首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
For mammalian cochlear hair cells, fate determination is normally completed by birth. We report here that overexpression of Math1, a mouse homolog of the Drosophila gene atonal, in postnatal rat cochlear explant cultures resulted in extra hair cells. Surprisingly, we found that the source of the ectopic hair cells was columnar epithelial cells located outside the sensory epithelium in the greater epithelial ridge, which normally give rise to inner sulcus cells. Moreover, Math1 expression also facilitated conversion of postnatal utricular supporting cells into hair cells. Thus Math1 was sufficient for the production of hair cells in the ear, and immature postnatal mammalian inner ears retained the competence to generate new hair cells.  相似文献   

2.
3.
In mammals, damage to sensory receptor cells (hair cells) of the inner ear results in permanent sensorineural hearing loss. Here, we investigated whether postnatal mouse inner ear progenitor/stem cells (mIESCs) are viable after transplantation into the basal turns of neomycin-injured guinea pig cochleas. We also examined the effects of mIESC transplantation on auditory functions. Eight adult female Cavia porcellus guinea pigs (250-350g) were deafened by intratympanic neomycin delivery. After 7 days, the animals were randomly divided in two groups. The study group (n=4) received transplantation of LacZ-positive mIESCs in culture medium into the scala tympani. The control group (n=4) received culture medium only. At 2 weeks after transplantation, functional analyses were performed by auditory brainstem response measurement, and the animals were sacrificed. The presence of mIESCs was evaluated by immunohistochemistry of sections of the cochlea from the study group. Non-parametric tests were used for statistical analysis of the data. Intratympanic neomycin delivery damaged hair cells and increased auditory thresholds prior to cell transplantation. There were no significant differences between auditory brainstem thresholds before and after transplantation in individual guinea pigs. Some mIESCs were observed in all scalae of the basal turns of the injured cochleas, and a proportion of these cells expressed the hair cell marker myosin VIIa. Some transplanted mIESCs engrafted in the cochlear basilar membrane. Our study demonstrates that transplanted cells survived and engrafted in the organ of Corti after cochleostomy.  相似文献   

4.
5.
The bronx waltzer (vb) mutation in the mouse results in the degeneration of most but not all of the primary auditory receptors, the inner hair cells, and their afferent neurons. We analyzed the ultrastructure of 94 inner hair cells in the intact postnatal mutant mouse and in neonatal cochleas in culture to understand the pathogenesis of hair cell death and to detect factors that may prevent it. The vb spiral neurons of the bronx waltzer display two distinctive features: some of them continue to divide mitotically for at least seven postnatal days, and the type I radial fibers that innervate inner hair cells display a deficiency in immunoexpression of GAD. The growing endings of spiral neurons converge around the inner hair cells or, in their absence, invade the outer hair cell region. Their profuse sprouting among inner spiral sulcus cells contributes to the characteristic ultrastructural picture of the bv cochlea. During the first three days after birth, 40% of the inner hair cells appear normal and innervated, 40% are mostly denervated and degenerating, and 20% are immature, with minimal or no neuronal appositions. However, in mutants 6 days and older only a few inner hair cells survive, and these show either normal or superfluous afferent innervation and axosomatic GABAergic efferent innervation. Degeneration of inner hair cells begins with a distention of the nuclear envelope and the ribosomal endoplasmic reticulum. The outer nuclear membrane eventually breaks, and exudate fills the cell interior. The cellular edema leads to cell death. We propose that success or failure in synaptic acquisition is a decisive factor in the survival or decline of the mutant inner hair cells. We also suggest that the developmental delay in maturation of the spiral ganglion neurons (type I) and the failure in their synaptogenesis may be caused by an impairment in neurotrophin (NT3/BDNF) synthesis by their mutant receptor cells.  相似文献   

