首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
目的:制备吴茱萸次碱(Rut)固体分散体,提高Rut体外溶出度.方法:分别以聚乙烯吡咯烷酮(PVP)为载体,采用溶剂-共沉淀法,制备含不同辅助载体的Rut固体分散体;采用差示热分析和X-射线衍射分析对固体分散体进行物相鉴别,并进行体外溶出度试验;考察载体用量、载体中表面活性剂的加入和不同溶出介质对药物溶出特性的影响.结果:Rut以微晶形式存在于固体分散体中;其中,以微粉硅胶和乳糖为辅助载体制备的Rut-PVP-微粉硅胶(1∶2∶1)和Rut-PVP-乳糖(1∶2∶2)固体分散体,其累积溶出度较其物理混合物提高了约6倍.结论:Rut-PVP-微粉硅胶(1∶2∶1)和Rut-PVP-乳糖(1∶2∶2)固体分散体可显著提高药物的溶出速度和程度.  相似文献   

2.
目的:采用大鼠在体肠灌流法研究MH口服肠吸收跨膜机制,设计并优化凝胶缓释骨架片处方.方法: 以在体肠灌流模型,研究影响大鼠各肠段的药物跨膜吸收速率因素和确定最佳肠吸收部位;采用正交设计法筛选凝胶骨架片处方,探讨骨架片体外释药影响因素.结果:药物主要在小肠中上部的十二指肠和空肠吸收,跨膜速度随胃肠道pH增加而逐渐降低;处方含25%HPMC K4M/K15M(w/w)1∶2和10 % Compritol 888, HPMC与Compritol 888复合比例为(w/w,2∶1)时能有效控制药物缓慢释放,骨架材料的种类和用量对缓释片体外释药具有明显影响.结论:MH属于被动扩散吸收和主动转运载体介导模式的肠吸收机制.骨架片具有明显的缓释作用,其体外释药符合Peppas 或Higuchi动力学方程,为临床提供合理有效的缓释制剂奠定科学依据.  相似文献   

3.
尼群地平小丸的乳化溶剂扩散法制备   总被引:1,自引:0,他引:1  
采用乳化溶剂扩散法,分别以羟丙甲纤维素邻苯二甲酸酯(HPMCP)和微粉硅胶为速释载体、EC和Eudragit RS PO 为阻滞剂制备了尼群地平的速释和缓释小丸.结果表明,当速释小丸中的尼群地平-HPMCP-微粉硅胶的比例达1:2:2以上时,溶出度迅速提高;X-射线衍射和差热分析结果表明速释和缓释小丸中药物结晶峰消失;所得小丸外观圆整,扫描电镜观察表明内部较致密,无药物的块状结晶,说明小丸中药物以无定形存在于固体分散体中.  相似文献   

4.
目的:探索固体自微乳化释药系统,制备四乙酰基葛根素固体自微乳化双层片。方法:考察各吸附材料对自微乳化液的吸附能力;以片剂外观、硬度、崩解时限等为指标筛选速释层处方;采用相似因子(f2)法评价双层片释药曲线的相似性,通过单因素考察,确定影响药物释放的主要因素;利用中心复合设计法对双层片处方进行优化,以HPMC K100LV和PEO400用量的各水平分别进行多元线性回归和二项式方程拟合,用效应面法预测最佳处方。结果:速释层的最佳处方为10%四乙酰基葛根素,30%自微乳化液,15%微粉硅胶,15%微晶纤维素,30%交联聚维酮,粘合剂为20%淀粉浆。缓释层中HPMC K100LV用量是影响药物释放的主要因素。中心复合设计优化处方的体外释放度预测值与实验值很接近。结论:中心复合设计法优化的固体自乳化双层片处方良好,双层片体外释放度达到了设计要求。  相似文献   

5.
目的:制备曲美他嗪固体分散体,使之具有缓释效果。方法:采用溶剂法制备固体分散体,以固体分散体的体外释放度为评价指标,单因素实验考察载体、制备方法、药物载体比例、致孔剂对曲美他嗪固体分散体缓释性能的影响,通过正交设计对处方及工艺进行优化,并对不同处方的固体分散体体外释药进行动力学拟合。应用DSC,XRD,FTIR考察固体分散体中曲美他嗪的存在状态及其与载体间的相互作用。结果:所得优化处方体外释药可持续24 h,药物体外释药行为符合一级动力学方程,药物释放以Fick扩散为主。曲美他嗪以微晶或无定形态存在于固体分散体中。结论:通过以上优化处方和工艺制备的曲美他嗪固体分散体具有良好的缓释效果及工艺重复性。  相似文献   

