首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The tetrazole-substituted amino acid (+/-)-(2SR,4RS)-4-(1H-tetrazol-5-ylmethyl)pip eri dine-2-carboxylic acid (LY233053, (+/-)-1) was resolved into its constituent enantiomers by treatment of a key intermediate in the synthesis of the racemic amino acid, ethyl (+/-)-cis-4-(cyanomethyl)-N-allylpiperidine-2-carboxylate, with either 2S,3S- or 2R,3R-di-p-toluoyltartaric acid. These resolved amines were then converted as for the racemate to the amino acids (-)-1 and (+)-1. The activity of this potent and selective NMDA antagonist was found to reside with the (-)-isomer of 1 (LY235723). X-ray crystallographic analysis of the 2S,3S-di-p-toluoyltartaric acid salt of ethyl cis-4-(cyanomethyl)-N-allylpiperidine-2-carboxylate showed that the resolved amine, and thus (-)-1, possessed the 2R,4S absolute stereochemistry. Affinity for the NMDA receptor was determined using the specific radioligand [3H]-(2SR,4RS)-4-(phosphonomethyl)piperidine-2-carboxylic acid ([3H]CGS 19755; IC50 = 67 +/- 6 nM), and selective NMDA antagonist activity was determined using a cortical slice preparation (IC50 versus 40 microM NMDA = 1.9 +/- 0.24 microM). This compound also demonstrated potent NMDA antagonist activity in vivo following systemic administration through its ability to block NMDA-induced convulsions in neonatal rats, NMDA-induced lethality in mice, and NMDA-induced striatal neuronal degeneration in rats.  相似文献   

2.
The syntheses of (RS)-alpha-amino-3-hydroxy-5-tert-butyl-4-isoxazolepropionic acid (9, ATPA), (alpha-RS, beta-RS)-alpha-amino-beta-methyl-3-hydroxy-5-isoxazolepropionic acid (8), (RS)-alpha-amino-3-hydroxy-5-isoxazolebutyric acid (15a), and (RS)-alpha-amino-3-hydroxy-5-isoxazolevaleric acid (15b) are described. The compounds were tested in vitro together with (RS)-alpha-amino-3-hydroxy-5-(bromomethyl)-4-isoxazolepropionic acid (ABPA) as inhibitors of the binding of radioactive-labeled (RS)-alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) to rat brain synaptic membranes. These data were compared with the earlier reported effects of the compounds on single neurons in the feline spinal cord obtained by microelectrophoretic techniques. The three compounds AMPA, ATPA, and ABPA are agonists at the class of receptors assumed to represent a subtype of physiological (S)-glutamic acid (Glu) receptors. Inhibition of [3H]AMPA binding by ATPA was 1 order of magnitude weaker than that of AMPA, in agreement with the relative potency of these compounds in vivo. ABPA proved to be equipotent with AMPA both as an inhibitor of AMPA binding and as a neuronal excitant. The compounds 8, 15a, and 15b have no effect as inhibitors of AMPA binding, in agreement with in vivo studies that have shown that 8 does not affect the firing of central neurons whereas 15a and 15b are antagonists at NMDA receptors, a subpopulation of excitatory receptors not affected by AMPA. Molecular mechanical calculations on AMPA, ATPA, and ABPA using the program MM2 showed that conformations of AMPA, ABPA, and especially ATPA by rotation of the amino acid side chain have energy barriers. A possible receptor-active conformation is suggested.  相似文献   

3.
The 3-isoxazolol amino acid (RS)-2-amino-3-(3-hydroxy-5-methylisoxazol-4-yl)propionic acid (AMPA, 2) and the isomeric compound (RS)-2-amino-3-(3-hydroxy-4-methylisoxazol-5-yl)propionic acid (4-methylhomoibotenic acid, 4a) are potent agonists at the AMPA subtype of central excitatory amino acid receptors. Using 4a as a lead structure, the amino acids 4c-e, in which the 4-methyl group of 4a is replaced by substituents of different size and polarity, were synthesized. Attempts to synthesize 4-(bromomethyl)homoibotenic acid (4f), a potential receptor alkylating agent, were unsuccessful. 4-Butylhomoibotenic acid (4c) and 4-(2-hydroxyethyl)homoibotenic acid (4e) were equipotent as inhibitors of [3H]AMPA binding (IC50 = 2 microM) and showed similar excitatory activity in the rat cortical slice preparation. 4d did not show significant affinity for AMPA receptor sites, but turned out to be a weak N-methyl-D-aspartic acid (NMDA) receptor antagonist. However, like 4c,e, 4d did not significantly affect the binding of the competitive NMDA antagonist, [3H]CPP, or the noncompetitive NMDA antagonist, [3H]MK-801. None of the amino acids 4c-e showed detectable affinity for [3H]kainic acid binding sites. Like the parent compound 4a (IC50 = 0.18 microM), 4c (IC50 = 0.18 microM), 4e (IC50 = 0.14 microM), and in particular 4d (IC50 = 0.02 microM) were effective inhibitors of calcium chloride-dependent [3H]glutamic acid binding, whereas AMPA is inactive (IC50 greater than 100 microM) in this binding assay. Thus, 4d is an effective and highly selective inhibitor of calcium chloride-dependent [3H]glutamic acid binding and may be a useful tool for studies of the physiological relevance and pharmacological importance of this binding affinity.  相似文献   

