首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
活性蛋白质组技术(ABPP)是越来越多的化学蛋白质组学方法之一,该技术利用小分子化学探针来探索化合物和靶点之间的相互作用机制。在中药活性成分分子靶点的鉴定中,ABPP技术具有高效、准确等优越性,目前已经利用该技术鉴定了许多中药活性成分的分子靶点。综述了ABPP技术在中药活性分子靶点中的应用,包括青蒿素、黄芩苷、穿心莲内酯、苏木酮、龙牙葱木皂苷、山楂酸、蟾毒内酯、毛兰素与荜茇宁等,为创新药物靶点的发现提供新的思路。  相似文献   

2.
蛋白质组学在药物研究中的应用   总被引:5,自引:1,他引:4  
近年来,蛋白质组学技术飞速发展,尤其在药物的靶点确认、药物作用机制等研究中,发挥出了其极大的技术优势,明显地提高了药物发现的效率。该文对蛋白质组学的基本方法、新技术以及它在药物靶点的发现和确认、阐明药物作用机制、药物毒理学、耐药相关机制研究、临床医药研究等方面的应用进行综述。  相似文献   

3.
随着科学的发展和时代的进步,药物化学的研究不仅仅局限于先导化合物的发现及其构效关系的研究,一些小分子药物靶点的确认正逐渐成为阻碍药物化学发展的瓶颈问题。因此,活性小分子化合物靶点的鉴定与确认也成为研究过程中最为关键和艰巨的任务,通常会起到决定性作用。本文简要总结活性小分子化合物靶点验证的现行方法,阐述通过合成探针进行靶标鉴别的手段,介绍探针的设计与合成思想,并列举应用这些方法成功找到靶点的实例。  相似文献   

4.
基于活性的蛋白质表达谱(ABPP)和基于亲和性的蛋白质表达谱(AfBPP)分析技术是以化合物为中心的化学蛋白质组学技术,在鉴定小分子药物和(或)毒物的直接作用靶点方面具有显著优势。明确直接作用靶点有助于更加全面地认识小分子化合物的药理毒理机制。本文简要介绍ABPP和AfBPP技术,并总结了近年来该技术在药物脱靶、毒物靶点鉴定方面的应用实例,如克雷诺拉尼、BIA 10-2474和奥利司他等药物的脱靶效应及VX、杀螟硫磷和丙烯醛等有毒化合物的直接作用靶点鉴定,以期对药理学、毒理学和化学生物学研究有一定的启发和借鉴意义。  相似文献   

5.
抗阿片依赖药物靶标研究的新进展   总被引:1,自引:0,他引:1  
基因组和蛋白质组研究的巨大成功,使药物的研究过程发生了革命性的改变。今天,至少在理论上,人类已能够应用基因组学、疾病基因组学、药物基因组学和蛋白质组学技术发现与人类重大疾病相关的分子(药靶);根据药靶的结构特征结合计算机辅助设计技术就又可能设计出能与这些重大疾病相关分子发生特异性相互作用的小分子化合物,而进一步发展成药物。这一新的药物研发过程不仅大大缩短了药物的研发时间和花费的人力物力,更重要的是它能使人类更多更快地发现象当年的磺胺、青霉素、氯丙嗪等具有全新作用和全新作用机制的药物,使人类从根本上摆脱有病无特效药的被动局面。  相似文献   

6.
中枢神经系统疾病及其药物与蛋白质组学研究进展   总被引:1,自引:0,他引:1  
阐述中枢神经系统疾病及其药物蛋白质组学研究的最新进展。蛋白质组学是后基因组时代的一门重要学科 ,是从整体水平对蛋白质进行综合分析 ,目前已广泛应用于临床和生物医学各个领域。蛋白质组学研究有助于阐明CNS疾病发生、发展、转归的网络机制 ,寻找疾病特异性蛋白质 ,针对疾病靶点定向合成药物 ,构建分子药理模型 ,高通量地筛选和评价药物的效应及毒副作用。可以预见 ,蛋白质组学将为CNS疾病的诊断、监测和药物研制起到不可估量的作用  相似文献   

7.
21世纪,科学家面临着从基因组到蛋白质组的转变,蛋白质组学的出现预示了生命科学进入了新纪元——后基因组时代,并且成为基因组和药物发现之间的桥梁。由于几乎所有的药物都是通过蛋白质发挥作用,蛋白质组学在药学研究中的应用,大大加速和简化了新药开发的过程。在药物作用靶点的识别与验证、药物耐药机制的探索、药物毒理学研究等方面已显示出巨大的潜力。本文主要就蛋白质组学的产生背景、相关概念、相关技术及其在药学研究中的应用作一简述。  相似文献   

