首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Using T-cell receptor (TCR) transgenic mice, we demonstrate that TCR stimulation of naive CD4(+) T cells induces transient T-bet expression, interleukin (IL)-12 receptor beta2 up-regulation, and GATA-3 down-regulation, which leads to T helper (Th)1 differentiation even when the cells are stimulated with peptide-loaded I-A(b)-transfected Chinese hamster ovary cells in the absence of interferon-gamma (IFN-gamma) and IL-12. Sustained IFN-gamma and IL-12 stimulation augments naive T-cell differentiation into Th1 cells. Intriguingly, a significant Th1 response is observed even when T-bet(-/-) naive CD4(+) T cells are stimulated through TCR in the absence of IFN-gamma or IL-12. Stimulation of naive CD4(+) T cells in the absence of IFN-gamma or IL-12 with altered peptide ligand, whose avidity to the TCR is lower than that of original peptide, fails to up-regulate transient T-bet expression, sustains GATA-3 expression, and induces differentiation into Th2 cells. These results support the notion that direct interaction between TCR and peptide-loaded antigen-presenting cells, even in the absence of T-bet expression and costimulatory signals, primarily determine the fate of naive CD4(+) T cells to Th1 cells.  相似文献   

2.
4-1BB (CD137) triggering typically induces Th1 response by increasing IFN-gamma from T cells upon TCR ligation. We found recently that 4-1BB costimulation increased the expression of IL-13 from CD4(+) T cells, as well as CD8(+) T cells. The enhanced IL-13 expression by agonistic anti-4-1BB treatment was mediated via MAPK1/2, PI-3K, JNK, mammalian target of rapamycin, NF-AT, and NF-kappaB signaling pathways. The signaling for IL-13 induction was similar to that of IFN-gamma production by anti-4-1BB treatment in T cells. When the anti-4-1BB-mediated IL-13 expression was tested in an in vivo viral infection model such as HSV-1 and vesicular stomatitis virus, 4-1BB stimulation enhanced IL-13 expression of CD4(+) T, rather than CD8(+) T cells. Although IL-13 was enhanced by anti-4-1BB treatment, the increased IL-13 did not significantly alter the anti-4-1BB-induced Th1 polarization of T cells--increase of T-bet and decrease of GATA-3. Nevertheless, anti-4-1BB treatment polarized T cells excessively in the absence of IL-13 and even became detrimental to the mice by causing liver inflammation. Therefore, we concluded that IL-13 was coinduced following 4-1BB triggering to maintain the Th1/2 balance of immune response.  相似文献   

3.
Accumulating evidence suggests that Th1 T cells play a pivotal role in the development of autoimmune diabetes. Conversely, promoting a Th2 response inhibits disease progression. However, it has not been determined whether Th2 cells are regulatory T cells that fail at the time of diabetes development in naive non-diabetic NOD mice. Therefore, in order to evaluate cytokine secretion by spleen and islet infiltrating T cells in NOD mice at different stages of the autoimmune process, we developed an ELISPOT assay that detects IL-2, IL-4, and interferon-gamma (IFN-gamma) secretion in vitro at the single-cell level. We showed that, whatever the age considered, IFN-gamma is predominantly secreted, and that no IL-4-secreting cells are detected in the islets of male and female NOD mice. Spleen cells from 8-week-old female NOD mice, which include regulatory suppressor T cells, do not secrete IL-4, either upon presentation of islet cell antigens in vitro, or after transfer in vivo, but do secrete IFN-gamma. IFN-gamma secretion by T cells from diabetic mice results from CD4 but not CD8 T cells in transfer experiments into NOD/severe combined immunodeficient (SCID) recipients. These results suggest that (i) detection of regulatory CD4 T cells in NOD mice is not paralleled by a Th2 response; (ii) beta cell destruction does not depend on a switch from a Th2 to a Th1-type response; and (iii) CD8 T cells do not participate in induction of diabetes by secreting IFN-gamma.  相似文献   

4.
Early production of IL-4 by LACK-reactive Vbeta4-Valpha8 CD4(+) T cells instructs aberrant Th2 cell development and susceptibility to Leishmania major in BALB / c mice. This was demonstrated using Vbeta4(+)-deficient BALB / c mice as a result of chronic infection with MMTV (SIM), a mouse mammary tumor virus expressing a Vbeta4-specific superantigen. The early IL-4 response was absent in these mice which develop a Th1 response to L. major. Here, we studied the functional plasticity of LACK-reactive Vbeta4-Valpha8 CD4(+) T cells using BALB/ c mice inoculated with L. major shortly after infection with MMTV (SIM), i. e. before deletion of Vbeta4(+) cells. These mice fail to produce the early IL-4 response to L. major and instead exhibit an IFN-gamma response that occurs within LACK-reactive Vbeta4-Valpha8 CD4(+) T cells. Neutralization of IFN-gamma restores the production of IL-4 by these cells. These data suggest that the functional properties of LACK-reactive Vbeta4-Valpha8 CD4(+) T cells are not irreversibly fixed.  相似文献   