6.
摘要:目的 制备大黄素固体分散体,提高其体外溶出度并探究其释药机制。方法 采用分子对接技术,辅助筛选聚合物载体。以大黄素为原料药,Kollidon VA64为聚合物载体,采用热熔挤出工艺制备大黄素固体分散体。通过溶出仪测定其体外溶出,利用SEM,DCS和PXRD对原料药和固体分散体的表面形态和晶型进行表征,最后采用FTIR,NMR和分子动力学模拟对固体分散体的释药机制进行探究。结果 相较于大黄素原料药,大黄素固体分散体在4种介质中的溶出被明显改善,大黄素由结晶态转化为无定形态,药物与聚合物载体间形成了氢键。结论 固体分散体中药物晶型的转变和氢键的产生是改善药物体外溶出的主要因素。  相似文献   

7.
秦凌浩  胡巧红  郑小秋 《中国药房》2011,(27):2527-2529
目的:考察泊洛沙姆固体分散体对难溶性药物穿心莲内酯体外溶出特性的影响。方法:以泊洛沙姆为载体材料,采用熔融法制备不同比例的穿心莲内酯-泊洛沙姆固体分散体,并考察其体外溶出特性。通过红外光谱和X射线衍射图谱研究药物在固体分散体的存在状态。结果:与穿心莲内酯空白药物相比,穿心莲内酯固体分散体在蒸馏水、pH1.2盐酸溶液与pH6.8磷酸盐缓冲液中溶出速率明显提高,载药固体分散体15min时累积释药量是穿心莲内酯空白药物的3.6倍;穿心莲内酯以微晶态高度分散于载体材料中。结论:以泊洛沙姆188为载体制备穿心莲内酯固体分散体,能有效提高难溶性药物的溶出速率。  相似文献   

8.
目的:研究尼群地平(nitrendipine)缓释片的制备,以及考察其缓释片的体外释放行为。方法:制备尼群地平-聚维酮(PVP)固体分散体,将此固体分散体与羟丙甲纤维素(HPMC)制成亲水凝胶骨架缓释片,并对PVP用量、HPMC用量和释放介质等影响体外释药行为的因素进行了考察。结果:HPMC与PVP用量及其释放介质对药物释放行为影响显著,通过调节处方用量比例获得满意的释放效果,其体外释药过程符合零级药动学方程。结论:该法制备的尼群地平缓释片,其体外释药平稳、累积释放率高。  相似文献   

9.
灯盏花素缓释固体分散体的制备及溶出度的研究   总被引:3,自引:1,他引:2  
目的 制备灯盏花素缓释固体分散体.方法 以水不溶性聚合物乙基纤维素(EC)为载体,用固体分散技术(溶剂法)制备难溶性药物灯盏花素缓释固体分散体,并进行差热分析和体外释放度研究.结果 药物体外释药行为均符合Higuchi方程;缓释效果与EC用量和固体分散体的粒径有主要关系,药物释放速率随EC用量和黏度的增加而减小;固体分散体粒径越小,药物体外释放速率越快.结论 采用EC作载体,对灯盏花素可起到很好的缓释效果.  相似文献   

10.
苏卫  陈鹰  董少华  胡晓  胡静波 《中国药房》2012,(45):4308-4310
目的:了解固体自(微)乳化释药系统的最新进展。方法:查阅国内外文献,对固体自(微)乳化释药系统的组成、固化技术及近年来固体自(微)乳化制剂的应用新进展进行概述。结果与结论:固体自(微)乳化释药系统能够显著促进难溶性药物的溶解和吸收,提高药物的生物利用度,是一种较理想的药物载体。但是对固体自(微)乳化制剂的研究还不够透彻,尚存在不少亟待解决的问题,如新型固体载体研究、固体载体筛选方法以及其对药物体内外性质的影响、体内外相关性的研究、制剂的产业化等。  相似文献   