4.
We have studied the pharmacological effects of (RS)-2-amino-3-(3-hydroxy-5-methylisoxazol-4-yl)propionic acid (AMPA) and the enantiomers of (RS)-2-amino-3-(3-hydroxy-1,2, 5-thiadiazol-4-yl)propionic acid (TDPA) on cloned human excitatory amino acid transporter subtypes 1, 2 and 3 (EAAT1-3) expressed in Cos-7 cells. Whereas AMPA and (R)-TDPA were both inactive as inhibitors of [3H]-(R)-aspartic acid uptake on all three EAAT subtypes, (S)-TDPA was shown to selectively inhibit uptake by EAAT2 with a potency equal to that of the endogenous ligand (S)-glutamic acid. (S)-TDPA thus represents a new structural class of EAAT2 inhibitor that will serve as a lead for the design of EAAT selective inhibitors.  相似文献   

5.
(RS)-2-Amino-3-(5-tert-butyl-3-hydroxy-4-isothiazolyl)propionic acid (thio-ATPA), a 3-isothiazolol analogue of (RS)-2-amino-3-(5-tert-butyl-3-hydroxy-4-isoxazolyl)propionic acid (ATPA), has previously been shown to be a relatively weak AMPA receptor agonist at native (S)-glutamic acid ((S)-Glu) receptors (EC(50)=14 microM), comparable in potency with ATPA (EC(50)=34 microM). Recent findings, that (S)-ATPA is a potent (EC(50)=0.48 microM) and selective agonist at homomerically expressed ionotropic GluR5, prompted us to resolve thio-ATPA using chiral chromatography and pharmacologically characterize the two enantiomers at native as well as cloned ionotropic glutamate receptors. The enantiomers, (S)- and (R)-thio-ATPA, were obtained in high enantiomeric excess, and their absolute stereochemistry established by an X-ray crystallographic analysis. Electrophysiologically, the two enantiomers were evaluated in the rat cortical wedge preparation, and the S-enantiomer was found to be an AMPA receptor agonist (EC(50)=8.7 microM) twice as potent as the racemate, whereas the R-enantiomer was devoid of activity. In accordance with this, (S)-thio-ATPA proved to be an agonist at homomerically expressed recombinant AMPA receptors (GluR1o, GluR3o, and GluR4o) with EC(50) values of 5, 32 and 20 microM, respectively, producing maximal steady state currents of 78--168% of those maximally evoked by kainic acid, and 120-1600% of those maximally evoked by (S)-ATPA. At homomerically expressed GluR5, (S)-thio-ATPA was found to be a potent agonist (EC(50)=0.10 microM), thus being approximately five times more potent than (S)-ATPA. (R)-Thio-ATPA induced saturating currents with an estimated EC(50) value of 10 microM, most likely due to a contamination with (S)-thio-ATPA. At heteromerically expressed GluR6+KA2 receptors, (S)-thio-ATPA showed relatively weak agonistic properties (EC(50)=4.9 microM). Thus, (S)-thio-ATPA has been shown to be a very potent agonist at GluR5, and may be a valuable tool for the investigation of desensitization properties of AMPA receptors.  相似文献   