5.
6.
Wang R  Han G  Wang J  Song L  Chen G  Xu R  Wang L  Li X  Shen B  Li Y 《Molecular immunology》2008,45(14):3814-3817
Our previous studies have shown that Foxp3 under the control of IFN-gamma promoter (IgammaP-Foxp3) converts pathogenic CD4(+)Th1 cells into regulatory T cells (Tregs), which control diabetes in non-obese diabetic (NOD) mice. Here, we tested the other hypothesis that transient expression of Foxp3 as controlled by the transient expression of IL-12Rbeta2 during Th1 cell derivation is sufficient to convert cells to Tregs. Foxp3, under the control of IL-12Rbeta2 promoter (Ibeta2P), was lentivirally transduced into na?ve CD4(+)T cells from NOD mice. Ibeta2P-Foxp3-transduced CD4(+)T cells could not effectively suppress the incidence of diabetes when transferred into NOD mice. Furthermore, we found that Ibeta2P-Foxp3-transduced CD4(+)T cells, stimulated by a high dose of autoantigen, did not suppress CD4(+)T cell activation, produce CD4(+)Foxp3(+)Tregs, and up-regulate CTLA4 expression. These results suggest that Ibeta2P cannot mediate Foxp3 to convert pathogenic CD4(+)Th1 cells into Tregs which control diabetes in NOD mice.  相似文献   

7.
CD4(+) T lymphocytes are required to induce spontaneous autoimmune diabetes in the NOD mouse. Since pancreatic β cells upregulate Fas expression upon exposure to pro-inflammatory cytokines, we studied whether the diabetogenic action of CD4(+) T lymphocytes depends on Fas expression on target cells. We assayed the diabetogenic capacity of NOD spleen CD4(+) T lymphocytes when adoptively transferred into a NOD mouse model combining: (i) Fas-deficiency, (ii) FasL-deficiency, and (iii) SCID mutation. We found that CD4(+) T lymphocytes require Fas expression in the recipients' target cells to induce diabetes. IL-1β has been described as a key cytokine involved in Fas upregulation on mouse β cells. We addressed whether CD4(+) T cells require IL-1β to induce diabetes. We also studied spontaneous diabetes onset in NOD/IL-1 converting enzyme-deficient mice, in NOD/IL-1β-deficient mice, and CD4(+) T-cell adoptively transferred diabetes into NOD/SCID IL-1β-deficient mice. Neither IL-1β nor IL-18 are required for either spontaneous or CD4(+) T-cell adoptively transferred diabetes. We conclude that CD4(+) T-cell-mediated β-cell damage in autoimmune diabetes depends on Fas expression, but not on IL-1β unveiling the existing redundancy regarding the cytokines involved in Fas upregulation on NOD β cells in vivo.  相似文献   

8.
To improve the feasibility of in vivo monitoring of autoreactive T cells in the diabetogenic process, we generated T1 and T2 doubly transgenic non-obese diabetic (NOD) mice in which transgenic human CD90 (hCD90) is simultaneously expressed on IFN-gamma-producing cells or murine CD90.1 (mCD90.1) is expressed on IL-4-producing cells. These transgenic NOD mice develop diabetes with the same kinetics and incidence as wild type NOD mice, permitting the physiological characterization of CD4(+)hCD90(+) cells, which represent T(H)1 cells in lymphoid organs and at the site of insulitis. CD4(+)hCD90(+) cells had a higher capacity to secret IFN-gamma than CD4(+)hCD90(-) cells in an autoantigen-specific manner. Transgenic mice treated with GAD65 plasmid were protected from autoimmune diabetes, and had a lower number of CD4(+)hCD90(+) cells, confirming the pathogenic role of CD4(+)hCD90(+) cells in autoimmune diabetes. To further investigate the effect of IL-12 on the development of T(H)1 cells in autoimmune diabetes, we crossed these doubly transgenic mice to IL-12p35-deficient NOD mice. Despite severe disturbance of diabetes in p35(-/-) mice, the frequency of T(H)1 cells in these mice was slightly lower than in wild type mice. These data support the pathological role of IL-12 in autoimmune diabetes and suggest the existence an IL-12-independent pathway of T(H)1 development.  相似文献   

