首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Two G protein-coupled neurotensin (NT) receptors, termed NTR1 and NTR2, have been identified so far. In contrast to the NTR1, which has been extensively studied, little is known about the pharmacological and biological properties of the NTR2. In the course of characterizing NT analogs that exhibited binding selectivity for the NTR2, we discovered that this receptor constitutively activated inositol phosphate (IP) production. Here, we report on the constitutive activity of the human NTR2 (hNTR2) transfected in COS cells and on compounds that exhibit agonism, inverse agonism, and neutral antagonism at this receptor. IP levels increased linearly with time, whereas they remained constant in mock-transfected cells. Furthermore, IP production was proportional to the amount of hNTR2 present at the cell membrane. SR 48692, a nonpeptide antagonist of the NTR1, stimulated IP production, whereas levocabastine, a nonpeptide histamine H1 antagonist that binds the NTR2 but not the NTR1, behaved as a weak partial inverse agonist. NT analogs modified at position 11 of the NT molecule, in particular by the introduction of bulky aromatic D amino acids, exhibited binding selectivity at the hNTR2 and also behaved as partial inverse agonists, reversing constitutive IP production up to 50%. Finally, NT barely affected constitutive IP production but antagonized the effects of both agonist and inverse agonist compounds, thus behaving as a neutral antagonist. The unique pharmacological profile of the hNTR2 is discussed in the light of its sequence similarity with the NTR1 and the known binding site topology of NT and SR 48692 in the NTR1.  相似文献   

2.
The chemoattractant receptor-homologous molecule expressed on T-helper type 2 cells (CRTH2) is a G protein-coupled receptor whose function in vivo has been incompletely characterized. One of the reasons is that its current known ligands, prostaglandin D(2) and some of its metabolites, have either poor selectivity for CRTH2 or are metabolically unstable in vivo. In this study, we describe the biological and pharmacological properties of L-888,607, the first synthetic potent and selective CRTH2 agonist. We show that L-888,607 exhibits 1) subnanomolar affinity for the human CRTH2 receptor, 2) high selectivity over all other prostanoid receptors and other receptors tested, 3) agonistic activity on recombinant and endogenously expressed CRTH2 receptor, and 4) relative stability in vivo. L-888,607 thus represents a suitable tool to investigate the in vivo function of CRTH2.  相似文献   

3.
We examined the pharmacologic effect of beta-methyl-2',6'-dimethyltyrosine-L-tetrahydroisoquinone-3- carboxylic acid ((2S,3R)TMT-L-Tic-OH) on G protein activation in membranes prepared from Chinese Hamster Ovary cells transfected with cDNA of the human delta-opioid receptor. (2S,3R)TMT-L-Tic-OH inhibited G protein activation to 58% of basal with an EC50 of 0.72 nM as determined by [35S]GTPgammaS binding. These findings suggest that (2S,3R)TMT-L-Tic-OH is a highly potent inverse agonist at the human delta-opioid receptor.  相似文献   

4.
The nucleotide selectivities of the human P2Y(4) (hP2Y(4)) and rat P2Y(4) (rP2Y(4)) receptor stably expressed in 1321N1 human astrocytoma cells were determined by measuring increases in intracellular [Ca(2+)] under conditions that minimized metabolism, bioconversion, and endogenous nucleotide release. In cells expressing the hP2Y(4) receptor, UTP, GTP, and ITP all increased intracellular [Ca(2+)] with a rank order of potency of UTP (0.55) > GTP (6.59) = ITP (7.38), (EC(50), microM). ATP, CTP, xanthine 5'-triphosphate (XTP), and diadenosine 5',5"'-P(1), P(4)-tetraphosphate (Ap(4)A), all at 100 microM, were inactive at the hP2Y(4) receptor. In cells expressing the rP2Y(4) receptor, all seven nucleotides increased intracellular [Ca(2+)] with similar maximal effects and a rank order of potency of UTP (0.20) > ATP (0. 51) > Ap(4)A (1.24) approximately ITP (1.82) approximately GTP (2. 28) > CTP (7.24) > XTP (22.9). Because ATP is inactive at the hP2Y(4) receptor, we assessed whether ATP displayed antagonist activity. When coapplied, ATP shifted the concentration-response curve to UTP rightward in a concentration-dependent manner, with no change in the maximal response. A Schild plot derived from these data gave a pA(2) value of 6.15 (K(B) = 708 nM) and a slope near unity. Additionally, CTP and Ap(4)A (each at 100 microM) inhibited the response to an EC(50) concentration of UTP by approximately 40 and approximately 50%, respectively, whereas XTP had no effect. The inhibitory effects of ATP, CTP, and Ap(4)A were reversible on washout. Thus, ATP is a potent agonist at the rP2Y(4) receptor but is a competitive antagonist with moderate potency at the hP2Y(4) receptor.  相似文献   