8.
基因组学和转录组学的研究,促进了高通量药物筛选的发展。目前,高通量药物发现已经转向关注蛋白质组学、糖原组学和代谢组学评价中存在的难题。微阵列技术是评价基因表达的主要工具,它们也被用于蛋白质和小分子筛选库。微阵列技术能帮助人们从更小体积的样品中获得更多的信息,使得低花费的高通量分析在药物发现过程中成为可能。蛋白质组学、糖原组学和组织阵列技术的发展将进一步帮助和促进药物发现过程的实现。  相似文献   

9.
Zhang J  Zhou HC 《药学学报》2012,47(3):299-306
生物活性化合物在细胞内作用靶点的确定是化学生物学和药物开发中的关键问题之一。作为功能蛋白质组学中的一项重要技术, 小分子探针在确定生物活性化合物细胞内作用靶点的研究中扮演着举足轻重的角色。本文介绍了小分子探针的应用原理、结构和设计原则, 并通过列举近年来该技术应用的成功示例进一步阐明小分子生物活性探针技术的应用原理和重要性。  相似文献   

10.
王斌  曾明  章金刚 《药品评价》2006,3(2):141-143
蛋白质组是指基因组表达的所有相应的蛋白质,是指细胞或组织或机体全部蛋白质的存在及其活动方式。蛋白质组具有多样性和可变性,同一机体的不同细胞中,蛋白质的种类和数量是各不相同的,即使是同一种细胞。在不同时期、不同生理条件下,其蛋白质组都是在不断变化之中,在病理过程或药物作用下,细胞蛋白质的组成及其变化,与正常生理过程也是不同的。蛋白质组学是从整体的蛋白质水平上,从生命本质的层次上,研究和发现生命活动的规律和重要生理、病理现象的本质。蛋白质的研究技术主要应用于两个方面,一个是特殊细胞、组织或有机体的系统鉴定和所有蛋白的定量,这是系统生物学的核心,可以提供一个完全量化的含翻译后修饰变体的蛋白质组,更重要的是可以在相关样品中寻找差异,即在生理状态发生变化而产生的蛋白质图谱中的差异。另一个方面主要是蛋白质功能和蛋白质相互作用的研究,包括如蛋白质序列、结构、相互作用和生化活性的分析等多种试验方法。药物蛋白质组学的重要研究内容在临床前包括新药和靶的发现、药物作用模式、毒理学研究,在临床研究方面包括疾病特异性蛋白作为有效患者选择的依据和临床试验的标志。应用类似于药物遗传学的方法,按照蛋白质谱来分类患者,并预测药物作用疗效。  相似文献   

11.
The application of chemical proteomics to new target discovery can lead to a rapid understanding of disease mechanism and new therapeutic methods. Successful application includes a thorough understanding of SAR and the validation of target relevance using multiple genetic and biochemical methods. This feature review highlights several successful applications of chemical proteomics and outlines the strategy and approaches that lead to the discovery of novel therapeutic targets.  相似文献   

12.
A fundamental goal of chemical proteomics is to identify target proteins for bioactive small molecules and then apply them to drug discovery and development as valid and drugable targets. Here, we introduce integrated technologies for the rapid identification of target proteins, methodologies for validating them as drugable targets, and applications of chemical proteomics in drug discovery and development.  相似文献   

13.
14.
15.
The Strategic Research Institute provided a well-organised 2-day summit that offered presentations and posters on new assay technology, structure-based small-molecule discovery and examples of clinical candidates targeted to G-protein-coupled receptor (GPCR) targets. A wide variety of topics were presented providing recent advances in GPCR target selection, bioassay-enabling technology and medicinal chemistry targeted to GPCR-relevant chemical libraries. GPCRs continue to be an attractive platform for drug discovery.  相似文献   

16.
The Strategic Research Institute provided a well-organised 2-day summit that offered presentations and posters on new assay technology, structure-based small-molecule discovery and examples of clinical candidates targeted to G-protein-coupled receptor (GPCR) targets. A wide variety of topics were presented providing recent advances in GPCR target selection, bioassay-enabling technology and medicinal chemistry targeted to GPCR-relevant chemical libraries. GPCRs continue to be an attractive platform for drug discovery.  相似文献   