6.
7.
RBP-J is a key mediator of Notch signaling that regulates a large spectrum of cell fate determinations. To elucidate the functions of Notch signaling in T cell development, we inactivated RBP-J specifically at two stages of T cell development by crossing RBP-J floxed mice with lck-cre or CD4-cre transgenic mice. The loss of RBP-J at an earlier developmental stage resulted in enhanced generation and accelerated emigration of gammadelta T cells, whereas alphabeta T cell development was arrested at the double-negative 3 stage. The loss of RBP-J at a later stage did not affect the absolute number or the production rate of CD4 or CD8-positive mature T cells but enhanced Th1 cell response and reduced CD4(+) T cell proliferation. Our data demonstrated that Notch/RBP-J signaling regulates gammadelta T cell generation and migration, alphabeta T cell maturation, terminal differentiation of CD4(+) T cells into Th1/Th2 cells, and activation of T cells.  相似文献   

8.
Hereditary hearing loss is one of the most prevalent inherited human birth defects, affecting one in 2000. A strikingly high proportion (50%) of congenital bilateral nonsyndromic sensorineural deafness cases have been linked to mutations in the GJB2 coding for the connexin26. It has been hypothesized that gap junctions in the cochlea, especially connexin26, provide an intercellular passage by which K(+) are transported to maintain high levels of the endocochlear potential essential for sensory hair cell excitation. We previously reported the generation of a mouse model carrying human connexin26 with R75W mutation (R75W+ mice). The present study attempted to evaluate postnatal development of the organ of Corti in the R75W+ mice. R75W+ mice have never shown auditory brainstem response waveforms throughout postnatal development, indicating the disturbance of auditory organ development. Histological observations at postnatal days (P) 5-14 were characterized by i) absence of tunnel of Corti, Nuel's space, or spaces surrounding the outer hair cells, ii) significantly small numbers of microtubules in inner pillar cells, iii) shortening of height of the organ of Corti, and iv) increase of the cross-sectional area of the cells of the organ of Corti. Thus, morphological observations confirmed that a dominant-negative Gjb2 mutation showed incomplete development of the cochlear supporting cells. On the other hand, the development of the sensory hair cells, at least from P5 to P12, was not affected. The present study suggests that Gjb2 is indispensable in the postnatal development of the organ of Corti and normal hearing.  相似文献   

9.
Mammalian epidermis consists of a basal layer of proliferative progenitors that gives rise to multiple differentiating layers to provide a waterproof envelope covering the skin surface. To accomplish this, progenitor cells must detach from the basal layer, move upward, and execute a terminal differentiation program consisting of three distinct stages: spinous, granular layer, and stratum corneum. Notch signaling has been implicated in late stages of differentiation, but the commitment switch remains unknown. Here we show with loss and gain-of-function studies that active Notch intracellular domain (NICD) and its obligate canonical signaling partner RBP-J act at the basal/suprabasal juncture to induce spinous and down-regulate basal fate. Spinous layers are absent in RBP-J conditional null epidermis and expanded when Notch1 signaling is elevated transgenically in epidermis. We show that RBP-J is essential for mediating both spinous gene activation and basal gene repression. In contrast, the NICD/RBP-J target gene Hes1 is expressed in spinous layers and mediates spinous gene induction but not basal gene repression. These data uncover an early role for RBP-J and Notch in commitment of epidermal cells to terminally differentiate and reveal that spinous gene induction is mediated by a Hes1-dependent mechanism, while basal gene repression occurs independently of Hes1.  相似文献   