5.
Mutations producing constitutively active G-protein coupled receptors have been found in the pathophysiology of several diseases, implying that inverse agonists at the constitutively active receptors may have preferred therapeutic applications. Because of the involvement of 5-HT(2A) receptors in mediating many cardiovascular diseases, constitutively active mutants of the 5-HT(2A) receptor may be responsible for the disease states. Thus, the purpose of the present study was to investigate the inverse agonist activity of sarpogrelate, a selective 5-HT(2A)-receptor antagonist, and its active metabolite, M-1; and we compared their activities with those of other 5-HT(2A)-receptor antagonists such as ritanserin, ketanserin, and cyproheptadine. Using a constitutively active mutant (C322K) of the human 5-HT(2A) receptor, we demonstrated that like other 5-HT(2A)-receptor antagonists, sarpogrelate acts as a potent inverse agonist by significantly reducing basal inositol phosphate levels. However, there were no significant differences between sarpogrelate and other 5-HT(2A)-receptor antagonists for their inverse agonist activity. Compared with the wild type receptor, mutant receptor displayed significantly higher affinity for 5-HT and lower affinity for sarpogrelate. These results indicate that stabilization of the inactive conformation of the 5-HT(2A) receptor may be a key component of the mechanism of action of sarpogrelate.  相似文献   

6.
We obtained a new mutant of the beta(1)-adrenergic receptor (beta(1)-AR) by point mutations that can constitutively activate beta(1)-AR. Aspartate104 of the beta(1)-AR in the 2nd transmembrane was replaced with alanine. The beta(1)-AR mutant expressed in human embryonic kidney (HEK)-293 cells displayed high level of constitutive activity with respect to wild-type (P<0.05), which could be partially inhibited by some beta-blockers. The constitutive activity of the mutant was confirmed by the finding that the enhanced activity is dependent on the level of receptor expression. The results of this study might have interesting implications for future studies aiming at elucidating the activation process of the beta(1)-AR as well as the mechanism of action of beta-blockers.  相似文献   

7.
Oral P2Y12 inhibitors are commonly prescribed for cardiovascular disease and include clopidogrel, prasugrel, and ticagrelor. Each of these drugs has its strengths and weaknesses. Prasugrel and ticagrelor are more potent inhibitors of platelet aggregation and were shown to be superior to clopidogrel in preventing major adverse cardiovascular events after an acute coronary syndrome and percutaneous coronary intervention (PCI) in the absence of genotyping. However, both are associated with an increased risk for non-coronary artery bypass-related bleeding. Clopidogrel is a prodrug requiring bioactivation, primarily via the CYP2C19 enzyme. Approximately 30% of individuals have a CYP2C19 no function allele and decreased or no CYP2C19 enzyme activity. Clopidogrel-treated carriers of a CYP2C19 no function allele have decreased exposure to the clopidogrel active metabolite and lesser inhibition of platelet aggregation, which likely contributed to reduced clopidogrel efficacy in clinical trials. The pharmacogenetic data for clopidogrel are most robust in the setting of PCI, but evidence is accumulating for other indications. Guidance is available from expert consensus groups and regulatory agencies to assist with integrating genetic information into P2Y12 inhibitor prescribing decisions, and CYP2C19 genotype-guided antiplatelet therapy after PCI is one of the most common examples of clinical pharmacogenetic implementation. Herein, we review the evidence for pharmacogenetic associations with clopidogrel response and outcomes with genotype-guided P2Y12 inhibitor selection and describe guidance to assist with pharmacogenetic implementation. We also describe processes for applying genotype data for P2Y12 inhibitor therapy selection and remaining gaps in the field. Ultimately, consideration of both clinical and genetic factors may guide selection of P2Y12 inhibitor therapy that optimally balances the atherothrombotic and bleeding risks.  相似文献   

