred into recipient cells. Repair failure or error-prone repair leads to mutations which potentially could be rescued by allotopic expression of proteins. The relevance of the different approaches for the analysis of mitochondrial DNA repair mechanisms and of aging is discussed.  相似文献   

11.
12.
Mitochondrial DNA (mtDNA) defects are a relatively common cause of inherited disease and have been implicated in both ageing and cancer. MtDNA encodes essential subunits of the mitochondrial respiratory chain and defects result in impaired oxidative phosphorylation (OXPHOS). Similar OXPHOS defects have been shown to be present in a number of neurodegenerative conditions, including Parkinson's disease, as well as in normal ageing human tissues. Additionally, a number of tumours have been shown to contain mtDNA mutations and an altered metabolic phenotype. In this review we outline the unique characteristics of mitochondrial genetics before detailing important pathological features of mtDNA diseases, focusing on adult neurological disease as well as the role of mtDNA mutations in neurodegenerative diseases, ageing and cancer.  相似文献   

13.
The complete genome sequence has been reported for 24 microbial organisms. The genome organization and gene content of these organisms has revealed an incredible diversity. Nearly half of the open reading frames identified by these sequencing projects are for potential genes with no known biological function. Efforts to make evolutionary sense and biological sense of the gene content of these organisms have been initiated. The greatest future challenge of genomics will be to determine function for the unknown genes.  相似文献   

14.
The Gram-negative bacteria Pseudomonas aeruginosa and Burkholderia cepacia are opportunistic human pathogens that are responsible for severe nosocomial infections in immunocompromised patients and are the major pathogens in cystic fibrosis (CF). The two bacteria not only inhabit the same environmental niches but can also form mixed biofilms in the lungs of CF patients. Hence, it appears very likely that the two organisms are capable of interacting with each other. Work of the past few years has shown that both bacteria utilize quorum-sensing systems, which rely on N-acyl-homoserine lactone signal molecules, to control the expression of virulence factors and biofilm development. Most importantly, evidence has been presented that these signal molecules also serve as a universal language for communication between the two organisms. Moreover, analyses of the diversity in P. aeruginosa revealed the presence of genome islands that contain genes that are highly homologous to genes identified in strains of Burkholderia sp. This finding suggests that there is a frequent exchange of genetic material between the two organisms.  相似文献   

15.
Mitochondrial dysfunction reduces aerobic energy productionand results in symptoms from various tissues, depending on metabolicdemands. Mitochondrial adenosine triphosphate (ATP) is essentialfor sperm motility. Sperm motility was investigated in a patientwith a mitochondrial disease caused by reduced activity of themitochondrial enzyme complexes I and IV, and in two controlsubjects. Spermatozoa were cultured in media containing variousenergy substrates. Motility was judged by light microscopy,and ultrastructure by transmission electron microscopy. In thepatient with mitochondrial disease, 12% of the spermatozoa weremotile in the medium containing only glucose. There was a threefoldincrease in motile spermatozoa when pyruvate. and succinatewere present together with glucose. In contrast, the spermatozoaof both control subjects had best motility in the presence ofsubstrates for complex I, and no further increase was observedwhen succinate was added. Glucose and pyruvate enter the respiratorychain at complex I, and succinate at complex II. Electron microscopyof spermatozoa from the patient with mitochondrial disease revealedmitochondria with increased matrix, thickening of membranes,parallelization of cristae and lipid inclusions, which are characteristicfindings in mitochondrial disorders. Abnormal mitochondria werealso found in a spermatid, suggesting that the ultrastructuralchanges of mitochondria are primary rather than secondary todegeneration of the spermatozoa. The results indicate that mitochondrialdysfunction causes reduced sperm motility in some men.  相似文献   

16.
Mitochondria were isolated from the dimorphic zygomycete Mucor racemosus by differential centrifugation. DNA from the organelles was purified by cesium chloride-ethidium bromide isopycnic centrifugation. Examination of the mitochondrial DNA by electron microscopy revealed a circular chromosome approximately 63.8 kbp in circumference. The chromosome was digested with restriction endonucleases and the resulting DNA fragments were separated by agarose-gel electrophoresis. Electrophoretic mobilities and stoichiometry of the fragments indicated a mixed population of mtDNA molecules each with a size of about 63.4 kbp. Physical maps were constructed from analyses of fragments generated in single and double restriction digests and from the hybridization of fragments to probes for the large and small mitochondrial rRNA genes from Saccharomyces cerevisiae. The Mucor mitochondrial chromosome was found to exist in the form of two flip-flop isomers with inverted repeat sequences encoding both rRNA genes.  相似文献   

17.
18.
Jaminaea angkorensis is an anamorphic basidiomycetous yeast species originally isolated from decaying leaves in Cambodia. Taxonomically, J. angkorensis is affiliated with Microstromatales (Exobasidiomycetes, Ustilaginomycotina, Basidiomycota) and represents a basal phylogenetic lineage of this fungal order. To perform a comparative analysis of J. angkorensis with other basidiomycetes, we determined and analyzed its complete mitochondrial DNA sequence. The mitochondrial genome is represented by 29,999 base pairs long, circular DNA containing 32 % guanine and cytosine residues. Its genetic organization is relatively compact and comprises typical genes for 15 conserved proteins involved in oxidative phosphorylation (atp6, 8, and 9; cob; cox1, 2, and 3; and nad1, 2, 3, 4, 4L, 5, and 6) and translation (rps3), two ribosomal RNAs (rnl and rns) and twenty-two transfer RNAs (trnA-Y). Although the gene content is similar to other basidiomycetes, the gene orders in the examined species exhibit only a limited synteny, reflecting their phylogenetic distances and extensive genome rearrangements. In addition, a comparative analysis of basidiomycete mitochondrial genomes indicates that stop-to-tryptophan reassignment of the UGA codon was accompanied by structural alterations of tRNA-Trp(CCA). These results provide an insight into the evolution of the genetic code in fungal mitochondria.  相似文献   

19.
The sequencing of the chimpanzee genome and the comparison with its human counterpart have begun to reveal the spectrum of genetic changes that has accompanied human evolution. In addition to gross karyotypic rearrangements such as the fusion that formed human chromosome 2 and the human-specific pericentric inversions of chromosomes 1 and 18, there is considerable submicroscopic structural variation involving deletions, duplications, and inversions. Lineage-specific segmental duplications, detected by array comparative genomic hybridization and direct sequence comparison, have made a very significant contribution to this structural divergence, which is at least three-fold greater than that due to nucleotide substitutions. Since structural genomic changes may have given rise to irreversible functional differences between the diverging species, their detailed analysis could help to identify the biological processes that have accompanied speciation. To this end, interspecies comparisons have revealed numerous human-specific gains and losses of genes as well as changes in gene expression. The very considerable structural diversity (polymorphism) evident within both lineages has, however, hampered the analysis of the structural divergence between the human and chimpanzee genomes. The concomitant evaluation of genetic divergence and diversity at the nucleotide level has nevertheless served to identify many genes that have evolved under positive selection and may thus have been involved in the development of human lineage-specific traits. Genes that display signs of weak negative selection have also been identified and could represent candidate loci for complex genomic disorders. Here, we review recent progress in comparing the human and chimpanzee genomes and discuss how the differences detected have improved our understanding of the evolution of the human genome.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号