10.
Hair cells in the inner ear of the pirouette and shaker 2 mutant mice   总被引:7,自引:0,他引:7  
The shaker 2 (sh2) and pirouette (pi) mouse mutants display severe inner ear dysfunction that involves both auditory and vestibular manifestation. Pathology of the stereocilia of hair cells has been found in both mutants. This study was designed to further our knowledge of the pathological characteristics of the inner ear sensory epithelia in both the sh2 and pi strains. Measurements of auditory brainstem responses indicated that both mutants were profoundly deaf. The morphological assays were specifically designed to characterize a pathological actin bundle that is found in both the inner hair cells and the vestibular hair cells in all five vestibular organs in these two mutants. Using light microscope analysis of phalloidin-stained specimens, these actin bundles could first be detected on postnatal day 3. As the cochleae matured, each inner hair cell and type I vestibular hair cell contained a bundle that spans from the region of the cuticular plate to the basal end of the cell, then extends along with cytoplasm and membrane, towards the basement membrane. Abnormal contact with the basement membrane was found in vestibular hair cells. Based on the shape of the cellular extension and the actin bundle that supports it, we propose to name these extensions cytocauds. The data suggest that the cytocauds in type I vestibular hair cells and inner hair cells are associated with a failure to differentiate and detach from the basement membrane.  相似文献   

11.
12.
The development of cochlear receptor cells and their supporting elements was studied by means of semi-thin and ultra-thin sections during the first postnatal weeks in the rat. The temporal and spatial patterns of the receptor cell development were investigated between the 4th and 24th days after birth. At approx. ten equidistant positions along the entire cochlear duct length of inner and outer hair cells, width of outer hair cell triad and stereocilia-length of the outer hair cells were quantitatively analyzed. Striking maturational changes take place before the 12th day after birth, that is, when the onset of hearing occurs. These changes are the formation of the tunnel of Corti, of the Nuel spaces, the appearance of filaments within the supporting elements and the change in cell shape of the hair cells. Between 4 days and 20 days after birth the maturation of outer hair cells is characterized by a decrease of organelles in the cytoplasm and establishment of the subsurface cistern. The quantitative analysis revealed a unique developmental pattern of the length of the outer hair cells, the width of the outer hair cell triad and the stereocilia length of the outer hair cells. Shortly after birth these structures have an almost constant size along the whole cochlear duct, but with increasing age the structures shorten at the cochlear base and enlarge at the apex. This pattern results in the establishment of a baso-apical gradient of the above mentioned structures. We assume that this baso-apical gradient is of central importance for the frequency representation.  相似文献   

13.
通过全耳蜗铺片及前庭迷路取材,运用光镜和电镜观察豚鼠丁胺卡那霉素中毒后内耳的病理变化。结果见耳蜗明显受损,以底回为重。螺旋器外毛细胞坏死较多,而内毛细胞及支持细胞病变较轻。前庭椭圆囊耳后细碎,毛细胞纤毛粘连、脱落;壶腹嵴中央区纤毛也缺失。实验对客观评价了胺卡那霉素的内耳毒性及有效地预防其中毒性耳聋的发生提供了实验形态学资料。  相似文献   

14.
目的 探讨免疫球蛋白κJ区的重组信号结合蛋白(RBP-JK)对CD133阳性室管膜细胞增殖与分化的影响及可能的机制.方法 分离孕12 d的美国癌症研究所(ICR)胚胎小鼠(3只)侧脑室室管膜细胞进行原代培养,并使用 RBP-Jκ-siRNA 干扰 RBP-JK,以及选用2~3月龄体重为20~25 g 的 CD133-C...  相似文献   

15.
Human hearing loss is a common neurosensory disorder about which many basic research and clinically relevant questions are unresolved. At least 50% of hearing loss are due to a genetic etiology. Although hundreds of genes have been reported, there are still hundreds of related deafness genes to be found. Clinical, genetic, and functional investigations were performed to identify the causative mutation in a distinctive Chinese family with postlingual nonsyndromic sensorineural hearing loss. Whole‐exome sequencing (WES) identified lipoprotein receptor‐related protein 5 (LRP5), a member of the low‐density lipoprotein receptor family, as the causative gene in this family. In the zebrafish model, lrp5 downregulation using morpholinos led to significant abnormalities in zebrafish inner ear and lateral line neuromasts and contributed, to some extent, to disabilities in hearing and balance. Rescue experiments showed that LRP5 mutation is associated with hearing loss. Knocking down lrp5 in zebrafish results in reduced expression of several genes linked to Wnt signaling pathway and decreased cell proliferation when compared with those in wild‐type zebrafish. In conclusion, the LRP5 mutation influences cell proliferation through the Wnt signaling pathway, thereby reducing the number of supporting cells and hair cells and leading to nonsyndromic hearing loss in this Chinese family.  相似文献   