8.
Purification and functional reconstitution of the human P2Y12 receptor   总被引:5,自引:0,他引:5  
The human P2Y12 receptor (P2Y12-R) is a member of the G protein coupled P2Y receptor family, which is intimately involved in platelet physiology. We describe here the purification and functional characterization of recombinant P2Y12-R after high-level expression from a baculovirus in Sf9 insect cells. Purified P2Y12-R, Gbeta1gamma2, and various Galpha-subunits were reconstituted in lipid vesicles, and steady-state GTPase activity was quantified. GTP hydrolysis in proteoliposomes formed with purified P2Y12-R and Galphai2beta1gamma2 was stimulated by addition of either 2-methylthio-ADP (2MeSADP) or RGS4 and was markedly enhanced by their combined presence. 2MeSADP was the most potent agonist (EC50 = 80 nM) examined, whereas ADP, the cognate agonist of the P2Y12-R, was 3 orders of magnitude less potent. ATP had no effect alone but inhibited the action of 2MeSADP; therefore, ATP is a relatively low-affinity antagonist of the P2Y12-R. The G protein selectivity of the P2Y12-R was examined by reconstitution with various G protein alpha-subunits in heterotrimeric form with Gbeta1gamma2. The most robust coupling of the P2Y12-R was to Galphai2, but effective coupling also occurred to Galphai1 and Galphai3. In contrast, little or no coupling occurred to Galphao or Galphaq. These results illustrate that the signaling properties of the P2Y12-R can be studied as a purified protein under conditions that circumvent the complications that occur in vivo because of nucleotide metabolism and interconversion as well as nucleotide release.  相似文献   

9.
Antiplatelet therapy is critical in the prevention of thrombotic complications of acute coronary syndrome and percutaneous coronary interventions. Current antiplatelet agents (aspirin, clopidogrel and glycoprotein IIb/IIIa antagonists) have demonstrated the capacity to reduce major adverse cardiac events. However, these agents have limitations that compromise their clinical utility. The platelet P2Y12 receptor plays a central role in platelet function and is a focus in the development of antiplatelet therapies. Cangrelor is a potent, competitive inhibitor of the P2Y12 receptor that is administered by intravenous infusion and rapidly achieves near complete inhibition of ADP-induced platelet aggregation. This investigational drug has been studied for use during coronary procedures and the management of patients experiencing acute coronary syndrome and is undergoing evaluation for use in the prevention of perioperative stent thrombosis.  相似文献   

10.
抑制ADP诱导的血小板聚集的药物(如氯吡格雷)已成为目前心血管领域内最重要的抗血小板药物。但氯吡格雷起效较慢,抗血小板作用相对较弱,尚有一定的低反应者和无反应者。普拉格雷是一个较新的血小板P2Y12受体拮抗药。TRITON-TIMI 38研究表明普拉格雷可使主要终点发生率(心血管死亡、非致死性心肌梗死、非致死性卒中)降低19%,但使出血并发症增加。坎格雷洛,替格雷洛,依诺格雷是更新的血小板P2Y12受体拮抗药。  相似文献   