6.
A number of 1-hydroxyazole derivatives were synthesized as bioisosteres of (S)-glutamic acid (Glu) and as analogues of the AMPA receptor agonist (R,S)-2-amino-3-(3-hydroxy-5-methyl-4-isoxazolyl)propionic acid (AMPA, 3b). All compounds were subjected to in vitro pharmacological studies, including a series of Glu receptor binding assays, uptake studies on native as well as cloned Glu uptake systems, and the electrophysiological rat cortical slice model. Compounds 7a,b, analogues of AMPA bearing a 1-hydroxy-5-pyrazolyl moiety as the distal carboxylic functionality, showed only moderate affinity for [3H]AMPA receptor binding sites (IC(50) = 2.7 +/- 0.4 microM and IC(50) = 2.6 +/- 0.6 microM, respectively), correlating with electrophysiological data from the rat cortical wedge model (EC(50) = 280 +/- 48 microM and EC(50) = 586 +/- 41 microM, respectively). 1-Hydroxy-1,2,3-triazol-5-yl analogues of AMPA, compounds 8a,b, showed high affinity for [3H]AMPA receptor binding sites (IC(50) = 0.15 +/- 0.03 microM and IC(50) = 0.13 +/- 0.02 microM, respectively). Electrophysiological data showed that compound 8a was devoid of activity in the rat cortical wedge model (EC(50) > 1000 microM), whereas the corresponding 4-methyl analogue 8b was a potent AMPA receptor agonist (EC(50) = 15 +/- 2 microM). In accordance with this disparity, compound 8a was found to inhibit synaptosomal [3H]D-aspartic acid uptake (IC(50) = 93 +/- 25 microM), as well as excitatory amino acid transporters (EAATs) EAAT1 (IC(50) = 100 +/- 30 microM) and EAAT2 (IC(50) = 300 +/- 80 microM). By contrast, compound 8b showed no appreciable affinity for Glu uptake sites, neither synaptosomal nor cloned. Compounds 9a-c and 10a,b, possessing 1-hydroxyimidazole as the terminal acidic function, were devoid of activity in all of the systems tested. Protolytic properties of compounds 7a,b, 8b, and 9b were determined by titration, and a correlation between the pK(a) values and the activity at AMPA receptors was apparent. Optimized structures of all the synthesized ligands were fitted to the known crystal structure of an AMPA-GluR2 construct. Where substantial reduction or abolition of affinity at AMPA receptors was observed, this could be rationalized on the basis of the ability of the ligand to fit the construct. The results presented in this article point to the utility of 1-hydroxypyrazole and 1,2,3-hydroxytriazole as bioisosteres of carboxylic acids at Glu receptors and transporters. None of the compounds showed significant activity at metabotropic Glu receptors.  相似文献   

7.
A number of analogues of ibotenic acid [(RS)-3-hydroxy-5- isoxazoleglycine ] were synthesized; they were tested as excitants on neurons in the cat spinal cord, by using microelectrophoretic techniques, and as inhibitors of the binding of kainic acid (KA) in vitro, by using synaptic membranes prepared from rat brains. The excitatory effects of the 3- isoxazolol amino acids (RS)-3-hydroxy-4,5,6,7-tetrahydroisoxazolo[5, 4-c]pyridine-7-carboxylic acid (4, 7- HPCA ), (RS)-alpha-amino-3-hydroxy-5,6-dihydro-4H- cyclohept [1,2-d] isoxa zole - 8-propionic acid (8, 8- AHCP ), (RS)-alpha-amino-3- hydroxy-7,8-dihydro-6H- cyclohept [1,2-d] isoxazole -4-propionic acid (12, 4- AHCP ), and (RS)-alpha-(methylamino)-3-hydroxy-5-methyl- 4- isoxazolepropionic acid (15, N-Me-AMPA) were shown to be sensitive to (S)-glutamic acid diethyl ester (GDEE), an antagonist at quisqualic acid ( QUIS ) receptors, and insensitive to (RS)-2-amino-5-phosphonovaleric acid ( 2APV ), an antagonist at N-methyl-(R)-aspartic acid (NMDA) receptors. The compounds 4 and 12 proved to be particularly potent agonists at the former class of receptor, assumed to represent physiological glutamic acid receptors. The amino acids (RS)-beta-(2-carboxyphenyl)alanine (19), an analogue of 12, and (RS)-2-(3-carboxyphenyl) glycine were weak GDEE-sensitive excitants with potencies comparable with that of 8. All of the compounds were tested as inhibitors of KA binding. With the exception of 12 and 19, which showed very low affinity for the KA binding sites, the compounds studied were inactive in this in vitro test system.  相似文献   