9.
CD25(+)CD4(+) regulatory T cells inhibit the activation of autoreactive T cells in vitro and in vivo, and suppress organ-specific autoimmune diseases. The mechanism of CD25(+)CD4(+) T cells in the regulation of experimental autoimmune encephalomyelitis (EAE) is poorly understood. To assess the role of CD25(+)CD4(+) T cells in EAE, SJL mice were immunized with myelin proteolipid protein (PLP)(139-151) to develop EAE and were treated with anti-CD25 mAb. Treatment with anti-CD25 antibody following immunization resulted in a significant enhancement of EAE disease severity and mortality. There was increased inflammation in the central nervous system (CNS) of anti-CD25 mAb-treated mice. Anti-CD25 antibody treatment caused a decrease in the percentage of CD25(+)CD4(+) T cells in blood, peripheral lymph node (LN) and spleen associated with increased production of IFN-gamma and a decrease in IL-10 production by LN cells stimulated with PLP(130-151) in vitro. In addition, transfer of CD25(+)CD4(+) regulatory T cells from naive SJL mice decreased the severity of active EAE. In vitro, anti-CD3-stimulated CD25(+)CD4(+) T cells from naive SJL mice secreted IL-10 and IL-10 soluble receptor (sR) partially reversed the in vitro suppressive activity of CD25(+)CD4(+) T cells. CD25(+)CD4(+) T cells from IL-10-deficient mice were unable to suppress active EAE. These findings demonstrate that CD25(+)CD4(+) T cells suppress pathogenic autoreactive T cells in actively induced EAE and suggest they may play an important natural regulatory function in controlling CNS autoimmune disease through a mechanism that involves IL-10.  相似文献   

10.
To examine whether cytokine production of CD4(+)immune T cells and CD8(+)immune T cells in Toxoplasma gondii-infected mice differ in their responses to infected cells and to soluble antigens of the parasite, we compared the production of interferon-gamma (IFN-gamma), interleukin-2 (IL-2), IL-4, and IL-10 by the immune T cell populations following in vitro stimulation with tachyzoite-infected macrophages and tachyzoite lysate antigens (TLA). Both CD4(+)and CD8(+)immune T cells produced large amounts of IFN-gamma in response to either infected macrophages or TLA, but the CD4(+)T cells produced greater amounts of the cytokine than did the CD8(+)T cells with both stimulations. Both T cell populations also produced IL-2 after stimulation with infected macrophages, whereas only CD4(+)T cells did when stimulated with TLA. CD4(+)immune T cells also produced large amounts of IL-4 and IL-10 after stimulation with infected macrophages, but CD8(+)T cells did not. These results indicate that CD4(+)immune T cells produce IFN-gamma, IL-2, IL-4, and IL-10 in response to infected macrophages, whereas CD8(+)immune T cells produce predominantly IFN-gamma and IL-2. Since IL-4 and IL-10 could suppress IFN-gamma-mediated protective mechanisms against the parasite, the production of these cytokines by CD4(+)immune T cells in response to infected cells could negatively affect their protective activity in vivo.  相似文献   

11.
IL-18 is a proinflammatory cytokine that plays an important role in NK cell activation and T(h)1 response. IL-18 has a structural homology to IL-1, particularly IL-1beta. IL-18R, composed of IL-1R-related protein (IL-18Ralpha) and IL-1R accessory protein-like (IL-18Rbeta), belongs to the IL-1R family. Furthermore, IL-18R at least partly shares the signal transducing system with IL-1R. Thus, the IL-18-IL-18R system has a striking similarity to the IL-1-IL-1R system. For this reason, we regarded it important to investigate whether, like IL-18, IL-1beta synergizes with IL-12 in inducing IFN-gamma production from human T cells and plays an important role in the T(h)1 response. Here we show that IL-12 and IL-1beta synergistically induce T cells to proliferate and produce IFN-gamma without their TCR engagement. IL-12 stimulation induced an increase in the proportion of T cells positive for IL-18R. Then, IL-12-stimulated T cells responded to IL-18 or IL-1beta by their proliferation and IFN-gamma production, although levels of IL-1beta-induced responses were lower. CD4(+)CD45RA(+) T cells, although they constitutively expressed IL-18Rbeta mRNA, did not express IL-18Ralpha mRNA. Phytohemagglutinin (PHA) stimulation alone induced IL-18Ralpha mRNA without affecting the expression of IL-18Rbeta mRNA. T(h)1-inducing conditions (PHA, IL-12 and anti-IL-4) further increased this expression. We also show that T(h)1 cells but not T(h)2 cells have increased expression of IL-18R and IL-1R, and produce IFN-gamma in response to IL-18 and/or IL-1beta.  相似文献   