11.
Activation of the P2Y(1) nucleotide receptor in platelets by ADP causes changes in shape and aggregation, mediated by activation of phospholipase C (PLC). Recently, MRS2500(2-iodo-N(6)-methyl-(N)-methanocarba-2'-deoxyadenosine-3',5'-bisphosphate) was introduced as a highly potent and selective antagonist for this receptor. We have studied the actions of MRS2500 in human platelets and compared these effects with the effects of two acyclic nucleotide analogues, a bisphosphate MRS2298 and a bisphosphonate derivative MRS2496, which act as P2Y(1) receptor antagonists, although less potently than MRS2500. Improved synthetic methods for MRS2500 and MRS2496 were devised. The bisphosphonate is predicted to be more stable in general in biological systems than phosphate antagonists due to the non-hydrolyzable CP bond. MRS2500 inhibited the ADP-induced aggregation of human platelets with an IC(50) value of 0.95 nM. MRS2298 and MRS2496 also both inhibited the ADP-induced aggregation of human platelets with IC(50) values of 62.8 nM and 1.5 microM, respectively. A similar order of potency was observed for the three antagonists in binding to the recombinant human P2Y(1) receptor and in inhibition of ADP-induced shape change and ADP-induced rise in intracellular Ca(2+). No substantial antagonism of the pathway linked to the inhibition of cyclic AMP was observed for the nucleotide derivatives, indicating no interaction of these three P2Y(1) receptor antagonists with the proaggregatory P2Y(12) receptor, which is also activated by ADP. Thus, all three of the bisphosphate derivatives are highly selective antagonists of the platelet P2Y(1) receptor, and MRS2500 is the most potent such antagonist yet reported.  相似文献   

12.

Background and purpose:

In several previous studies, the C-X-C chemokine receptor (CXCR)2 antagonist 1-(2-bromo-phenyl)-3-(7-cyano-3H-benzotriazol-4-yl)-urea (SB265610) has been described as binding competitively with the endogenous agonist. This is in contrast to many other chemokine receptor antagonists, where the mechanism of antagonism has been described as allosteric.

Experimental approach:

To determine whether it displays a unique mechanism among the chemokine receptor antagonists, the mode of action of SB265610 was investigated at the CXCR2 receptor using radioligand and [35S]-GTPγS binding approaches in addition to chemotaxis of human neutrophils.

Key results:

In equilibrium saturation binding studies, SB265610 depressed the maximal binding of [125I]-interleukin-8 ([125I]-IL-8) without affecting the Kd. In contrast, IL-8 was unable to prevent binding of [3H]-SB265610. Kinetic binding experiments demonstrated that this was not an artefact of irreversible or slowly reversible binding. In functional experiments, SB265610 caused a rightward shift of the concentration-response curves to IL-8 and growth-related oncogene α, but also a reduction in maximal response elicited by each agonist. Fitting these data to an operational allosteric ternary complex model suggested that, once bound, SB265610 completely blocks receptor activation. SB265610 also inhibited basal [35S]-GTPγS binding in this preparation.

Conclusions and implications:

Taken together, these data suggest that SB265610 behaves as an allosteric inverse agonist at the CXCR2 receptor, binding at a region distinct from the agonist binding site to prevent receptor activation, possibly by interfering with G protein coupling.  相似文献   

13.
We have prepared a caged form (MRS2703) of a potent dual agonist of the P2Y(1) and P2Y(12) nucleotide receptors, 2-MeSADP, by blocking the beta-phosphate group with a 1-(3,4-dimethyloxyphenyl)eth-1-yl phosphoester. Although MRS2703 is itself inactive at human P2Y(1) and P2Y(12) receptors expressed heterologously in 1321N1 astrocytoma cells or in washed human platelets, this derivative readily regenerates the parent agonist upon mild irradiation with long-wave UV light (360 nm). The functional effect of the regenerated agonist was demonstrated by a rise in intracellular calcium mediated by either P2Y(1) or P2Y(12) receptors in transfected cells. Washed human platelets exposed to a solution of MRS2703 were induced to aggregate upon UV irradiation. At 1.0 microM MRS2703, full aggregation was achieved within 1 min of irradiation. Thus, this caged nucleotide promises to be a useful probe for potent P2Y receptor activation with light-directed spatial and temporal control.  相似文献   

14.
Introduction: Angiogenesis plays a crucial role in the proliferation and in the metastatic spread of tumour cells. Several agents with anti-angiogenic activity have been tested in advanced non-small-cell lung cancer (NSCLC) patients. Motesanib (AMG 706) is a promising anti-angiogenic multi-targeted tyrosine kinase inhibitor (TKI), which has been investigated as a monotherapy or in combination with chemotherapy, in several types of cancer.