8.
The natural product kainic acid is used as template for the rational design of a novel conformationally restricted (S)-glutamic acid (Glu) analogue, (1R,4S,5R,6S)-3-azabicyclo[3.3.0]octane-4,6-dicarboxylic acid (1a). The target structure 1a was synthesized from commercially available (S)-pyroglutaminol, in an enantioselective fashion, in 14 steps. Pharmacological characterization of 1a at human glutamate transporter subtypes 1, 2, and 3 yielded K(i) values of 127, 52, and 46 microM, respectively. Furthermore, binding studies at native ionotropic Glu (iGlu) receptors revealed low affinity for alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionate (AMPA)-preferring iGlu receptors (IC(50) > 100 microM), whereas affinities for the KAIN-preferring iGlu receptors and the N-methyl-d-aspartate (NMDA)-preferring group of iGlu receptors were in the low micromolar range (IC(50) = 14 and 2.9 microM, respectively). At metabotropic Glu receptors (mGluR), EC(50) values for 1a were >1000 microM for mGluR1 and 4, representing group I and III, respectively, and approximately 1000 microM (agonist) for mGluR2, representing group II.  相似文献   

9.
We have previously described (RS)-2-amino-3-(3-hydroxy-7,8-dihydro-6H-cyclohepta[d]isoxazol-4-yl)propionic acid (4-AHCP) as a highly effective agonist at non-N-methyl-d-aspartate (non-NMDA) glutamate (Glu) receptors in vivo, which is more potent than (RS)-2-amino-3-(3-hydroxy-5-methylisoxazol-4-yl)propionic acid (AMPA) but inactive at NMDA receptors. However, 4-AHCP was found to be much weaker than AMPA as an inhibitor of [(3)H]AMPA binding and to have limited effect in a [(3)H]kainic acid binding assay using rat cortical membranes. To shed light on the mechanism(s) underlying this quite enigmatic pharmacological profile of 4-AHCP, we have now developed a synthesis of (S)-4-AHCP (6) and (R)-4-AHCP (7). At cloned metabotropic Glu receptors mGluR1alpha (group I), mGluR2 (group II), and mGluR4a (group III), neither 6 nor 7 showed significant agonist or antagonist effects. The stereoisomer 6, but not 7, activated cloned AMPA receptor subunits GluR1o, GluR3o, and GluR4o with EC(50) values in the range 4.5-15 microM and the coexpressed kainate-preferring subunits GluR6 + KA2 (EC(50) = 6.4 microM). Compound 6, but not 7, proved to be a very potent agonist (EC(50) = 0.13 microM) at the kainate-preferring GluR5 subunit, equipotent with (S)-2-amino-3-(5-tert-butyl-3-hydroxyisothiazol-4-yl)propionic acid [(S)-Thio-ATPA, 4] and almost 4 times more potent than (S)-2-amino-3-(5-tert-butyl-3-hydroxyisoxazol-4-yl)propionic acid [(S)-ATPA, 3]. Compound 6 thus represents a new structural class of GluR5 agonists. Molecular modeling and docking to a crystal structure of the extracellular binding domain of the AMPA subunit GluR2 has enabled identification of the probable active conformation and binding mode of 6. We are able to rationalize the observed selectivities by comparing the docking of 4 and 6 to subtype constructs, i.e., a crystal structure of the extracellular binding domain of GluR2 and a homology model of GluR5.  相似文献   

10.
Suramin is a large naphthyl-polysulfonate compound that inhibits an array of receptors and enzymes, and it has also been reported to block currents mediated by glutamate receptors. This study shows that suramin and several structurally related compounds [8,8'-[carbonylbis(imino-3,1-phenylenecarbonylamino)]bis-(1,3,5-naphthalenetrisulfonic acid), 6Na (NF023), 8,8'-(carbonylbis(imino-4,1-phenylenecarbonylimino-4,1-phenylenecarbonylimino))bis-1,3,5-naphthalenetrisulfonic acid, Na (NF279), and 4,4',4',4'-[carbonyl-bis[imino-5,1,3-benzenetriyl-bis-(carbonylimino)]]tetrakis-benzene-1,3-disulfonic acid, 8Na (NF449)] reduce binding of [3H]alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) and [3H]fluorowillardiine to rat brain membranes and homomeric GluR1-4 receptors, with IC50 values in the range of 5 to 180 microM. Inhibition often was less than complete at saturating drug concentrations and thus seems to be noncompetitive in nature. Pyridoxal-5'-phosphate-6-(2'-naphthylazo-6'-nitro-4',8'-disulfonate) (PPNDS) is a potent antagonist of purinoceptors that shares some structural elements with suramin yet is smaller than the latter. PPNDS also had potent effects on AMPA receptors (EC50 value of 4 microM) but of a kind not seen with the other compounds in that it increased binding affinity for radioagonists severalfold. In addition, PPNDS slowed association and dissociation rates more than 10 times. In physiological experiments with GluR2 receptors, PPNDS at 50 microM reduced the peak current by 30 to 50% but had only small effects on other waveform aspects such desensitization and steady-state currents. This pattern of effects differentiates PPNDS from other compounds such as thiocyanate and up-modulators, which increase agonist binding by enhancing desensitization or slowing deactivation, respectively. Receptor model simulations indicate that most effects can be accounted for by assuming that PPNDS slows agonist binding/unbinding and stabilizes the bound-closed state of the receptor. By extension, suramin is proposed to stabilize the unbound state and thereby to reduce affinity for agonists. These drugs thus act through a novel type of noncompetitive antagonism.  相似文献   