11.
目的:制备紫杉醇超饱和自微乳化给药系统(supersaturatable self-microemulsifying drug delivery system,S-SMEDDS),并对其在大鼠体内的药动学进行研究。方法:采用伪三元相图的方法,优化紫杉醇自微乳化给药系统(SMEDDS)的处方。18只大鼠随机分为3组,分别灌胃给予10 mg/kg紫杉醇溶液、SMEDDS和S-SMEDDS,测定紫杉醇的血药浓度c、max、AUC和tmax,计算相对生物利用度。结果:确定紫杉醇SMEDDS最优处方为:油相∶表面活性剂∶助表面活性剂=50∶33∶17。油相为Lauroglycol FCC∶橄榄油(2∶1),表面活性剂为Cremophor EL∶吐温-80(1∶1),助表面活性剂为PEG-400。S-SMEDDS在此处方基础上添加5%羟丙基甲基纤维素。稀释对制剂的粒径无显著影响。SMEDDS和S-SMEDDS的粒径分别为(92.7±47.7)和(93.6±36.8)nm,粒径分布呈高斯分布。SMEDDS和S-SMEDDS的cmax和AUC显著高于溶液剂,tmax<溶液剂,生物利用度分别为333.9%和719.3%。结论:紫杉醇S-SMEDDS的口服吸收强于溶液剂和SMEDDS。  相似文献   

12.
目的对新近发展的固体自微乳化给药系统(S-SMEDDS)文献进行综述。方法查阅近年国内外相关文献并进行归纳和总结。结果对固体自微乳的载体、固化技术以及缓控释制剂进行了探讨,为研究水难溶性药物的生物利用度及适合药物释放特性的S-SMEDDS技术提供相关参考。结论固体自微乳化系统可以显著提高难溶性药物的口服生物利用度,且兼顾了液态自微乳和固体制剂二者的优势,是一个极具潜力的新型制剂。  相似文献   

13.
The therapeutic potential of saquinavir, a specific inhibitor of human immunodeficiency virus (HIV)-1 and HIV-2 protease enzymes, has been largely limited because of a low solubility and consequnt low bioavailability. Thus, we aimed to design a supersaturated self-microemulsifying drug delivery system (S-SMEDDS) that can maintain a high concentration of saquinavir in gastro-intestinal fluid thorugh inhibiting the drug precipitation to enhance the lymphatic transport of saquinavir and to increase the bioavailability of saquinavir considerably. Solubilizing capacity of different oils, surfactants, and cosurfactants for saquinavir was evaluated to select optimal ingredients for preparation of SMEDDS. Through the construction of pseudo-ternary phase diagram, SMEDDS formulations were established. A polymer as a precipitation inhibitor was selected based on its viscosity and drug precipitation inhibiting capacity. The S-SMEDDS and SMEDDS designed were administered at an equal dose to rats. At predetermined time points, levels of saquinavir in lymph collected from the rats were assessed. SMEDDS prepared presented a proper self-microemulsification efficiency and dispersion stability. The S-SMEDDS fabricated using the SMEDDS and hydroxypropyl methyl cellulose 2910 as a precipitation inhibitor exhibited a signficantly enhanced solubilizing capacity for saquinavir. The drug concentration in a simulated intestinal fluid evaluated with the S-SMEDDS was also maintained at higher levels for prolonged time than that examined with the SMEDDS. The S-SMEDDS showed a considerably enhanced lymphatic absoprtion of saquinavir in rats compared to the SMEDDS. Therefore, the S-SMEDDS would be usefully exploited to enhance the lymphatic absorption of hydrophobic drugs that need to be targeted to the lymphatic system.  相似文献   

14.
The aim of present investigation is to improve dissolution rate of poor soluble drug Zotepine by a self-microemulsifying drug delivery system (SMEDDS). Ternary phase diagram with oil (Oleic acid), surfactant (Tween 80) and co-surfactant (PEG 400) at apex were used to identify the efficient self-microemulsifying region. Box–Behnken design was implemented to study the influence of independent variables. Principal Component Analysis was used for scrutinising critical variables. The liquid SMEDDS were characterised for macroscopic evaluation, % Transmission, emulsification time and in vitro drug release studies. Optimised formulation OL1 was converted in to S-SMEDDS by using Aerosil® 200 as an adsorbent in the ratio of 3:1. The S-SMEDDS was characterised by SEM, DSC, globule size (152.1?nm), zeta-potential (?28.1?mV), % transmission study (98.75%), in vitro release (86.57%) at 30?min. The optimised solid SMEDDS formulation showed faster drug release properties as compared to conventional tablet of Zotepine.  相似文献   

15.
筛选新型抗血吸虫药物QH917自微乳化释药系统的处方。以油相的用量(%)和表面活性剂与助表面活性剂的质量比(Km)作为自变量,自乳化时间(t)、平均粒径(PS)和多分散系数(PI)作为因变量,采用星点设计——效应面法进行处方优化,模拟体内环境,考察了离子强度、食物、pH值、转速和介质体积对优化处方释放的影响,并采用大鼠在体小肠吸收试验评价了优化处方的吸收情况。结果表明,优化处方为:油相中链甘油三酸酯(MCT)的质量分数为30%~34%,表面活性剂聚氧乙烯40氢化蓖麻油(Cremophor RH40)与助表面活性剂乙醇的质量比为4.8~5.2。优化处方的释放行为基本不受介质环境的影响。大鼠在体小肠吸收试验表明胆管结扎与未结扎对吸收率无显著影响,个体间吸收行为差异性较小。以星点设计——效应面法对自微乳化释药系统的处方进行优化,预测性良好,优化处方体外释放和大鼠小肠吸收行为均比较稳定。  相似文献   