12.
The repeated injection of bacterial superantigens (SAg), such as staphylococcus enterotoxin (SE) A or B, has been shown in mice to induce a state of unresponsiveness characterized by the lack of secretion of Th1 lymphokines, such as IL-2 and IFN-gamma, following subsequent SAg challenge. We made the observation, in vivo as well as in vitro, that unresponsiveness to SAg could be transferred from SEA- to SEB-reactive T cells (and reversibly from SEB- to SEA-specific T cells) in C57BL/6 mice but not in BALB/c mice. Since C57BL/6 mice, unlike BALB/c mice, possess TCR V(beta)3+ and V(beta)11+ T cells able to react with both SEA and SEB, we hypothesized that SAg-unresponsive V(beta)3(+) and V(beta)11+ T cells could mediate linked suppression of other SAg-reactive T cells. To analyze further this possibility, spleen cells from BALB/c mice made unresponsive to SEB were tested for their capacity to suppress the response of normal BALB/c cells to SEB. The production of both IFN-gamma and IL-2 following SEB stimulation was greatly impaired in co-cultures containing CD4(+) T cells, but not CD8(+) T cells, isolated from unresponsive animals. In vivo, the production of both IFN-gamma and IL-2 responses to SEB was dramatically reduced in animals adoptively transferred with unresponsive spleen cells. This suppression was abrogated in recipients injected with neutralizing anti-IL-10 antibodies. Moreover, in animals made unresponsive to SEB, SAg-reactive CD4(+) T cells were found to express high levels of CTLA-4, a molecule recently described to play an essential role in the suppressive function of regulatory T cells. Taken together these results demonstrate that the repetitive injection of SAg induces the differentiation of regulatory CD4(+) T cells capable of suppressing SAg-reactive naive T cells.  相似文献   

13.
14.
Naive CD4(+) T cells were reported to produce small amounts of IL-4 in vitro, which are implicated to be sufficient to initiate T(h)2 response in vivo. However, IL-4-producing naive CD4(+) T cells are difficult to study in vivo because they are present in low numbers shortly after the first antigen exposure. Here, we used IL-4/green fluorescence protein (GFP) reporter mice (G4 mice) to track the initial response of CD4(+) IL-4-producing cells. We first established a flow cytometry method to estimate the number of GFP(+) cells. We demonstrated the effectiveness of this method by showing that the responding CD4(+)GFP(+) cells exhibited an activated phenotype, possessed the capacity to express IL-5 and IL-13, but not IFN-gamma mRNA, and showed enhanced levels of GATA3 and c-maf mRNA expression. More importantly, we showed that the cell lines derived from FACS-sorted CD4(+)GFP(+) cells were antigen specific. By using this newly established method, we showed that the majority of responding GFP(+) cells were CD4(+) T cells. Our study provides direct ex vivo evidence to show that a small percent of CD4(+) T cells that have no previous experience of antigenic stimulation might produce IL-4 to initiate T(h)2 response.  相似文献   

15.
16.
Prostaglandins (PG) are released during tissue injury and inflammation, and inhibit immune responses at many points. PG may be one of several factors that protect not only against injury-induced, but also spontaneous, organ-specific autoimmune disease. Here we show that the production of PGE(2), normally produced at a very low rate in islets of Langerhans, is significantly increased in inflamed islets of non-obese diabetic (NOD) mice. We investigated a possible role of PGE(2) in controlling TCR-dependent release of IFN-gamma from islet-reactive NOD CD8(+) T cells. PGE(2) inhibited anti-TCR antibody-triggered release of IFN-gamma from CD8(+) T cell clone 8D8 and from polyclonal cytotoxic T lymphocytes (CTL). Using receptor subtype selective agonists, we present evidence that the effect of PGE(2) is mediated by EP(2) and EP(4) receptors, both of which are coupled to an increase in intracellular cAMP production. The cAMP analogs 8-Br-cAMP and Sp-cAMPS mimic the effect of EP(2)/EP(4) receptor agonists, inhibiting TCR-triggered IFN-gamma release from NOD CD8(+) T cells in a dose-dependent manner. The inhibitory effect of PGE(2) was largely reversed by IL-2 added at the time of culture initiation and decreased with increasing strength of stimulation through the TCR. Resting CTL were more sensitive to PGE(2) than recently expanded CTL and NOD CD8(+) T cells remained insensitive to PGE(2) for a longer time than BALB/c cells. Our study suggests that PGE(2) may be part of a regulatory network that controls local activation of T cells and may play a role in the balance between the development of islet autoimmunity or maintenance of tolerance.  相似文献   