11.
Caloporoside is a natural active fungal metabolite, which was isolated from Caloporous dichrous and was described to exhibit antibacterial, antifungal and phospholipase C inhibitory activity. We have previously reported evidence that related beta-linked compounds, lactose and octyl-beta-d-mannoside, bind and functionally modulate rodent GABA(A) receptors, respectively. We have characterized the binding pharmacology of synthetic caloporoside and two further congeners, 2-hydroxy-6-([(16R)-(beta-d-mannopyranosyloxy)heptadecyl]) benzoic acid and octyl-beta-d-glucoside on GABA(A) receptors using a [35S]-t-butylbicyclophosphoorothionate (TBPS) radioligand binding assay. Caloporoside and 2-hydroxy-6-([(16R)-(beta-d-mannopyranosyloxy)heptadecyl]) benzoic acid produced concentration-dependent complete inhibition of specific [35S] TBPS binding with overall apparent IC50 values of 14.7+/-0.1 and 14.2+/-0.1 microM, respectively. In contrast, octyl-beta-d-glucoside elicited a concentration-dependent stimulation of specific [35S] TBPS binding (E(max)=144+/-4%; EC50=39.2+/-22.7 nM). The level of stimulation was similar to that elicited by diazepam (E(max)=147+/-6%; EC50=0.8+/-0.1 nM), and was occluded by GABA (0.3 microM). However, the three test compounds failed to elicit any significant effect (positive or negative) upon [3H] flunitrazepam or [3H] muscimol binding, indicating that they did not bind directly, or allosterically couple, to the benzodiazepine or agonist binding site of the GABA(A) receptor, respectively. The constituent monosaccharide, glucose, and both the closely related congeners octyl-beta-d-glucoside or hexyl-beta-d-glucoside have no significant effect upon [35S] TBPS binding. These data, together, provide strong evidence that a beta-glycosidic linkage and chain length are crucial for the positive modulation of [35S] TBPS binding to the GABA(A) receptor by this novel chemical class.  相似文献   

12.
Using ibotenic acid (2) as a lead, two series of 3-isoxazolol amino acid ligands for (S)-glutamic acid (Glu, 1) receptors have been developed. Whereas analogues of (RS)-2-amino-3-(3-hydroxy-5-methyl-4-isoxazolyl)propionic acid [AMPA, (RS)-3] interact selectively with ionotropic Glu receptors (iGluRs), the few analogues of (RS)-2-amino-3-(3-hydroxy-5-isoxazolyl)propionic acid [HIBO, (RS)-4] so far known typically interact with iGluRs as well as metabotropic Glu receptors (mGluRs). We here report the synthesis and pharmacology of a series of 4-substituted analogues of HIBO. The hexyl analogue 9 was shown to be an antagonist at group I mGluRs. The effects of 9 were shown to reside exclusively in (S)-9 (K(b) = 30 microM at mGlu(1) and K(b) = 61 microM at mGlu(5)). The lower homologue of 9, compound 8, showed comparable effects at mGluRs, but 8 also was a weak agonist at the AMPA subtype of iGluRs. Like 9, the higher homologue, compound 10, did not interact with iGluRs, but 10 selectively antagonized mGlu(1) (K(b) = 160 microM) showing very weak antagonist effect at mGlu(5) (K(b) = 990 microM). The phenyl analogue 11 turned out to be an AMPA agonist and an antagonist at mGlu(1) and mGlu(5), and these effects were shown to originate in (S)-11 (EC(50) = 395 microM, K(b) = 86 and 90 microM, respectively). Compound 9, administered icv, but not sc, was shown to protect mice against convulsions induced by N-methyl-D-aspartic acid (NMDA). Compounds 9 and 11 were resolved using chiral HPLC, and the configurational assignments of the enantiomers were based on X-ray crystallographic analyses.  相似文献   