Areas covered: We have reviewed the literature, and we have presented the results of clinical trials that have investigated the administration of motesanib in advanced NSCLC patients.

Expert opinion: Encouraging results have been described with the administration of motesanib as first-line treatment in combination with carboplatin and paclitaxel in Asian patients with non-squamous advanced NSCLC. Further studies are needed in order to identify the predictive biomarkers of response and to select patients who may benefit from this anti-angiogenic treatment.  相似文献   

15.
16.
17.
1. C335Stop is a constitutively active mutant of the TRH receptor (TRH-R). To investigate the mechanism of the decreased responsiveness of C335Stop TRH-R, we studied cellular Ca2+ concentrations ([Ca2+]i) in AtT20 cells stably transfected with C335Stop TRH-R cDNA, or Ca2+-activated chloride currents in Xenopus laevis oocytes expressing this mutant receptor after injection of cRNA. The competitive TRH-R binding antagonist, chlorodiazepoxide (CDE), was used as an inverse agonist to study the contribution of constitutive activity to desensitization. 2. Acute treatment with CDE resulted in a rapid (within minutes) decrease in [Ca2+]i and an increase in the response amplitude to TRH with no measurable change in receptor density. Conversely, removal of chronically administered CDE caused a rapid increase in [Ca2+]i and a decrease in TRH response amplitude. 3. CDE abolished heterologous desensitization induced by C335Stop TRH-R on muscarinic m1-receptor (ml-R) co-expressed in Xenopus oocytes. 4. Chelation of extracellular calcium with EGTA caused a rapid decrease in [Ca2+]i and a concomitant increase in the response to TRH in AtT20 cells expressing C335Stop TRH-Rs. 5. Chelerythrine, a specific inhibitor of protein kinase C (PKC), reversed the heterologous desensitization of the response to acetylcholine (ACh). The phosphoserine/phosphothreonine phosphatase inhibitor, okadaic acid, abolished the effect of chelerythrine. 6. Down-regulation of PKC by chronic exposure to phorbol 12-myristate 13-acetate (PMA) or acute inhibition with chelerythrine caused a partial resensitization of the response to TRH. 7. Western analysis indicated that the alpha subtype of protein kinase C was down-regulated in cells expressing C335Stop TRH-Rs. Following a 5 min exposure to PMA, the residual alphaPKC translocated to the particular fraction. 8. We propose that cells expressing the constitutively active mutant TRH-R rapidly desensitize their response, utilizing a mechanism mediated by an increase in [Ca2+]i and PKC.  相似文献   

18.
The estrogen-related receptor alpha (ERRalpha) is an orphan receptor belonging to the nuclear receptor superfamily. The physiological role of ERRalpha has yet to be established primarily because of lack of a natural ligand. Herein, we describe the discovery of the first potent and selective inverse agonist of ERRalpha. Through in vitro and in vivo studies, these ligands will elucidate the endocrine signaling pathways mediated by ERRalpha including association with human disease states.  相似文献   