17.
WSX-1 is a component of the IL-27R. Analyses of WSX-1 knockout (WSX-1(-/-)) mice have shown that IL-27/WSX-1 signaling is essential for the proper development of T(h)1 responses and that WSX-1 can suppress cellular activation and pro-inflammatory cytokine production. We have generated transgenic mouse lines over-expressing the WSX-1 gene under the control of the T cell-specific CD2 promoter (WSX-1 Tg mice). Unexpectedly, like activated CD4(+) T cells from WSX-1(-/-) mice, activated CD4(+) T cells from WSX-1 Tg mice showed increased proliferation, augmented IL-2 production and up-regulated surface expression of activation markers. IL-27-mediated tyrosine phosphorylation of STAT1 was also enhanced in WSX-1 Tg CD4(+) T cells, but STAT3 activation was normal. Exogenous IL-27 supported the proliferation of wild-type CD4(+) T cells but suppressed that of WSX-1 Tg cells. WSX-1 over-expression increased IFN-gamma production in T(h)1-polarized CD4(+) T cells, but also promoted T(h)2 cytokine production under T(h)1-polarizing conditions. Importantly, WSX-1 over-expression failed to suppress T(h)2 cytokine production under T(h)2-polarizing conditions. Cytokine hyperproduction was also observed in vivo in WSX-1 Tg mice injected with Con A. Our data suggest that WSX-1 plays a pivotal role in regulating T cell responsiveness to TCR stimulation and that the correct balance of STAT1/STAT3 activation downstream of IL-27R engagement is crucial for the physiological function of IL-27.  相似文献   

18.
19.
CD4(+) T cells with pre-defined MHC-unrestricted specificity to type II collagen (CII) were engineered for cell-based anti-inflammatory gene therapy of autoimmune arthritis. To this end, recombinant chimeric immunoreceptors, C2gamma or C2zeta, were expressed in primary mouse keyhole limpet hemocyanin (KLH)-specific T(h)1 and T(h)2 cells using retrovirus vector-based somatic cell gene transfer. The ectodomain of these tyrosine-based activation motif (ITAM)-containing immunoreceptors is a single-chain IgG variable domain of an anti-CII mAb. The engineered cells might arrest migration when they encounter CII in articular cartilage. Up to 19 and 55% of transduced CD4(+) T cells expressed respectively C2gamma and C2zeta. The expression of C2gamma or C2zeta on the surface of CD4(+) T cells was down-regulated upon binding CII, and cells activated in such a way proliferated, up-regulated CD25 expression and produced cytokines. Comparison of cytokine levels normalized by the number of producer cells revealed that C2gamma and C2zeta were as potent as TCR in the induction of IFN-gamma, but induced lower levels of IL-4. It appears that the reason why CD4(+) T cells stimulated through C2gamma and C2zeta produce low levels of IL-4 is a lack of integration between co-stimulatory signals required for the optimal production of this cytokine and the ITAM-dependent signals generated by the immunoreceptors. The significance of these data for the development of anti-inflammatory gene therapy based on CD4(+) T cells targeted to a tissue-specific protein is discussed.  相似文献   

20.
Programmed death-1 (PD-1) is an immunoreceptor tyrosine-based inhibitory motif (ITIM)-containing receptor expressed upon T cell activation. PD-1(-/-) animals develop autoimmune diseases, suggesting an inhibitory role for PD-1 in immune responses. Members of the B7 family, PD-L1 and PD-L2, are ligands for PD-1. This study examines the functional consequences of PD-1:PD-L engagement on murine CD4 and CD8 T cells and shows that these interactions result in inhibition of proliferation and cytokine production. T cells stimulated with anti-CD3/PD-L1.Fc-coated beads display dramatically decreased proliferation and IL-2 production, while CSFE analysis shows fewer cells cycling and a slower division rate. Costimulation with soluble anti-CD28 mAb can overcome PD-1-mediated inhibition by augmenting IL-2 production. However, PD-1:PD-L interactions inhibit IL-2 production even in the presence of costimulation and, thus, after prolonged activation, the PD-1:PD-L inhibitory pathway dominates. Exogenous IL-2 is able to overcome PD-L1-mediated inhibition at all times, indicating that cells maintain IL-2 responsiveness. Experiments using TCR transgenic CD4(+) or CD8(+) T cells stimulated with antigen-presenting cells expressing PD-L1 show that both T cell subsets are susceptible to this inhibitory pathway. However, CD8(+) T cells may be more sensitive to modulation by the PD-1:PD-L pathway because of their intrinsic inability to produce significant levels of IL-2.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号