13.
Several derivatives of kynurenic and thiokynurenic acids were synthesized and tested for their ability to protect primary cultures of cerebellar granule cells against excitotoxic damage, and to affect the binding of [3H]glycine ([3H]Gly), [3H]alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid ([3H]AMPA), [3H]3-(2-carboxypiperazine-4-yl-)propyl-1-phosphonic acid ([3H]CPP), [3H]kainic acid and [3H]N-[1-(2-thienyl)cyclohexyl]-3,4-piperidine ([3H]TCP) to rat cortical membranes. Kynurenic and thiokynurenic acid derivatives with one or two halogens in position 5 or 7 were selective glycine antagonists, failing to affect N-methyl-D-aspartate (NMDA), kainate or AMPA sites at micromolar concentrations. 7-Cl-kynurenic, 7-Cl-thiokynurenic, 5,7-diCl-kynurenic and 5,7-diCl-thiokynurenic acids had similar IC50s for displacing [3H]Gly from its strychnine-insensitive site and for reducing the stimulated (0.5 microM NMDA and 1 microM glycine) [3H]TCP binding to cortical membranes. However, 7-Cl-thiokynurenic acid was particularly potent to prevent excitotoxic neuronal death in cultured cerebellar granule cells. This action may be ascribed to inhibition of lipid peroxidation, a property which was demonstrated for the 5- or 7-Cl derivatives of thiokynurenic acid. Furthermore, 7-Cl-thiokynurenic acid reduced excitotoxic damage caused by the injection of quinolinic acid in the rat striatum. Thus, 7-Cl-thiokynurenic acid appears to be a new compound with interesting antiexcitotoxic properties both in vitro and in vivo.  相似文献   

14.
1. The actions of a series of twelve phenylglycine derivatives at metabotropic glutamate receptors (mGluRs) linked to both phosphoinositide hydrolysis (PI) and cyclic AMP were investigated. 2. PI hydrolysis was determined by the accumulation of [3H]-inositol-monophosphate ([3H]-IP1) in neonatal ral cortical slices prelabelled with [3H]-myo-inositol. The non-selective mGluR agonist (1S,3R)-1-aminocyclopentane-1, 3-dicarboxylic acid ((1S,3R)-ACPD) produced a concentration-dependent increase in [3H]-IP1 (EC50 approximately 20 microM). This agonist was subsequently used to investigate potential antagonist activity of the phenylglycine derivatives. Of the compounds tested (+)-alpha-methyl-4-carboxyphenylglycine (M4CPG) and (RS)-alpha-ethyl-4-carboxyphenylglycine (E4CPG) were the most active with KP values of 0.184 +/- 0.04 mM and 0.367 +/- 0.2 mM respectively. 3. Activity at adenylyl cylase-coupled mGluRs was investigated by determining the accumulation of [3H]-cyclic AMP in adult rat cortical slices. [3H]-cyclic AMP accumulation, elicited by 30 microM forskolin, was inhibited by (2S,3S,4S)-alpha-(carboxycyclopropyl)glycine (L-CCG-1) and L-2-amino-4-phosphonobutanoate (L-AP4) with respective EC50 values of 0.3 microM and 10 microM. Neither agonist was able to inhibit completely forskolin stimulated cyclic AMP accumulation; this is evidence that not all adenylyl cyclase is susceptible to modulation by mGluRs. Phenylglycine derivatives were examined for their ability to antagonize the inhibition of [3H]-cyclic AMP accumulation by L-CCG-1 or L-AP4 at their EC50 concentrations. 4. A rank order of potency of the phenylglycine derivatives as antagonists of L-AP4 and L-CCG-1 was obtained. The most effective compound. (RS)-alpha-methyl-3-carboxymethylphenylglycine (M3CMPG) had IC50 values in the order of 1 microM against L-AP4 and 0.4 microM against L-CCG-1. 5. The results from this study indicate that phenylglycine-derived compounds can discriminate between groups of metabotropic glutamate receptors and may also display some selective activity between subtypes within groups. Future work based on these findings may lead to the development of more selective and potent compounds as important pharmacological tools.  相似文献   