16.
目的:设计和优化橘红素自微乳给药系统,改善药物的溶解及吸收,提高橘红素的口服生物利用度。方法:通过考察自微乳的粒径与粒径分布、乳化速度、Zeta电位、外观等指标,筛选并优化橘红素自微乳给药系统的处方,利用MDCK模型测定自微乳给药系统的体外吸收转运行为,并评价该给药系统在大鼠体内的药动学特性。结果:MDCK实验证实橘红素自微乳给药系统能够提高橘红素的吸收和转运,在SD大鼠体内的药动学结果表明橘红素的AUC(0-∞)由(3 491.77±404.06)μg·L-1·h提高至(9 435.18±1 633.81)μg·L-1·h(P<0.01),Cmax由(1 211.39±382.73)μg·L-1·h提高至(2 371.73±481.87)μg·L-1·h(P<0.05)。结论:制备出稳定的橘红素自乳化给药系统,体外溶出速度显著提高,从而有效提高橘红素的生物利用度。  相似文献   

17.
过饱和自微乳是指在原有的自微乳处方中,加入过饱和促进剂而形成的一种释药系统。处于过饱和状态下的微乳,能明显抑制药物的结晶,延长药物的过饱和状态,从而增加药物的溶解度,降低原有自微乳处方中表面活性剂的用量。本文介绍了过饱和自微乳释药系统的处方组成、吸收机制,以及在药物制剂方面的应用。  相似文献   

18.
Incorporation of drugs in self-microemulsifying systems (SMES) offers several advantages for their delivery, the main one being faster drug dissolution and absorption. Formulation of SMES in solid dosage forms can be difficult and, to date, most SMES are applied in liquid dosage form or soft gelatin capsules. This study has explored the incorporation of SMES in microcapsules, which could then be used for formulation of solid dosage forms. An Inotech IE-50?R encapsulator equipped with a concentric nozzle was used to produce alginate microcapsules with a self-microemulsifying core. Retention of the core phase was improved by optimization of encapsulator parameters and modification of the shell forming phase and hardening solution. The mean encapsulation efficiency of final batches was more than 87%, which resulted in 0.07% drug loading. It was demonstrated that production of microcapsules with a self-microemulsifying core is possible and that the process is stable and reproducible.  相似文献   

19.
Incorporation of drugs in self-microemulsifying systems (SMES) offers several advantages for their delivery, the main one being faster drug dissolution and absorption. Formulation of SMES in solid dosage forms can be difficult and, to date, most SMES are applied in liquid dosage form or soft gelatin capsules. This study has explored the incorporation of SMES in microcapsules, which could then be used for formulation of solid dosage forms. An Inotech IE-50 R encapsulator equipped with a concentric nozzle was used to produce alginate microcapsules with a self-microemulsifying core. Retention of the core phase was improved by optimization of encapsulator parameters and modification of the shell forming phase and hardening solution. The mean encapsulation efficiency of final batches was more than 87%, which resulted in 0.07% drug loading. It was demonstrated that production of microcapsules with a self-microemulsifying core is possible and that the process is stable and reproducible.  相似文献   

20.
目的考察环孢菌素A自乳化半固体骨架胶囊的处方。方法制备药物的饱和溶液用以测定药物在不同油相中的溶解度;采用伪三元相图法考察不同乳化剂形成微乳的能力和区域,绘制不同处方组成的相图;采用体外乳化实验筛选处方,并制备环孢菌素A自乳化半固体骨架胶囊。结果该胶囊中的乳化剂为Tween 80-聚氧乙烯(40)氢化蓖麻油(质量比为1∶1),助乳化剂为聚乙二醇-8-甘油辛酸/葵酸脂(labrasol),油相为辛酸/癸酸三甘油酯,半固体载体为泊洛沙姆188-硬脂酸聚烃氧(40)酯(质量比为1∶1)。该处方所形成的微乳平均粒径为40 nm。结论按优化处方制得的环孢菌素A自乳化半固体骨架胶囊能够提高环孢菌素A在水中的溶出度。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号