17.
Advances in genomics and proteomics have revolutionised the drug discovery process and target validation. Identification of novel therapeutic targets for chronic skeletal diseases is an extremely challenging process based on the difficulty of obtaining high-quality human diseased versus normal tissue samples. The quality of tissue and genomic information obtained from the sample is critical to identifying disease-related genes. Using a genomics-based approach, novel genes or genes with similar homology to existing genes can be identified from cDNA libraries generated from normal versus diseased tissue. High-quality cDNA libraries are prepared from uncontaminated homogeneous cell populations harvested from tissue sections of interest. Localised gene expression analysis and confirmation are obtained through in situ hybridisation or immunohistochemical studies. Cells overexpressing the recombinant protein are subsequently designed for primary cell-based high-throughput assays that are capable of screening large compound banks for potential hits. Afterwards, secondary functional assays are used to test promising compounds. The same overexpressing cells are used in the secondary assay to test protein activity and functionality as well as screen for small-molecule agonists or antagonists. Once a hit is generated, a structure-activity relationship of the compound is optimised for better oral bioavailability and pharmacokinetics allowing the compound to progress into development. Parallel efforts from proteomics, as well as genetics/transgenics, bioinformatics and combinatorial chemistry, and improvements in high-throughput automation technologies, allow the drug discovery process to meet the demands of the medicinal market. This review discusses and illustrates how different approaches are incorporated into the discovery and validation of novel targets and, consequently, the development of potentially therapeutic agents in the areas of osteoporosis and osteoarthritis. While current treatments exist in the form of hormone replacement therapy, antiresorptive and anabolic agents for osteoporosis, there are no disease-modifying therapies for the treatment of the most common human joint disease, osteoarthritis. A massive market potential for improved options with better safety and efficacy still remains. Therefore, the application of genomics and proteomics for both diseases should provide much needed novel therapeutic approaches to treating these major world health problems.  相似文献   

18.
Cell biology has added immensely to the understanding of basic biologic concepts. However, scientists need to use cell biology more in the proteomic–genomic revolution. The authors have developed two novel techniques: transitional structural chemogenomics (TSCg) and transitional structural chemoproteomics (TSCp). TSCg is used to regulate gene expression by using ultrasensitive small-molecule drugs that target nucleic acids. By using chemicals to target transitional changes in the helical conformations of single-stranded (ss) and double-stranded (ds) DNA (e.g., B- to Z-DNA) and RNA (e.g., A- to Z-RNA), gene expression can be regulated (i.e., turning genes ‘on/off’ and variably controlling them). Alternative types of ds- and ssDNA and RNA (e.g., cruciform DNA) and other multistranded nucleic acids (e.g., triplex-DNA) are also targeted by this method. The authors’ second technique, TSCp, targets a protein before, during or after post-translational modifications, which alters the protein’s structure and function. These novel methods represent the next step in the evolution of chemical genomics and chemical proteomics. In addition, a novel multi-stranded (alternative) DNA, RNA and plasmid microarray has been developed that allows for the immobilization of intact, non-denatured dsDNA, alternative (i.e., exotic) and other multiple-stranded nucleic acids. This represents the next generation of nucleic acid microarrays, which will aid in the characterization of nucleic acids, studying the ageing process and improving the drug discovery process. The authors discuss how cell biology can be used to enhance genomics and proteomics. Cell biology will play a greater role during the postgenomic age and will help to enhance the omics/omes and drug discovery. It is the authors’ hope that these novel approaches can be used together with cellular biologic techniques to make major contributions towards understanding and manipulating different genomes.  相似文献   

19.
The increasing need to efficiently assemble small molecules as potential modulators of therapeutic targets that are emerging from genomics and proteomics is driving the development of novel technologies for small-molecule synthesis. Here, we describe some of the general applications and approaches to synthesis using one such technology--solid-supported reagents--that has been shown to significantly improve productivity in the generation of combinatorial libraries and complex target molecules.  相似文献   

20.
RNA interference (RNAi) and small-molecule approaches are synergistic on multiple levels, from technology and high-throughput screen development to target identification and functional studies. Here, we describe the RNAi screening platform that we have established and made available to the community through the Drosophila RNAi Screening Center at Harvard Medical School. We then illustrate how the combination of RNAi and small-molecule HTS can lead to effective identification of targets in drug discovery.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号