15.
The enantiomers [(S)-(+) and (R)-(-)] of N-n-propylnorapomorphine (NPA) were synthesized. (R)-NPA was obtained by the acid-catalyzed rearrangement of N-n-propylnormorphine. (R)-NPA also was converted to (RS)-N-n-propylnorapomorphine dimethyl ether by dehydrogenation of the 10,11-O,O'-dimethyl ether of (R)-NPA with 10% palladium on carbon in acetonitrile, followed by reduction with sodium cyanoborohydride under acidic conditions. Alternatively (RS)-NPA 10,11-O,O'-dimethyl ether was obtained via total synthesis. (+)-Dibenzoyl-D-tartaric acid was used to resolve (RS)-NPA dimethyl ether. Ether cleavage gave (S)-NPA isolated as the hydrochloride salt in greater than 99.9% enantiomeric purity, as determined by circular dichroism (CD) spectra. The pharmacological activities of (S)- and (R)-NPA were evaluated with subnanomolar concentrations of 3H-labeled apomorphine (APO), ADTN, and spiroperidol (SPR) for competition for binding to a membrane-rich subsynaptosomal fraction of calf caudate nucleus. IC50 (nM) values for (R)-NPA vs. (S)-NPA were as follows: [3H]APO, 2.5 vs. 66; [3H]ADTN, 2.0 vs. 60; [3H]SPR, 174 vs. 1400. The efficacy of (R)- and (S)-NPA in stimulating dopamine-sensitive adenylate cyclase from both homogenates of rat corpus striatum and pieces of intact carp retina was also evaluated. Three behavioral effects in the rat (stereotyped behavior, sedation, and catalepsy) were also examined. Only (R)-NPA induced stereotypy; (S)-NPA failed to antagonize this action of the R isomer. The effects of (R)- and (S)-NPA on adenylate cyclase agreed with the behavioral effects and radioreceptor binding assays in that the R isomer was the strongly preferred enantiomer at dopamine receptors. The S enantiomer of NPA was, however, the weakly preferred configuration for rat liver catechol O-methyltransferase. A dopamine-receptor model accommodates the configuration of NPA and related aporphines.  相似文献   

16.
In rat neocortical slices maintained in Mg2+-free Krebs medium, baclofen depressed the rate of spontaneous discharges in a concentration-dependent manner (EC50 = 4.5 microM). This depression was reversibly antagonised by 5-(S,R)-hydroxymethyl-5-methylmorpholinyl-2-(R,S)-acetic acid (Sch 54679) and 2-(R,S)-5-[spirocyclopentyl]-morpholinyl-acetic acid (Sch 51324) (respective pA2 values of 5.8+/-0.15 and 5.4+/-0.2). In electrically-stimulated slices preloaded with [3H]gamma-aminobutyric acid (GABA), Sch 54679 (EC50 = 3 microM) was 2.3 times more potent than Sch 51324 (EC50 = 7 microM) in increasing [3H]GABA release through antagonism of GABA(B) autoreceptors. These structurally novel analogues may be pharmacologically useful for elucidating GABA(B) receptor functions.  相似文献   

17.
(RS)-5-Amino-4-(4-chlorophenyl)pentanoic acid (10) and the R-form (11) and S-form (12) of (RS)-5-amino-3-(4-chlorophenyl)pentanoic acid, which are homologues of the 4-aminobutanoic acidB (GABAB) receptor agonist (RS)-4-amino-3-(4-chlorophenyl)butanoic acid (baclofen), were synthesized. Compound 10 was synthesized by homologation at the carboxyl end of baclofen using a seven-step reaction sequence. N-Boc-protected (4R, 5R)-4-(4-chlorophenyl)-5-hydroxy-2-piperidone (18) was deoxygenated via a modified Barton-McCombie reaction to give N-Boc-protected (R)-4-(4-chlorophenyl)-2-piperidone (20), which was ring opened and deprotected to give 11.HCl. The corresponding S-enantiomer, 12.HCl, was synthesized analogously from the 4S,5S-enantiomer of 18, compound 21. The enantiomeric purities of 11.HCl (ee = 99.8%) and 12. HCl (ee = 99.3%) were determined by chiral HPLC. Compound 10 did not show detectable affinity for GABAA or GABAB receptor sites and was inactive as an agonist or an antagonist at GABAB receptors in the guinea pig ileum. Like the enantiomers of baclofen, neither 11 nor 12 showed detectable affinity for GABAA receptor sites, and in agreement with the findings for (S)-baclofen, 12 did not interact significantly with GABAB receptor sites. Compound 11 (IC50 = 7.4 +/- 0.6 microM), a homologue of (R)-baclofen (2), was shown to be some 50 times weaker than 2 (IC50 = 0.14 +/- 0.01 microM) as an inhibitor of GABAB binding. Accordingly, 11 (EC50 = 150 +/- 23 microM) was shown to be weaker than 2 (EC50 = 11 +/- 1 microM) as an inhibitor of electrically induced contractions of the guinea pig ileum. However, whereas this effect of 2 was sensitive to the GABAB antagonist, CGP35348 (4), the inhibition by 11 was not significantly affected. Furthermore, 12 (EC50 = 310 +/- 16 microM) was shown to be one-half as potent as 11 in this test system, and this effect of 12 also was insensitive to 4. The dissimilarities of the pharmacological effects of 2 and compounds 11 and 12 were emphasized by the observation that whereas 2 only inhibits the ileum contraction by 59 +/- 5%, 11 as well as 12 were shown to inhibit this response by approximately 94%. Neither 11 nor 12 appeared to affect significantly cholinergic mechanisms in the ileum, and their mechanism(s) of action remain enigmatic.  相似文献   