16.
目的探讨电离辐射下大鼠耳蜗外毛细胞Prestin蛋白表达的改变及意义。方法建立大鼠耳放射损伤模型,检测其听力复合动作电位(CAP)阈值及畸变产物耳声发射(DPOAEs)幅值,验证其电离辐射晚期感音神经性耳聋(SNHL)的发生。提取大鼠耳蜗组织mRNA及蛋白,荧光实时定量PCR检测耳蜗Prestin蛋白mRNA水平的表达,以及Western杂交检测Prestin蛋白水平的表达。结果成功建立了电离辐射晚期SNHL大鼠模型,其耳蜗Prestin蛋白无论是mRNA表达水平还是蛋白表达水平均较未照射组明显降低。结论放疗晚期感音神经性耳聋的发生机制可能与电离辐射导致内耳外毛细胞Prestin蛋白的表达异常有关。  相似文献   

17.
Recent studies have shown that disruption of Notch1 signaling in lymphocyte progenitors (LP) inhibits T cell development and promotes B cell development in the thymus. Conversely, inappropriate activation of Notch1 in LP inhibits B cell development and causes ectopic T cell development in the bone marrow. These observations imply that Notch1 activation must be spatially regulated to ensure that LP generate B cells in the bone marrow and T cells in the thymus. However, Notch ligands are expressed in both tissues. Studies in flies and worms have revealed that Notch activation is extremely sensitive to small changes in the amount of receptor or ligand expressed, and defined multiple mechanisms that limit Notch activation to discrete cells at specific times during development. Here, we describe how some of these mechanisms might regulate Notch activity in LP during the T/B lineage decision.  相似文献   

18.
Musashi1 (Msi1) is an RNA-binding protein expressed in neural stem/progenitor cells, astroglial progenitor cells and astrocytes in the vertebrate central nervous system. We hypothesized that Msi1 is expressed in only some of the supporting cells in the cochlea, which could become hair cell progenitors under special circumstances after an injury. To observe this, we investigated Msi1 expression in young adult mouse cochlea by immunohistochemistry using monoclonal antibody against Msi1. Msi1 immunostaining was found in a variety of supporting cells but not in outer hair cells in the organ of Corti. Although an immunoreactive ring was found around the inner hair cells, it also seemed to originate from the supporting cells. We suppose that this wide expression of Msi1 in supporting cells indicates that those cells might have the potential to become hair cell progenitors if injured, but that some other mechanisms strictly inhibit this ability.  相似文献   

19.
RBP-J is a key mediator of Notch signaling that regulates cell fate determination in various lineages. To investigate the function of Notch-RBP-J in mature B cell differentiation, we generated mice that selectively lacked B cell RBP-J expression using conditional mutagenesis. Absence of RBP-J led to the loss of marginal zone B (MZB) cells with a concomitant increase in follicular B cells; in contrast, B1 cells in the peritoneal cavity were unaffected. Lack of RBP-J caused no defects in B cells maintenance, survival, plasma cell differentiation or activation. It is therefore likely that Notch-RBP-J signaling regulates the lineage commitment of mature B cells into follicular versus MZB cells. In addition, in mice with RBP-J-deficient B cells, had no obvious changes in immunoglobulin production in response to Ficoll, lipopolysaccharide or chicken gammaglobulin. In contrast, these mice exhibited increased mortality rates after blood-borne bacterial infection, which indicates that MZB cells play pivotal roles in the clearance of these bacteria.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号