19.
Cholecystokinin receptor-2 (CCK2R) is a G protein receptor that regulates a number of physiological functions. Activation of CCK2R and/or expression of a constitutively active CCK2R variant may contribute to human diseases, including digestive cancers. Search for antagonists of the CCK2R has been an important challenge during the last few years, leading to discovery of a set of chemically distinct compounds. However, several early-discovered antagonists turned out to be partial agonists. In this context, we carried out pharmacological characterization of six CCK2R antagonists using COS-7 cells expressing the human CCK2R or a CCK2R mutant having a robust constitutive activity on inositol phosphates production, and we investigated the molecular mechanisms which, at a CCK2R binding site, account for these features. Results indicated that three compounds, 3R(+)-N-(2,3-dihydro-1-methyl-2-oxo-5-phenyl-1H-1,4-benzodiazepin-3-yl)-N'-(3-methylphenyl)urea (L365,260), 4-{[2-[[3-(lH-indol-3-yl)-2-methyl-1-oxo-2-[[[1.7.7-trimethyl-bicyclo[2.2.1]hept-2-yl)-oxy]carbonyl]amino]propyl]amino]-1-phenylethyl]amino-4-oxo-[lS-la.2[S*(S*)]4a]}-butanoate N-methyl-D-glucamine (PD135,158), and (R)-1-naphthalenepropanoic acid, b-[2-[[2-(8-azaspiro-[4.5]dec-8-ylcarbonyl)-4,6-dimethylphenyl]amino]-2-oxoethyl] (CR2945), were partial agonists; one molecule, 1-[(R)-2,3-dihydro-1-(2,3-dihydro-1-(2-methylphenacyl)-2-oxo-5-phenyl-1H-1,4-benzodiazepin-3-yl]-3-(3-methylphenyl)urea (YM022), was a neutral antagonist; and two compounds, N-(+)-[1-(adamant-1-ylmethyl)-2,4-dioxo-5-phenyl2,3,4,5-tetrahydro-1H-1,5-benzodiazepin-3-yl]-N'-phenylurea (GV150,013X) and ([(N-[methoxy-3 phenyl] N-[N-methyl N-phenyl carbamoylmethyl], carbomoyl-methyl)-3 ureido]-3-phenyl)2-propionic acid (RPR101,048), were inverse agonists. Furthermore, target- and pharmacophore-based docking of ligands followed by molecular dynamic simulation experiments resulted in consistent motion of aromatic residues belonging to a network presumably important for activation, thus providing the first structural explanations for the different pharmacological profiles of tested compounds. This study confirms that several referenced so-called antagonists are in fact partial agonists, and because of this undesired activity, we suggest that newly generated molecules should be preferred to efficiently block CCK2R-related physiological effects. Furthermore, data on the structural basis for the different pharmacological features of CCK2R ligands will serve to further clarify CCK2R mechanism of activation.  相似文献   

20.
The hypothesis that prolonged treatment of a constitutively active receptor with inverse agonists may lead to increased receptor density was tested for the alpha(2)-adrenoceptor (AR) inverse agonist (+)-RX 811059 at both the wild-type (WT) and Thr(373)Lys alpha(2A) ARs in CHO-K1 cells by monitoring [(3)H]RX 821002 and [(35)S]GTPgammaS binding responses. One-hundred micromolar KCl instead of NaCl in the [(35)S]GTPgammaS membrane binding assay favoured the detection of a high-magnitude constitutive alpha(2A) AR activity. Under this condition, (+)-RX 811059 was an inverse agonist [ E(max) (% vs. basal): Thr(373)Lys alpha(2A) AR (-52+/-2) > WT alpha(2A) AR (-31+/-6)] while atipamezole was a silent neutral antagonist for both WT and Thr(373)Lys alpha(2A) ARs. The B(max) value of [(3)H]RX 821002 binding sites to membranes of transfected CHO-K1 cells was <90% for the Thr(373)Lys alpha(2A) AR compared with the WT alpha(2A) AR (9.1+/-1.4 pmol/mg protein); K(d) values were similar (1.16+/-0.19 nM and 1.51+/-0.15 nM, respectively). Forty-eight-hours' pre-treatment of cells with either 0.1 microM (+)-RX 811059, 1 microM atipamezole or 1 microM of the efficacious agonist d-medetomidine increased the amount of [(3)H]RX 821002 binding sites of both WT (52%-59%) and mutant (306%-447%) Thr(373)Lys alpha(2A) ARs. The same alpha(2) AR ligands also prevented the loss of [(3)H]RX 821002 binding sites as induced by incubation of transfected CHO-K1 cellular membranes at 37 degrees C for 4 h (WT alpha(2A) AR) and 2 h (Thr(373)Lys alpha(2A) AR); 0.1 microM (+)-RX 811059 and 1 microM atipamezole caused an increase compared with the control amount of [(3)H]RX 821002 binding sites to the Thr(373)Lys alpha(2A) AR by 73% and 50%, respectively. In conclusion, no relationship was found between inverse agonism and alpha(2A) AR up-regulation. It is suggested that this is due to structural stabilisation of the alpha(2A) AR, irrespective of the nature of the ligand.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号