18.
The nonsteroidal antiandrogen 4'-cyano-3-[(4-fluorophenyl)sulfonyl]-2- hydroxy-2-methyl-3'-(trifluoromethyl)-propionanilide (1) (ICI 176334) has been resolved by chromatographic separation of the diastereomeric (R)-camphanyl esters of the precursor thioether 2 followed by hydrolysis and oxidation of the isolated enantiomers. In addition, an asymmetric synthesis of (S)-3-bromo-2-hydroxy-2-methylpropanoic acid (11) and subsequent conversion into the (S)-sulfone 6a has established that the more potent enantiomer of 1 has the R absolute configuration.  相似文献   

19.
The pharmacological actions of 2,6-di-tert-butyl-4-(3-hydroxy-2-spiropentylpropyl)-phenol (BSPP), a putative presynaptic GABA(B) receptor modulator, were examined in electrically stimulated rat neocortical brain slices preloaded with [3H]-GABA or [3H]-glutamic acid. At 10 mmol/L, BSPP inhibited the release of [3H]-GABA in the presence of baclofen, but not that of [3H]-glutamic acid. This effect was sensitive to the GABA(B) receptor antagonist (+)-(S)-5,5-dimethylmorpholinyl-2-acetic acid (Sch 50911). Alone, BSPP had no effect on the release of [3H]-GABA or [3H]-glutamic acid. It is concluded that BSPP selectively potentiates the action of baclofen at GABA(B) autoreceptors, but not heteroreceptors and may be a useful ligand to discriminate between presynaptic GABA(B) receptor subtypes.  相似文献   

20.
Chlorotriazine herbicides disrupt luteinizing hormone (LH) release in female rats following in vivo exposure. Although the mechanism of action is unknown, significant evidence suggests that inhibition of LH release by chlorotriazines may be mediated by effects in the central nervous system. GABA(A) receptors are important for neuronal regulation of gonadotropin releasing hormone and LH release. The ability of chlorotriazine herbicides to interact with GABA(A) receptors was examined by measuring their effects on [3H]muscimol, [3H]Ro15-4513 and [35S]tert-butylbicyclophosphorothionate (TBPS) binding to rat cortical membranes. Cyanazine (1-400 microM) inhibited [3H]Ro15-4513 binding with an IC50 of approximately 105 microM (n=4). Atrazine (1-400 microM) also inhibited [3H]Ro15-4513 binding, but was less potent than cyanazine (IC50 = 305 microM). However, the chlorotriazine metabolites diaminochlorotriazine, 2-amino-4-chloro-6-ethylamino-s-triazine and 2-amino-4-chloro-6-isopropylamino-s-triazine were without significant effect on [3H]Ro15-4513 binding. Cyanazine and the other chlorotriazines were without effect on [3H]muscimol or [35S]TBPS binding. To examine whether cyanazine altered GABA(A) receptor function, GABA-stimulated 36Cl- flux into synaptoneurosomes was examined. Cyanazine (50-100 microM) alone did not significantly decrease GABA-stimulated 36Cl- flux. Diazepam (10 microM) and pentobarbital (100 microM) potentiated GABA-stimulated 36Cl- flux to 126 and 166% of control, respectively. At concentrations of 50 and 100 microM, cyanazine decreased potentiation by diazepam to 112 and 97% of control, respectively, and decreased potentiation by pentobarbital to 158 and 137% of control (n = 6). Interestingly, at lower concentrations (5 microM), cyanazine shifted the EC50 for GABA-stimulated 36Cl- flux into synaptoneurosomes from 28.9 to 19.4 microM, respectively (n = 5). These results suggest that cyanazine modulates benzodiazepine, but not the muscimol (GABA receptor site) or TBPS (Cl- channel), binding sites on GABA(A) receptors. Furthermore, at low concentrations, cyanazine may slightly enhance function of GABA(A) receptors, but at higher concentrations, cyanazine antagonizes GABA(A) receptor function and in particular antagonizes the positive modulatory effects of diazepam and pentobarbital.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号